原子荧光光谱分析法ppt
合集下载
原子荧光光谱法(AFS) 分析技术 - 副本
原子荧光光谱法(AFS) 原子荧光光谱法(AFS) 分析技术
二〇一二年三月
原子荧光光谱法(AFS) 分析技术 原子荧光光谱法
一 AFS基础原理概述 AFS基础原理概述 二 三 四 五 六 AFS仪器构造装置 AFS仪器构造装置
AFS仪器操作及影响测量的主要因 AFS仪器操作及影响测量的主要因 素
AFS仪器使用注意事项 AFS仪器使用注意事项 AFS仪器日常维护 AFS仪器日常维护 AFS简单故障的排除 AFS简单故障的排除
AFS仪器操作及影响原子荧光 仪器操作及影响原子荧光 测量的主要因素及注意事项
2. 6 读数时间、延迟时间 读数时间、
读数时间[t(r)]是指进行测量采样的时间,即元素灯以事先设定的 灯电流发光照射原子蒸气使之产生荧光的整个过程。操作者可根据 屏幕上的If-T关系曲线形状来确定读数时间,该时间的长短与蠕动 (注射)泵的泵速、还原剂的浓度、进样体积的大小等有关。读数 时间的确定非常重要,以峰面积积分计算时以将整个峰形全部采入 为最佳。 延迟时间[t(d)]是指当样品与还原剂开始反应后,产生的氢化物 进入原子化器需要一个过程,其所用时间即为延迟时间。延迟时间 设置准确,可以有效地延长灯的使用寿命,并减少空白噪声。 在读数时间固定的情况下,如果延迟时间过长,会导致读数采样 滞后,损失测量信号;延迟时间过短,会减少灯的使用寿命,增加 空白噪声。
AFS仪器操作及影响原子荧光 仪器操作及影响原子荧光 测量的主要因素及注意事项
1、操作规程 、 打开氩气→安装待测元素灯→依次打开稳压电源、电 脑、AFS仪器主机、顺序注射泵(或蠕动泵) →调节光路 →加水于二级气液分离器→打开操作软件→设置仪器参数 →仪器预热→压紧蠕动泵(在顺序注射反应系统中承担排 废作用)→插进样管路于试剂瓶中→检测→打印报告→清 洗仪器→松开蠕动泵→退出软件→依次关闭→顺序注射泵 (或蠕动泵)、 AFS仪器主机、电脑、稳压电源、氩气 操作规程链接: 操作规程链接: 原子荧光分光光度计操作规程.doc 原子荧光分光光度计操作规程.doc
二〇一二年三月
原子荧光光谱法(AFS) 分析技术 原子荧光光谱法
一 AFS基础原理概述 AFS基础原理概述 二 三 四 五 六 AFS仪器构造装置 AFS仪器构造装置
AFS仪器操作及影响测量的主要因 AFS仪器操作及影响测量的主要因 素
AFS仪器使用注意事项 AFS仪器使用注意事项 AFS仪器日常维护 AFS仪器日常维护 AFS简单故障的排除 AFS简单故障的排除
AFS仪器操作及影响原子荧光 仪器操作及影响原子荧光 测量的主要因素及注意事项
2. 6 读数时间、延迟时间 读数时间、
读数时间[t(r)]是指进行测量采样的时间,即元素灯以事先设定的 灯电流发光照射原子蒸气使之产生荧光的整个过程。操作者可根据 屏幕上的If-T关系曲线形状来确定读数时间,该时间的长短与蠕动 (注射)泵的泵速、还原剂的浓度、进样体积的大小等有关。读数 时间的确定非常重要,以峰面积积分计算时以将整个峰形全部采入 为最佳。 延迟时间[t(d)]是指当样品与还原剂开始反应后,产生的氢化物 进入原子化器需要一个过程,其所用时间即为延迟时间。延迟时间 设置准确,可以有效地延长灯的使用寿命,并减少空白噪声。 在读数时间固定的情况下,如果延迟时间过长,会导致读数采样 滞后,损失测量信号;延迟时间过短,会减少灯的使用寿命,增加 空白噪声。
AFS仪器操作及影响原子荧光 仪器操作及影响原子荧光 测量的主要因素及注意事项
1、操作规程 、 打开氩气→安装待测元素灯→依次打开稳压电源、电 脑、AFS仪器主机、顺序注射泵(或蠕动泵) →调节光路 →加水于二级气液分离器→打开操作软件→设置仪器参数 →仪器预热→压紧蠕动泵(在顺序注射反应系统中承担排 废作用)→插进样管路于试剂瓶中→检测→打印报告→清 洗仪器→松开蠕动泵→退出软件→依次关闭→顺序注射泵 (或蠕动泵)、 AFS仪器主机、电脑、稳压电源、氩气 操作规程链接: 操作规程链接: 原子荧光分光光度计操作规程.doc 原子荧光分光光度计操作规程.doc
原子荧光光谱法
4 原子荧光光谱法
Fluorescence analysis
4.1 原子荧光光谱概述
❖ 原子荧光光谱分析(atomic fluorescence spectrometry, AFS)法是通过测定待测原子蒸气在辐射能激发下发 射的荧光强度来进行定量分析的方法。
❖ 从原理来看该方法属原子发射光谱范畴,发光机制 属光致发光,但所用仪器与原子吸收仪相近。
