最新北师大版初中八年级数学下册第三章复习重点习题

合集下载

北师大版数学八年级下册第三章单元测试题及答案解析

北师大版数学八年级下册第三章单元测试题及答案解析

北师大版数学八年级下册第三章测试题姓名:得分:一、选择题1.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°3.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)4.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2B.a2C.a2D. a5.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的6.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)7.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.8.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2)B.(5,2)C.(6,2)D.(5,3)9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是()A.4 B.3 C.2 D.111.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′12.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.二、填空题13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD 分别平移到EF和EG的位置,则△EFG为三角形.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.16.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.17.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=cm.三、解答题18.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:②线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.21.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.23.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.答案与解析1.如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度【考点】Q2:平移的性质.【专题】选择题【分析】根据平移的性质,结合图形可直接求解.【解答】解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,∴平移距离就是线段BE的长度.故选B.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【考点】R2:旋转的性质;JA:平行线的性质.【专题】选择题【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选A【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.3.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.【点评】本题考查了坐标与图形变化﹣旋转:在直角坐标系中线段的旋转问题转化为直角三角形的旋转,然后利用旋转的性质求出相应的线段长,再根据点的坐标特征确定点的坐标.4.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD 被纸板覆盖部分的面积为()A.a2 B.a2 C.a2 D. a【考点】R2:旋转的性质.【专题】选择题【分析】扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相等得到∠EOD=∠FOC,于是可证明△ODE≌△OCF,得到S△ODE =S△OCF,所以S阴影部分=S△DOC=S正方形ABCD=a2.【解答】解:扇形的半径交AD于E,交CD于F,连结OD,如图,∵四边形ABCD为正方形,∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,∵∠EOF=90°,即∠EOD+∠DOF=90°,∠DOF+∠COF=90°,∴∠EOD=∠FOC,在△ODE和△OCF中,,∴△ODE≌△OCF,∴S△ODE =S△OCF,∴S阴影部分=S△DOC =S正方形ABCD=a2.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.5.关于这一图案,下列说法正确的是()A.图案乙是由甲绕BC的中点旋转180°得到的B.图案乙是由甲绕点C旋转108°得到的C.图案乙是由甲沿AB方向平移3个边长的距离得到的D.图案乙是由甲沿直线BC翻转180°得到的【考点】Q5:利用平移设计图案.【专题】选择题【分析】直接利用旋转的性质得出旋转中心进而得出答案.【解答】解:如图所示:可得图案乙是由甲绕BC的中点旋转180°得到的.故选:A.【点评】此题主要考查了旋转变换,正确得出旋转中心是解题关键.6.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2) D.(,﹣1)【考点】R7:坐标与图形变化﹣旋转.【专题】选择题【分析】需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标.【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);故选B.【点评】本题考查了坐标与图形变化﹣﹣旋转.解题时,注意分类讨论,以防错解.7.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【专题】选择题【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B (1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【专题】选择题【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】选择题【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠C AA′=45°,再根据三角形的内角和定理可得结果.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故选:C.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【专题】选择题【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.【点评】本题考查旋转变换、解直角三角形、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′A C D.B′C平分∠BB′A′【考点】R2:旋转的性质.【专题】选择题【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.【点评】本题考查了旋转的性质,角平分线的定义,等腰三角形的性质,正确的识别图形是解题的关键.12.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【专题】选择题【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.13.线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′的位置关系是.【考点】Q2:平移的性质.【专题】填空题【分析】根据平移的性质可知,线段AB沿和它垂直的方向平移到A′B′,则线段AB和线段A′B′平行且相等.【解答】解:∵线段AB沿和它垂直的方向平移到A′B′,∴线段AB和线段A′B′的位置关系是平行且相等.故答案为:平行且相等.【点评】本题考查的是平移的性质,①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.如图,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD 分别平移到EF和EG的位置,则△EFG为三角形.【考点】Q2:平移的性质.【专题】填空题【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在△EFG中求得∠FEG=90°.【解答】解:∵AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF,又∵∠B与∠C互余,∴∠EFG与∠EGF互余,∴在△EFG中,∠FEG=90°(三角形内角和定理),∴△EFG为Rt△EFG,故答案是:直角.【点评】本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.15.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.【考点】R2:旋转的性质.【专题】填空题【分析】根据旋转的性质可得AB=AB′,∠BA B′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.16.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.【考点】Q3:坐标与图形变化﹣平移.【专题】填空题【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(2,3)向左平移1个单位长度,∴点A′的横坐标为2﹣1=1,纵坐标不变,∴A′的坐标为(1,3).故答案为:(1,3).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=cm.【考点】R2:旋转的性质;KP:直角三角形斜边上的中线.【专题】填空题【分析】先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.18.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;P7:作图﹣轴对称变换.【专题】解答题【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.19.如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【专题】解答题【分析】(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.20.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:③线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF =S△BDE,请直接写出相应的BF的长.【考点】KD:全等三角形的判定与性质.【专题】解答题【分析】(1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DE∥AC;S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.【点评】本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.21.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【考点】R2:旋转的性质.【专题】解答题【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.22.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【专题】解答题【分析】(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2 B2C2即为所求.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.23.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.【考点】R2:旋转的性质.【专题】解答题【分析】(1)证明△ACD是等边三角形,据此求解;(2)作DE⊥BC于点E,首先在Rt△CDE中利用三角函数求得DE和CE的长,然后在Rt△BDE中利用勾股定理求解.【解答】解:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4.故答案是:4;(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,∴Rt△CDE中,DE=DC=2,CE=DC•cos30°=4×=2,∴BE=BC﹣CE=3﹣2=.∴Rt△BDE中,BD===.【点评】本题考查了旋转的性质以及解直角三角形的应用,正确作出辅助线,转化为直角三角形的计算是关键.。