❖ 原子荧光分析中,样品先被转变为原子蒸气,原子 蒸气吸收一定波长的辐射而被激发,然后回到较低 激发态或基态时便发射出一定波长的辐射--原子荧 光。
❖ 把氢化物发生和原子荧光光谱法结合起来,我国科 学工作者研创了实用的氢化物--原子荧光光谱仪商 品仪器。此后,原子荧光分析迅速普及并发展成为
原子发射和吸收光谱法的有力补充。
4.2.4待测原子的浓度与荧光强度
原子荧光光谱强度由原子吸收与原子发射过程共同决定。当 光源强度稳定、辐射光平行及自吸可忽略时,发射荧光的强 度If正比于基态原子对特定频率光的吸收强度Ia。
在理想情况下:
If Ia
I f I0 A K0 L N
在实际工作中,仪器参数和实验测试条件保持不变,即
原子荧光光谱优点和局限性
❖ 原子荧光光谱分析法具有谱线简单、检出限低、可 同时进行多元素分析、可以用连续光源、校准曲线 的线性范围宽等优点。
❖ 原子荧光也存在一定的局限性:在较高浓度时会产 生自吸,导致非线性的校正曲线;在火焰样品池中 的反应和原子吸收的相似,也能引起化学干扰;存 在荧光猝灭效应及散射光的干扰等问题。
➢ 原子荧光是光致发光,属二次发光。当激发光源停 止辐射后,跃迁停止,荧光立即消失,不同元素的 荧光波长不同。
4.2.2 原子荧光光谱的类型
Fluorescence analysis
4.1 原子荧光光谱概述
❖ 原子荧光光谱分析(atomic fluorescence spectrometry, AFS)法是通过测定待测原子蒸气在辐射能激发下发 射的荧光强度来进行定量分析的方法。
❖ 从原理来看该方法属原子发射光谱范畴,发光机制 属光致发光,但所用仪器与原子吸收仪相近。
❖ 原子荧光分析中,样品先被转变为原子蒸气,原子 蒸气吸收一定波长的辐射而被激发,然后回到较低 激发态或基态时便发射出一定波长的辐射--原子荧 光。
❖ 把氢化物发生和原子荧光光谱法结合起来,我国科 学工作者研创了实用的氢化物--原子荧光光谱仪商 品仪器。此后,原子荧光分析迅速普及并发展成为
原子发射和吸收光谱法的有力补充。
4.2.4待测原子的浓度与荧光强度
原子荧光光谱强度由原子吸收与原子发射过程共同决定。当 光源强度稳定、辐射光平行及自吸可忽略时,发射荧光的强 度If正比于基态原子对特定频率光的吸收强度Ia。
在理想情况下:
If Ia
I f I0 A K0 L N
在实际工作中,仪器参数和实验测试条件保持不变,即
原子荧光光谱优点和局限性
❖ 原子荧光光谱分析法具有谱线简单、检出限低、可 同时进行多元素分析、可以用连续光源、校准曲线 的线性范围宽等优点。
❖ 原子荧光也存在一定的局限性:在较高浓度时会产 生自吸,导致非线性的校正曲线;在火焰样品池中 的反应和原子吸收的相似,也能引起化学干扰;存 在荧光猝灭效应及散射光的干扰等问题。
➢ 原子荧光是光致发光,属二次发光。当激发光源停 止辐射后,跃迁停止,荧光立即消失,不同元素的 荧光波长不同。
4.2.2 原子荧光光谱的类型
原子荧光光谱精讲
4.检测器
•
常用的是日盲光电倍增管,在多元素原子荧光分析仪中, 也用光导摄象管、析象管做检测器。检测器与激发光束成 直角配置,以避免激发光源对检测原子荧光信号的影响。
5.氢化物发生器 • • • • (1) (2) (3) (4) 间断法 连续流动法 断续流动法 流动注射氢化物技术
4.原子荧光法测定原理 • 在一定实验条件下,荧光强度与被测元素的浓度成正比。 据此可以进行定量分析(线性关系,只在低浓度时成立) • 随着原子浓度的增加,由于谱线展宽效应、自吸、散射等 因素的影响会使得曲线出现弯曲
5.氢化物(蒸气)发生原子荧光法 • 1)原理 • 氢化物发生进样方法,是利用某些能产生初生态氢的还原 剂或化学反应,将样品溶液中的待测组分还原为挥发性共 价氢化物,然后借助载气流(氩气)将其导入原子光谱分 析系统进行测量。
2) 谱线简单、干扰小;
3) 线性范围宽(可达 3 ~ 5个数量级);
4) 易实现多元素同时测定(产生的荧光向各个方向发射)。
缺点 存在荧光淬灭效应、散射光干扰等问题。
二、原子荧光光谱法的基本原理
1.原子荧光的产生过程
+ e
e
原子荧光
基态的原子蒸气吸收特定波长光辐射的能量而被激发到较高的激发态, 然后受激原子去活化回到较低的激发态或基态时便发射出一定波长的辐射 ———原子荧光
氢化物发生的优点: 分析元素能够与可能引起干扰的样品基体分离,消除了干 扰。 与溶液直接喷雾进样相比,氢化物法能将待测元素充分预 富集,进样效率接近100%。 连续氢化物发生装置易实现自动化。 不同价态的元素氢化物发生的条件不同,可进行价态分析。
氢化物反应种类 • 1)金属酸还原(Marsh反应) • 2)硼氢化物酸还原体系
第二节 原子荧光光谱法..
13:23
15
HG-AFS方法的特点
测定Hg、As、Bi、Se、Sb、Be、Te、Ge(Sn、Pb、 Zn)等
最可靠、最有前途的方法。不使用SnCl2作还原剂,而使用
NaBH4(KBH4)作还原剂。 主要特点: (1)通过氢化物发生达到分离和富集的目的,基体影响易于 消除
(2)与溶液直接喷雾进样相比, 氢化物法能将待测元素充分预 富集, 进样效率近乎100 %
4144扩大测量范围的方法扩大测量范围的方法v氢化物发生原子荧光化的特点之一就是测量的线氢化物发生原子荧光化的特点之一就是测量的线性范围宽性范围宽3535个数量级一般无需采用扩大测量个数量级一般无需采用扩大测量范围的方法但是在实际样品中有时会碰到试样范围的方法但是在实际样品中有时会碰到试样中待测元素的含量较高此时可采用以下方法扩大中待测元素的含量较高此时可采用以下方法扩大测量范围以减少操作上的麻烦
13:23
13
氢化物发,只是增加了存样环,仪器由微机控 制,第一步蠕动泵转动一定的时间(8s),样品被吸入并贮存在 存样环中,但未进入混合器,与此同时硼氢化钾也被吸入相应 的管道中,第二步时,泵停止转动(5s)以便将吸样管放入载流中, 第三步泵高速转动,载流迅速将样品送入混合器中,使其与硼 氢化钾反应。此法可根据样品含量不同灵活改变取样量,试剂 消耗量少。
f)记忆效应小。
13:23
27
高温石英炉和低温石英炉
+
加热炉丝
点火炉丝
+ _
_
屏蔽气 载气+样品蒸气 (a)高温石英炉 载气+样品蒸气 (b) 低温石英炉 屏蔽气
13:23
28
低温石英炉和高温石英炉对8个元素测定的
检出限(ng/mL)
第三章原子吸收与原子荧光光谱法.ppt
这种频率分布和气体中的原子热运动的速率分布(麦克 斯韦-波尔兹曼速率分布)相同,具有近似的高斯曲线分布。
VD 7.162107 V0
T M
(3)压力变宽pressure broadening (劳伦兹变宽,赫鲁兹马克变宽)
由于原子相互碰撞使能量发生稍微变化。 劳伦兹(Lorentz)变宽: 待测原子和其他原子碰撞。随原子区压力增加而增大。 赫尔兹马克(Holtzmark)变宽(共振变宽):
I e d e
-K L
0
0
I
I e d e
-K L
0
0
采用锐线光源进行测量,则
Δνe<Δνa ,由图可见,在辐射线宽度 范 围 内 , Kν 可 近 似 认 为 不 变 , 并 近 似等于峰值时的吸收系数K0
峰值吸收
A
lg
e 0
I0 d
I e d e
1.积分吸收
钨丝灯光源和氘灯,经分光后,光谱通带0.2nm。而原子 吸收线半宽度:10-3nm。如图:
若用一般光源照射时,吸 收光的强度变化仅为0.5%。灵 敏度极差。
理论上:
Kvdv
π e2 mc
N0
f
Kvdv
π e2 mc
N0
f
如果将公式左边求出,即谱线下 所围面积测量出(积分吸收)。即可 得到单位体积原子蒸气中吸收辐射的
择狭缝宽度(S)来确定: W=DS
五、检测系统
主要由检测器、放大器、对数变换器、显示记录装置组成。 1.检测器-------- 将单色器分出的光信号转变成电信号。
如:光电池、光电倍增管、光敏晶体管等。 分光后的光照射到光敏阴极K上,轰击出的 光电 子又射向 光敏阴极1,轰击出更多的光电子,依次倍增,在最后放出的 光电子 比最初多到106倍以上,最大电流可达 10μA,电流经 负载电阻转变为电压信号送入放大器。 2.放大器------将光电倍增管输出的较弱信号,经电子线路进 一步放大。 3.对数变换器------光强度与吸光度之间的转换。 4.显示、记录 新仪器配置:原子吸收计算机工作站
原子荧光光谱法
原子荧光光谱法(Atomic Fluorescence Spectroscopy,AFS)是一种具有非常高分辨率的分析技术,主要用来测量样品中存在的微量金属元素含量,特别是对于痕量金属元素的检测非常有效果。
该技术通过激发样品中的金属原子,使其转换成激发态,然后原子再通过跃迁来发射出特定的荧光光线,通过检测荧光强度或荧光光谱来分析样品中金属元素的含量。
AFS的检测灵敏度非常高,可以达到ppb或甚至更低的级别。
AFS技术主要应用于环境分析、食品检测、医学及生物技术等领域,可以对水、土壤、植物、动物等样品中的金属元素含量进行分析。
另外,AFS还常用于研究化学反应中被激发态原子的反应动力学、电离与解离以及表面反应等方面。