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](提高)

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](提高)

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BE BF BF=⎧⎨=⎩ ∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C.【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵精品文档用心整理∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.资料来源于网络仅供免费交流使用。

北师大版八年级数学下册期末复习专题训练(三) 三角形证明中的四种辅助线作法

北师大版八年级数学下册期末复习专题训练(三) 三角形证明中的四种辅助线作法

2.如图3-ZT-2,在△ABC中,AB=AC,点E在AC上,且AD =AE,DE的延长线与BC相交于点F.求证:DF⊥BC.
图3-ZT-2
证明:如图,过点A作AM⊥BC于点M. ∵AB=AC,∴∠BAC=2∠BAM. ∵AD=AE, ∴∠D=∠AED, ∴∠BAC=∠D+∠AED=2∠D, ∴∠BAM=∠D, ∴DF∥AM. ∵AM⊥BC,∴DF⊥BC.
3.如图3-ZT-3,在△ABC中,AB=AC,D是BC边上的中点, DE,DF分别垂直AB,AC于点E,F.求证:DE=DFD是BC边上的中点, ∴AD平分∠BAC. ∵DE,DF分别垂直AB,AC于点E,F, ∴DE=DF.
作法二 构造直角三角形(等腰三角形)
5.如图3-ZT-5,点E在△ABC的AC边的延长线上,点D在AB 边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰 三角形.
图3-ZT-5
证明:如图,过点D作DG∥AE交BC于点G, ∴∠GDF=∠CEF. 在△GDF和△CEF中, ∵∠GDF=∠CEF,DF=EF,∠DFG=∠EFC, ∴△GDF≌△CEF(ASA),∴DG=CE. 又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB. ∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB, ∴AB=AC,∴△ABC是等腰三角形.
7.如图3-ZT-7所示,在四边形ABCD中,E是边BC的中点,F 是边CD的中点,且AE⊥BC,AF⊥CD. (1)求证:AB=AD; (2)若∠BCD=114°,求∠BAD的度数.
图3-ZT-7
解:(1)证明:如图,连接AC. ∵E是边BC的中点,AE⊥BC,∴AB=AC. 同理可得AD=AC,∴AB=AD. (2)如图.∵AB=AC,AD=AC, ∴∠B=∠1,∠D=∠2, ∴∠B+∠D=∠1+∠2,即∠B+∠D=∠BCD. ∵∠BAD+(∠B+∠D)+∠BCD=360°,∠BCD=114°, ∴∠BAD=360°-114°-114°=132°.

北师大版八年级数学下册 第三章 图形的平移与旋转 单元复习题 (含答案)

北师大版八年级数学下册 第三章 图形的平移与旋转 单元复习题 (含答案)

北师版八年级数学下册图形的平移与旋转单元复习题(含答案)一、选择题1.(2019·河南期末)观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是(C)A B C D2.(2019·南阳唐河县期末)如图,△ABC经过平移得到△DEF,其中点A的对应点是点D,则下列结论不一定正确的是(D)A.BC∥EF B.AD=BE C.BE∥CF D.AC=EF 3.(2019·驻马店平舆县期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是(A)A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格4.(2019·郑州新密市期中)下列四幅图片,是中心对称图形的是(B)A B C D5.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是(A)A.O1 B.O2 C.O3 D.O46.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是(C) A.30°B.60°C.72°D.90°7.(2019·驻马店确山县期末)把点A(3,-4)先向上平移4个单位长度,再向左平移3个单位长度得到点B,则点B的坐标为(D)A.(0,-8) B.(6,-8) C.(-6,0)D.(0,0)8.(2019·邓州市期末)如图,∠1=68°,直线a平移后得到直线b,则∠2-∠3=(D)A.78°B.132°C.118°D.112°9.(2019·南阳社旗县一模)剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形,又是轴对称图形的是(C)A B C D二、填空题10.(2018·张家界)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为15°.11.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个相同的格点正方形,并涂上阴影,使这两个格点正方形无重叠部分,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.12如图,在△ABO中,AB⊥OB,OB=3,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A113.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.14.(2018·株洲)如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B的坐标为(0,22),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(22,22),则线段OA在平移过程中扫过部分的图形面积为4.15.(2019·新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为三、解答题16.如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°.若点A,B的对应点分别是点D,E,画出旋转后的三角形,并求点A与点D之间的距离.(不要求尺规作图)解:如图.连接AD.在Rt△ABC中,AB=5,BC=4,∴AC=AB2-BC2=3.由旋转的性质,得CD=AC=3,∠ACD=90°.∴AD=AC2+CD2=3 2.17.(2019·宁夏)已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(-2,-1).(2)如图所示,△A2B2C1即为所求.18.(2019·邓州市期末)取一副三角板按图1拼接,其中∠ACD=30°,∠ACB=45°.(1)如图2,三角板ACD固定,将三角板ABC绕点A按顺时针方向旋转一定的角度得到△ABC′,当∠CAC′=15°时,请你判断AB与CD的位置关系,并说明理由;(2)如图3,三角板ACD固定,将三角板ABC绕点A按逆时针方向旋转一定的角度(0°<α<180°)得到△ABC′,猜想当∠CAC′为多少度时,能使CD∥BC′?并说明理由.解:(1)AB∥CD.理由如下:∵∠BAC=∠BAC′-∠CAC′=45°-15°=30°,∴∠BAC=∠C=30°.∴AB∥CD.(2)当∠CAC′=75°时,能使CD∥BC′.理由如下:延长BA交CD于点E.∵∠BAC′=45°,∴∠BAC=75°+45°=120°.又∵∠BAC=∠AEC+∠ACD,∴∠AEC=120°-30°=90°.又∵∠B=90°,∴∠B+∠AEC=90°+90°=180°.∴CD∥BC′.。

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。

北师大版八年级数学下册第三章学情评估 附答案 (3)

北师大版八年级数学下册第三章学情评估 附答案 (3)