总之,原子荧光光谱法作为一种高分辨率、高灵敏度的分析技术,在分析金属元素的含量和某些化学反应机制方面具有广泛的应用前景,并且在分析前处理的方便和实时性上具有很大的优势。
原子荧光光谱分析法
CHAPTER 02
原子荧光光谱法基本原理
原子能级与跃迁
1 2 3
基态与激发态
原子中的电子按一定的能级分布,处于最低能级 的电子态称为基态,吸收能量后跃迁到较高能级 的电子态称为激发态。
能级跃迁
原子中的电子在吸收或发射特定频率的光子时, 会在不同的能级之间发生跃迁。这种跃迁是原子 荧光光谱分析的基础。
荧光寿命
荧光寿命是指原子在激发态停留 的平均时间。荧光寿命的长短决 定了荧光的强度和持续时间。
荧光光谱特性
01
荧光光谱
荧光光谱是指荧光强度随发射光子频率(或波长)的变化关系。通过测
量荧光光谱,可以获得关于原子能级结构和跃迁特性的信息。
02 03
斯托克斯位移
斯托克斯位移是指荧光光谱中发射光子的频率低于吸收光子的频率的现 象。这是由于在退激发过程中,原子会损失一部分能量给周围环境,导 致发射的光子能量降低。
多元素荧光光谱仪的研制
研制具有多通道检测能力的荧光光谱仪,实现对不同元素的独立检 测和同时测定。
多元素分析方法的建立
建立基于多元素荧光探针和荧光光谱仪的多元素分析方法,为复杂 样品的多元素分析提供有效手段。
现场、在线、实时监测技术的应用
便携式荧光光谱仪的研制
开发便携式、小型化的荧光光谱仪,实现现 场、在线、实时监测的可行性。
荧光探针性能优化
通过改变荧光团的结构、引入辅助基团等手段,优化荧光探针的性 能,提高其抗干扰能力和稳定性。
荧光探针的筛选与评估
建立荧光探针筛选和评估体系,对大量候选探针进行快速筛选和性 能评估,加速高性能荧光探针的开发和应用。
多元素同时测定技术的发展
多元素荧光探针的设计
开发能够同时识别多种元素的荧光探针,实现多元素的同时测定 ,提高分析效率。
原子荧光光谱分析法标准文档ppt
精品课件!
内容选择:
第一节 原子吸收光谱分析基本原理
basic principle of atomic absorption spectroscopy
第二节 原子吸收分光光度仪
atomic absorption spectrometer
第三节 干扰与抑制
interferences and elimination
2.原子荧光的产生类型
三种类型:共振荧光、非共振荧光与敏化荧光 (1)共振荧光
共振荧光:气态原子吸收共振线被激发后,激发态原子
再发射出与共振线波长相同的荧光;见图A、C;
热共振荧光:若原子受热激发处于 压稳态,再吸收辐射进一步激发,然 后再发射出相同波长的共振荧光;见
图B、D;
(2)非共振荧光
当荧光与激发光的波长不相同时,产生非共振荧光;
Cd:10-12 g ·cm-3;
a
b
c
d
可调频激光器:高非光强火、窄焰谱线原; 子化中可观察到。
多个空心阴极灯同时照射,可同时分析多个元素
三种类型:共振荧光、非共振荧光与敏化荧光
特荧点光: 波长大于激发所线波有长(类荧光型能量中间隔,小于共激发振线能荧量间光隔)强; 度最大,最为有用。
荧光波长小于激发线波长;
I0 原子化火焰单位面积接受到的光源强度;A为受光照射在 检测器中观察到的有效面积;K0为峰值吸收系数;l 为吸收光 程;N为单位体积内的基态原子数;
三、原子荧光光度计
1.仪器类型
单通道:每次分析一个元素; 多通道:每次可分析多个元素; 色散型:带分光系统; 非色散型:采用滤光器分离分析线和邻近线;
光源:高强度空心阴极灯、无极放电灯、可调频激光器;
受光激发的原子与另一种原子碰撞时,把激发能传递另一个原子使其激发,后者发射荧光;
内容选择:
第一节 原子吸收光谱分析基本原理
basic principle of atomic absorption spectroscopy
第二节 原子吸收分光光度仪
atomic absorption spectrometer
第三节 干扰与抑制
interferences and elimination
2.原子荧光的产生类型
三种类型:共振荧光、非共振荧光与敏化荧光 (1)共振荧光
共振荧光:气态原子吸收共振线被激发后,激发态原子
再发射出与共振线波长相同的荧光;见图A、C;
热共振荧光:若原子受热激发处于 压稳态,再吸收辐射进一步激发,然 后再发射出相同波长的共振荧光;见
图B、D;
(2)非共振荧光
当荧光与激发光的波长不相同时,产生非共振荧光;
Cd:10-12 g ·cm-3;
a
b
c
d
可调频激光器:高非光强火、窄焰谱线原; 子化中可观察到。
多个空心阴极灯同时照射,可同时分析多个元素
三种类型:共振荧光、非共振荧光与敏化荧光
特荧点光: 波长大于激发所线波有长(类荧光型能量中间隔,小于共激发振线能荧量间光隔)强; 度最大,最为有用。
荧光波长小于激发线波长;
I0 原子化火焰单位面积接受到的光源强度;A为受光照射在 检测器中观察到的有效面积;K0为峰值吸收系数;l 为吸收光 程;N为单位体积内的基态原子数;
三、原子荧光光度计
1.仪器类型
单通道:每次分析一个元素; 多通道:每次可分析多个元素; 色散型:带分光系统; 非色散型:采用滤光器分离分析线和邻近线;
光源:高强度空心阴极灯、无极放电灯、可调频激光器;
受光激发的原子与另一种原子碰撞时,把激发能传递另一个原子使其激发,后者发射荧光;
原子光谱分析_第五章__原子荧光光谱分析
College of Chemistry,SCU
联用技术形态分析
• 2000年 3期 《 国外分析仪器技术与应用》 起止页码: 22-26 页 • HPLC与AAS,AFS联用技术在元素化学形态分析中的应用 • 王丽 汤志勇 • [ 阅读全文 下载全文]中国地质大学(武汉)材料科学与化 学工程学院 • 文 摘:本文介绍了高效液相色谱与原子吸收光谱、原子 荧光光谱的联用技术及其应用于元素化学形态分析的现状、 前景及存在问题。着重论述了用于元素形态分析的高效液 相色谱分离方法及联用接口。 • 关键词:HPLC 元素化学形态分析 AAS AFS • ISSN: 1001-7828 C N: 分类号:O657.72 O657.31
College of Chemistry,SCU
原子荧光光谱分析法干扰及消除
• 在原子荧光法中由于光源的强度比荧光强度高几 个数量级,因此散射光可产生较大的正干扰。 • 减少散射干扰,主要是减少散射微粒。采用预混 火焰、增高火焰观测高度和火焰温度,或使用高 挥发性的溶剂等,均可以减少散射微粒。 • 也可采用扣除散射光背景的方法消除其干扰。
根据Lamber-Beer定律: Ia = I0(1- e Ia:基态原子吸收光强度 I0: 激发光光强 Kv:频率V的峰值吸收系数 L:吸收光程 C:吸收原子的浓度
-KvLC)
College of Chemistry,SCU
在弱吸收条件下,Talor级数展开的高次项可 以忽略: Ia = I0KvLC 结合 If = Ia 整理可得 If = I0AC K积分吸收系数,Kv峰值吸收,A总吸收系数 当仪器与操作条件一定时
荧光弱,要求噪音和暗电 流小,对于非色散型的仪 器,为排除室内光线影响, 选用响应范围为160320nm的日盲光电倍增管。
原子荧光光谱法PPT课件
可用氩气来稀释火焰,减小猝灭现象。.源自6三.原子荧光光谱仪
原子荧光仪分为两类,色散型和非色散型。 荧光仪与原子吸收仪相 似,但光源与其他部件不在一条直线上,而是900 直角,而避免激发光 源发射的辐射对原子荧光检测信号的影响。
滤光片 非色散型
激发光源:空心阴极灯或氙 弧灯
原子化器:与原子吸收法相同
色散系统:色散型-光栅 非色散型-滤光片
原子荧光光谱法
Atomic Fluorescence Spectrometry(AFS)
.
1
一、概述
原子荧光光谱法的特点
(1) 有较低的检出限,灵敏度高。 (2) 干扰较少,谱线比较简单。 (3) 仪器结构简单,价格便宜。 (4) 分析校准曲线线性范围宽,可达3~5个数量级。 (5) 由于原子荧光是向空间各个方向发射的,比较容易
色散型
检测系统:光电倍增管
数据处理和仪器控制系统
氢化物发生系统
.
7
氢化物(蒸气)发生 原子荧光法
原理
As、Sb、Bi、Se、Te、Pb、Sn、Ge 8个 元素可形成气态氢化物,Cd、Zn形成气态 组分,Hg形成原子蒸气。
气态氢化物、气态组分通过原子化器原子 化形成基态原子,基态原子蒸气被激发而 产生原子荧光
光学系统
简化结构;光程短; 增强荧光信号强度
.
原子荧光仪器2结2 构
通道
单道、双道、三道、四道 优势: 多元素同时测定;单道增强
多通道设计
.