北师大版八年级数学下册第三章学情评估一、选择题(共8小题,每小题3分,计24分)1.下列现象属于平移的是( )A.钟摆的摆动B.电风扇扇叶的转动C.分针的转动D.滑雪运动员在平坦的雪地上沿直线滑行2.下列图形中,是中心对称图形的是( )3.如图,已知点A与点C关于点O对称,点B与点D也关于点O对称,若BC=3,OD=4,则AB的长可能是( )A.3 B.4 C.7 D.11(第3题) (第4题) (第5题)4.如图,在Rt△ABC中,AC=5,BC=12,则△ABC内部五个完全相同的小直角三角形的周长为( )A.17 B.18 C.25 D.305.如图,将△ABC绕点A逆时针旋转120°得到△ADE.若点D在线段BC的延长线上,则∠B的大小为( )A.30°B.40°C.50°D.60°6.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是( )(第6题)A.(1.5,1.5) B.(1,0)C.(1,-1) D.(1.5,-0.5)7.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连接AD.下列结论一定正确的是( )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC(第7题) (第8题)8.如图,已知点A1的坐标为(1,1),把点A1先向上平移1个单位长度,再向右平移2个单位长度得到点A2;把点A2先向上平移2个单位长度,再向右平移4个单位长度得到点A3;把点A3先向上平移4个单位长度,再向右平移8个单位长度得到点A4,…,则点A2 023的横坐标为( )A.22 022-1 B.22 023-1C.22 024-1 D.22 025-1二、填空题(共5小题,每小题3分,计15分)9.在平面直角坐标系中,点(-2,3)关于原点对称的点的坐标是 ________.10.△DEF是由△ABC平移得到的,点A(-1,-4)的对应点为点D(1,-1),点B(1,1)的对应点为点E,点C(-1,4)的对应点为点F,则点E,F的坐标分别为________.11.数学课上,老师要求同学们利用所学知识在正方形纸上设计一个图案,小明的设计方案为:(1)将正方形均分为八等份后画出一个四边形(如图①);(2)画出四边形关于正方形对角线的交点成________的四边形(如图②);(3)将图②中的图形绕正方形对角线的交点至少顺时针旋转________得到完整图形(如图③).(第11题) (第12题)12.如图,将等边三角形ABC沿BC方向平移得到△A1B1C1.若BC=3,S△PB1C=3,则BB1=________.13.如图,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB绕点A顺时针旋转得到△A1O1B1,将△A1O1B1绕点B1顺时针旋转得到△A2O2B2,将△A2O2B2绕点O2顺时针旋转得到△A3O3B3,…,则点O9的坐标为________.(第13题)三、解答题(共13小题,计81分)14.(5分)如图,在▱ABCD中,BC=a,AF=h,从平移角度说明S▱ABCD=ah.(第14题)15.(5分)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点A旋转一定的角度得到Rt△ADE,且点E恰好落在边BC上.(1)求证:EA平分∠CED;(2)连接BD,求证:∠DBC=90°.(第15题)16.(5分)如图,已知线段AB和点A′.尺规作图:作出由线段AB平移得到的线段A′B′,其中点A的对应点为A′.(不写作法,保留作图痕迹)(第16题)17.(5分)如图②是两个4×4的正方形网格,每个小正方形的边长都为1,请用图①作为基本图案,通过平移、轴对称、旋转变换,设计两个不同的精美图案,使它们满足:(1)既是轴对称图形,又是中心对称图形;(2)所作图案用阴影标识,且阴影部分的面积为4.(第17题)18.(5分)如图,将△ABC沿BC方向平移得到△DEF.(1)若∠B=74°,∠F=26°,求∠A的度数;(2)若BC=3 cm,EC=2 cm,求△ABC平移的距离.(第18题)19.(5分)如图是一块边长为8米的正方形土地,其中有三条宽度都是1米的小路,其余部分种植各种花草.(1)请利用平移的知识求种植花草的面积;(2)若种植花草共花费4 620元,则平均每平方米土地种植花草的费用是多少元?(第19题)20.(5分)如图,将△ABC沿BC方向平移得到△A′B′C′,其中点B′和点C重合,连接AC′交A′C于点D,△ABC的面积为36.(1)求证:A′D=CD;(2)求△C′DC的面积.(第20题)21.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(5,0),B( -3,2),C(-1,-3).(1)请在图中作出△ABC关于原点对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求△A′B′C′的面积.(第21题)22.(7分)如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个三角形成中心对称?(2)若△ADC的面积为4,则△ABE的面积为________;(3)若AB=5,AC=3,求AD的取值范围.(第22题)23.(7分)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕点A旋转到AF的位置,使得∠CAF=∠BAE,连接EF,与AC交于点G.(第23题)(1)求证:EF=BC;(2)若∠B=65°,∠C=28°,求∠FGC的度数.24.(8分)如图,将△ABC绕点B逆时针旋转60°得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,BF=AF.(1)求证:DA∥BC;(2)判断DF与AF的数量关系,并证明.(第24题)25.(8分)如图,在△ABC中,∠BAC=120°,以BC为边作等边三角形BCD,把△ABD绕点D按顺时针方向旋转60°到△ECD的位置.