原子荧光仪器2结3 构
检测器
日盲光电倍增管
检测波长范围: 160nm~320nm
.
原子荧光仪器2结4 构
制作多道仪器,因而能实现多元素同时测定。
(6) 缺点 存在荧光淬灭效应、散射光干扰等问题;
原子荧光仪分为两类,色散型和非色散型。 荧光仪与原子吸收仪相 似,但光源与其他部件不在一条直线上,而是900 直角,而避免激发光 源发射的辐射对原子荧光检测信号的影响。
滤光片 非色散型
激发光源:空心阴极灯或氙 弧灯
原子化器:与原子吸收法相同
色散系统:色散型-光栅 非色散型-滤光片
原子荧光光谱法
Atomic Fluorescence Spectrometry(AFS)
.
1
一、概述
原子荧光光谱法的特点
(1) 有较低的检出限,灵敏度高。 (2) 干扰较少,谱线比较简单。 (3) 仪器结构简单,价格便宜。 (4) 分析校准曲线线性范围宽,可达3~5个数量级。 (5) 由于原子荧光是向空间各个方向发射的,比较容易
色散型
检测系统:光电倍增管
数据处理和仪器控制系统
氢化物发生系统
.
7
氢化物(蒸气)发生 原子荧光法
原理
As、Sb、Bi、Se、Te、Pb、Sn、Ge 8个 元素可形成气态氢化物,Cd、Zn形成气态 组分,Hg形成原子蒸气。
气态氢化物、气态组分通过原子化器原子 化形成基态原子,基态原子蒸气被激发而 产生原子荧光
光学系统
简化结构;光程短; 增强荧光信号强度
.
原子荧光仪器2结2 构
通道
单道、双道、三道、四道 优势: 多元素同时测定;单道增强
多通道设计
.
原子荧光仪器2结3 构
检测器
日盲光电倍增管
检测波长范围: 160nm~320nm
.
原子荧光仪器2结4 构
制作多道仪器,因而能实现多元素同时测定。
(6) 缺点 存在荧光淬灭效应、散射光干扰等问题;
卫生化学:原子荧光光谱法
热助直跃线荧光:亚稳态-较高激发态-高于亚稳态 (图7-1d)。 • 阶跃线荧光:基态-E2激发态-碰撞损失能量-E1激发态-基态(图7-1e)。如Na
热助阶跃线荧光:基态E0-E2--E3-E1(图7-1f)。 产生热助阶跃线荧光的条件:能级差很小,足以吸收热能而产生由低能级向高能级的跃迁。 • 反斯托克斯荧光,亦称为“热助荧光”:荧光波长比激发光波长短。基态或亚稳态-更高能级激发 态-基态。如铟、铬等
二、原子荧光光谱的类型
• 共振荧光Байду номын сангаас非共振荧光、敏化荧光
1.共振荧光:原子吸收的辐射光与发射的辐射光波长相同 • 共振荧光:基态-激发态-基态 (图7-1a)。谱线强度最大,应用最多。如,Ni,Zn等 • 热助共振荧光:亚稳态-较高能级-亚稳态 (图7-1b)。
2.非共振荧光:激发和发射的荧光波长不相同,荧光波长大于吸收波长 • 直跃线荧光:基态-较高激发态-高于基态的亚稳态 (图7-1c)。发生在两个激发态之间。
一、原子荧光光谱的产生
• 属于原子发射光谱。
• 定义:基态蒸气原子吸收激发光源发射的特征波长辐射后,原子的外层电子 由基态跃迁至高能态,即被激发;处于激发态的原子不稳定而释放能量返回 到基态。以辐射的形式释放能量,所发射的特征光谱为原子荧光光谱。
• 原子荧光的产生过程:
M h M *
M * M h
仪器类型
• 色散型和无色散型两类。主要区别在于非色散原子荧光光谱仪无单色器。
• 单道原子荧光光谱仪 • 多道原子荧光光谱仪 多元素同时测定
第三节 原子荧光分析法实验技术
一、氢化物发生-原子荧光光谱法( HG-AFS) • 优点:与基体相分离,降低基体干扰,气体进样提高了进样效率。灵敏度高、干扰小、
原子光谱(原子荧光光谱)
工作曲线法 定量分析有高的灵敏度和宽的线性范围
一.原理
1. 原子荧光光谱的产生: 气态自由原子吸收 特征辐射后跃迂到较高能级,然后又跃 迁回到基态或较低能级。同时发射出与 原激发辐射波长相同或不同的辐射即原 子荧光。 原子荧光为光致发光,二次发光,激 发光源停止时,再发射过程立即停止。
光致发光
光致发光(二次发光)过程: 物质吸收电磁辐射后受到激发,受激 原子或分子以辐射去活化,再发射波长 与激发辐射相同或不同的辐射。 再发射时间在10-9~10-6S的光为荧光 再发射时间在10-6S以内的光为磷光
2. 阶跃线荧光 有两种情况,正常阶跃荧光为被光照射激发的 原子,以非辐射形式去激发返回到较低能级,再 以辐射形式返回基态而发射的荧光。很显然,荧 光波长大于激发线波长。如钠原子吸收 330.30nm光,发射出 588.9nm的荧光。非辐射形 式为在原子化器中原子与其他粒子碰撞的去激发 过程。热助阶跃线荧光为被光照射激发的原子, 跃迁至中间能级,又发生热激发至高能级,然后 返回至低能级发射的荧光。例如铬原子被 359.35nm的光激发后,会产生很强的357.87nm荧 光。阶跃线荧光的产生见图(c)。
激发光源 可用线光源或连续光源 空心阴极灯或氙弧灯 原子化器 与原子吸收相同 色散系统 色散型:光栅 非色散型 :滤光器 检测系统 光电倍增管。
原子荧光分光光度计(北京)
三、原子荧光光谱的干扰及应用
干扰:荧光猝灭效应以及散射光 应用:原子发射和原子吸收光谱的补充, 主要用于锌、镉等的测定
四.分析方法
例如铟吸收热能后处于一较低的亚稳能级再吸收41013nm的光后发射41018nm的荧光见图3敏化荧光受光激发的原子与另一种原子碰撞时把激发能传递给另一个原子使其激发后者再以辐射形式去激发而发射荧光即为敏化荧光
一.原理
1. 原子荧光光谱的产生: 气态自由原子吸收 特征辐射后跃迂到较高能级,然后又跃 迁回到基态或较低能级。同时发射出与 原激发辐射波长相同或不同的辐射即原 子荧光。 原子荧光为光致发光,二次发光,激 发光源停止时,再发射过程立即停止。
光致发光
光致发光(二次发光)过程: 物质吸收电磁辐射后受到激发,受激 原子或分子以辐射去活化,再发射波长 与激发辐射相同或不同的辐射。 再发射时间在10-9~10-6S的光为荧光 再发射时间在10-6S以内的光为磷光
2. 阶跃线荧光 有两种情况,正常阶跃荧光为被光照射激发的 原子,以非辐射形式去激发返回到较低能级,再 以辐射形式返回基态而发射的荧光。很显然,荧 光波长大于激发线波长。如钠原子吸收 330.30nm光,发射出 588.9nm的荧光。非辐射形 式为在原子化器中原子与其他粒子碰撞的去激发 过程。热助阶跃线荧光为被光照射激发的原子, 跃迁至中间能级,又发生热激发至高能级,然后 返回至低能级发射的荧光。例如铬原子被 359.35nm的光激发后,会产生很强的357.87nm荧 光。阶跃线荧光的产生见图(c)。
激发光源 可用线光源或连续光源 空心阴极灯或氙弧灯 原子化器 与原子吸收相同 色散系统 色散型:光栅 非色散型 :滤光器 检测系统 光电倍增管。
原子荧光分光光度计(北京)
三、原子荧光光谱的干扰及应用
干扰:荧光猝灭效应以及散射光 应用:原子发射和原子吸收光谱的补充, 主要用于锌、镉等的测定
四.分析方法
例如铟吸收热能后处于一较低的亚稳能级再吸收41013nm的光后发射41018nm的荧光见图3敏化荧光受光激发的原子与另一种原子碰撞时把激发能传递给另一个原子使其激发后者再以辐射形式去激发而发射荧光即为敏化荧光
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量间隔);
光照激发,再热激发,返至高于基态的能级,发射荧光,
图(c)B、D ;这种阶跃线荧光称为“热助阶跃线荧光”。
a
b
c
d
2020/5/23
anti-Stokes荧光:
荧光波长小于激发线波长;先热激发再光照激发(或反
之),再发射荧光直接返回基态;图(d) ;
铟原子:先热激发,再吸收光跃迁451.13nm;发射荧光
2020/5/23
原子荧光与原子发射光谱的激发机理 有何不同?