(1)求∠BAD的度数;(2)若AB=2,AC=3,求AD的长.(第25题)26.(10分)(1)如图①,在△ABC中,∠C=90°,AC=BC,D是边BC上一点(点D 不与点B、C重合),连接AD,将AD绕着点D逆时针旋转90°得到ED,连接BE,则∠ABE为______;(2)如图②,在△ABC中,∠C=α(0°<α<90°),AC=BC,D是边BC上一点(点D不与点B、C重合),连接AD,将AD绕着点D逆时针旋转α得到ED,连接BE,求证:∠ABE=α;(3)若(2)中的α=60°,AC=BC=3,其他条件不变,连接AE,当∠BAE=30°时,求△ABE的面积.(第26题)答案一、1.D 2.B 3.C 4.D 5.A 6.C 7.C 8.B二、9.(2,-3) 10.(3,4),(1,7)11.中心对称; 90°12.113.(36,0)三、14.解:如图,将△ABF沿BC方向平移AD的长度可以得到△DCE,∴S△ABF=S△DCE,∴易得S▱ABCD=S矩形ADEF=ah.(第14题)15.证明:(1)由旋转性质可知AE=AC,∠AED=∠C,∴∠AEC=∠C,∴∠AED=∠AEC.∴EA平分∠CED.(2)由旋转性质可知AD=AB,∠DAB=∠EAC.∴易得∠DAB=180°-2∠ABD.又∵∠EAC=180°-2∠C,∴∠ABD=∠C.∵∠ABC+∠C=90°,∴∠ABC+∠ABD=90°,即∠DBC=90°.16.解:如图,线段A′B′即为所求.(画法不唯一)(第16题)17.解:如图所示.(答案不唯一)(第17题)18.解:(1)由平移可知∠ACB=∠F=26°,∴∠A=180°-∠B-∠ACB=180°-74°-26°=80°.(2)∵BC=3 cm,EC=2 cm,∴BE=BC-EC=3-2=1(cm),即△ABC平移的距离为1 cm.19.解:(1)由平移的知识可知,种植花草的土地可看成是一块长为8-1=7(米),宽为8-2=6(米)的矩形土地.6×7=42 (平方米).答:种植花草的面积为42平方米.(2)4 620÷42=110(元).答:平均每平方米土地种植花草的费用是110元.20.(1)证明:∵△ABC沿BC方向平移得到△A′B′C′,∴AC∥A′C′,AC=A′C′,∴∠ACD=∠C′A′D.又∵∠ADC=∠C′DA′,∴△ACD≌△C′A′D,∴A′D=CD.(2)解:∵△ABC沿BC方向平移得到△A′B′C′,∴△ABC≌△A′B′C′,∴S△ABC=S△A′B′C′=36.∵A′D=CD,∴易得S△C′DC=12S△A′B′C′=18.21.解:(1)画图略.点A′的坐标为(-5,0);点B′的坐标为(3,-2);点C′的坐标为(1,3).(2)S△A′B′C′=8×5-12×2×5-12×6×3-12×8×2=18.22.解:(1)图中△ADC 和△EDB 成中心对称. (2)8(第22题)(3)连接EC ,如图.在△ABD 和△ECD 中,⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD (SAS),∴AB =EC =5.∵EC -AC <AE <AC +EC ,∴2<AE <8,∴1<AD <4.23.(1)证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF .在△ABC 与△AEF 中,⎩⎨⎧AB =AE ,∠BAC =∠EAF ,AC =AF ,∴△ABC ≌△AEF (SAS),∴EF =BC .(2)解:∵AB =AE ,∠B =65°,∴易得∠BAE =180°-65°×2=50°,∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°,∴∠FGC =∠FAG +∠F =50°+28°=78°.24.(1)证明:∵△ABC 绕点B 逆时针旋转60°得到△DBE ,∴AB =BD ,∠ABD =∠ABC =60°,∴△ABD 是等边三角形,∴∠DAB =60°=∠ABC .∴AD ∥BC .(2)解:DF =2AF .证明:∵△ABD 是等边三角形,∴AD =BD ,∠ADB =60°.在△ADF 和△BDF 中,⎩⎨⎧AD =BD ,AF =BF ,DF =DF ,∴△ADF ≌△BDF (SSS),∴∠ADF =∠BDF =12∠ADB =30°, ∴∠DEB =90°.∴∠C =90°.∵AD ∥BC ,∴∠DAF =180°-∠C =90°.又∵∠ADF =30°,∴DF =2AF .25.解:(1)∵△BCD 是等边三角形,∴∠BDC =60°.又∵∠BAC =120°,∴∠ABD +∠ACD =360°-120°-60°=180°.由旋转可知∠DCE =∠ABD ,∴∠DCE +∠ACD =180°,∴A 、C 、E 三点共线.由旋转可知∠ADE =60°,AD =DE ,∴△ADE 是等边三角形,∴∠EAD =60°, ∴∠BAD =120°-60°=60°.(2)由旋转可知AB =CE =2,又∵AC =3,∴AE =AC +CE =5,∵△ADE 是等边三角形,∴AD =AE =5.26.(1)90°(2)证明:(第26题)如图,过点D 作DF ∥AC 交AB 于点F ,则∠DFB =∠CAB ,∠C =∠FDB =α.∵CA =CB ,∴∠CAB =∠CBA ,∴∠DFB =∠CBA ,∴DF =DB .由旋转可知,DA =DE ,∠ADE =α=∠FDB , ∴∠ADF =∠EDB ,在△ADF 和△EDB 中,⎩⎨⎧DA =DE ,∠ADF =∠EDB ,DF =DB ,∴△ADF ≌△EDB (SAS),∴∠DBE =∠AFD ,∴∠DBF +∠ABE =∠FBD +∠FDB . ∴∠ABE =∠FDB =α.(3)解:∵∠C =α=60°,CA =CB ,∴△ABC是等边三角形,∴BA=AC=3.由(2)易知∠ABE=60°.又∵∠BAE=30°,∴∠AEB=90°,∴BE=12AB=32,∴AE=332.∴S△ABE=12AE·BE=12×332×32=938.。