原子发射光谱 原子受热运动粒子非弹性碰撞而被激发,各能级
激发态原子数遵守Boltzmann分布,辐射出原子 发射光谱。 原子荧光光谱 原子吸收光子而被光致激发,吸收具有选择性, 各能激发态原子数不遵守分布,再辐射的原子荧 光光谱比较简单。
第三章
原子荧光光谱 分析法
atomic fluorescence spectrometry,AFE
一、概述
generalization
二、基本原理
basic theory
三、原子荧光光度计
atomic fluorescence spectrometry
2020/5/23
-
一、概述
1、荧光现象的研究历史
荧光猝灭: 受激发原子与其他粒子碰撞,能量以热或其 他非荧光发射方式给出,产生非荧光去激发过程,使荧光减 弱或完全不发生的现象。
荧光猝灭程度与原子化气氛有关,火焰中主要的荧光猝 灭剂有CO、CO2,N2等,因此原子荧光分析尽量不用含碳的 燃料气体,而用氢-氩或氩稀释的氢-氧火焰。氩气气氛中荧 光猝灭程度最小。
需要和荧光区分开来的几个概念
荧光:由光照激发所引起的发光称为光致发光; ➢ 原子或分子吸收光子而被激发,然后再释放光能,发 射出光子(荧光)。原子荧光发射线光谱,分子荧光发 射带光谱。
(荧光棒)化学发光:由化学反应所引起的发光; 荧光屏发光:由阴极射线(高能电子束流)所引起的发光; 萤光:生物体的冷发光现象,是生物发光。
2020/5/23
2.原子荧光光谱法概念
定义 通过测定气态基态原子在辐射能作用下发射
的荧光强度进行定量分析的一种发射光谱分析方 法。
从发光机理来看属于发射光谱分析,可是它 又与原子吸收光谱法有许多相似之处(原子化 器),因此,可以认为它是原子发射光谱分析和 原子吸收光谱分析的综合和发展。
1964年以后发展起来的分析方法,适用于低 含量元素的分析。
2020/5/23
2.原子荧光的产生类型
三种类型:共振荧光、非共振荧光与敏化荧光 (1)共振荧光
共振荧光:气态原子吸收共振线被激发后,激发态原子
再发射出与共振线波长相同的荧光;见图A、C;
热共振荧光:若原子受热激发处于亚 稳态,再吸收光辐射进一步激发,然后再
发射出相同波长的共振荧光;见图B、D;
由于相应于原子的激发态和基态之间 的共振跃迁的几率一般比其它跃迁的几率 大得多,所以共振跃迁产生的谱线是对分 析最有用的共振荧光。
a
b
c
d
2020/5/23
直 跃线荧光(Stokes荧光)
Pb原子:吸收线283.13 nm;荧光线407.78nm;
同时存在两种形式:
铊原子:吸收线337.6 nm;共振荧光线337.6nm;
直跃线荧光535.0nm;
a
b
c
d
2020/5/23
阶跃线荧光:
光照激发,非辐射方式释放部分能量后,再发射荧光返回 基态;荧光波长大于激发线波长(荧光能量间隔小于激发线能
2020/5/23
二、基本原理
1.原子荧光光谱的产生过程
过程: 当气态原子受到强特征辐射时,由基态跃迁到激 发态,约在10-8s后,再由激发态跃迁回到基态或低能态,辐 射出与吸收光波长相同或不同的荧光;
特点: (1)属光致发光;二次发光; (2)激发光源停止后,荧光立即消失; (3)发射的荧光强度与照射的光强有关; (4)不同元素的荧光波长不同; (5)浓度很低时,强度与蒸气中该元素的密度成正比。
410.18nm, 图(d)A、C ;
a
b
c
d
2020/5/23
(3)敏化荧光
受光激发的原子A与另一种原子B碰撞时,把激发能传递 另一个原子B使其激发,后者发射荧光;
火焰原子化中观察不到敏化荧光; 非火焰原子化中可观察到。 所有类型中,共振荧光强度最大,最为有用。
2020/5/23
3.荧光猝灭与荧光量子效率
三、原子荧光光度计
If = ·Ia
式中为量子效率
在理想情况下: Ia I0A[1e(lN) ]
I0 A l N I f Φ I0 A l N K c
I0 原子化火焰单位面积接受到的光源强度;A为受光照射在检测器中观 察到的有效面积;ε为吸光系数;l 为吸收光程;N为单位体积内的基态原 子数;
2020/5/23
如锌原子:213.86nmБайду номын сангаас
2020/5/23
(2)非共振荧光
当荧光与激发光的波长不相同时,产生非共振荧光; 分为:直跃线荧光、阶跃线荧光、anti-Stokes荧光三种;
直跃线荧光(Stokes荧光):跃回到高于基态的亚稳态
时所发射的荧光;荧光波长大于激发线波长(荧光能量间隔
小于激发线能量间隔);
2020/5/23
3.特点
优点:
(1) 检出限低、灵敏度高 Cd:10-12 g ·cm-3; Zn:10-11 g ·cm-3;20种元素优
于AAS (2) 谱线简单、干扰小 (3) 线性范围宽 (4) 易实现多元素同时测定 缺点: (1)存在荧光猝灭效应、散射光干扰等问题; (2)可测量的元素不多,应用不广泛 (3)不适用于高含量元素分析
1575年,西班牙的内科医生和植物学家N.Monardes 首次记录了荧光现象:当紫外光照射到某些物质的时候,
这些物质会发射出各种颜色和不同强度的可见光,而当紫 外光停止照射时,这种光线也随之很快地消失,这种光线 成为荧光。
后来,人们经过的努力,总结了多种荧光现象,发展
了荧光理论。
2020/5/23
荧光量子效率:单位时间内,荧光辐射的量子数与被吸收 的量子数之比
= f / a
f 发射荧光的光量子数; a吸收的光量子数之比;
2020/5/23
4.待测原子浓度与荧光的强度的关系
当光源强度稳定、辐射光平行、自吸可忽略 ,发射荧光 的强度 If 正比于基态原子对特定频率吸收光的吸收强度 Ia ;