北师大版中考数学练习题第三章-整式及其加减含答案

北师大版中考数学练习题第三章-整式及其加减含答案

2019备战中考数学基础必练(北师大版)-第三章-整式及其加减(含解析)一、单选题1.已知和-是同类项,则的值是( )A. -1B. -2C. -3D. -42.下列说法正确的是()。

A. 0是单项式B. 单项式的系数是C. 单项式的次数为D. 多项式是五次三项式3.若关于x,y的多项式x2y-7mxy+y3+6xy化简后不含二次项,则m=()A. B. C. - D. 04.﹣(a﹣b+c)变形后的结果是()A. ﹣a+b+cB. ﹣a+b﹣cC. ﹣a﹣b+cD. ﹣a﹣b﹣c5.对于代数式,下列说法不正确的是()A. 它按x降幂排列B. 它是单项式C. 它的常数项是D. 它是二次三项式6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A. 4m+7nB. 28mnC. 7m+4nD. 11mn7.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2012次交换位置后,小鼠所在的座号是().A. 1B. 2C. 3D. 48.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b的值为()A. 179B. 140C. 109D. 210二、填空题9.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是________.10.若与是同类项,则m+n=________.11.- πx2y的系数是________;12.鸡兔同笼,鸡m只,兔n只,则共有________个头,________只脚.13.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是________14.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是________平方米.15.观察下列等式12=1= ×1×2×(2+1)12+22= ×2×3×(4+1)12+22+32= ×3×4×(6+1)12+22+32+42= ×4×5×(8+1)…可以推测12+22+32+…+n2=________.16.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺板地面:依上推测,第n个图形中白色瓷砖的块数为________.17.若x2-2x=3.则代数式2x2-4x+3的值为________.三、计算题18.如果a、b互为相反数,c、d互为倒数,x的绝对值是2,求:的值。

2024北师大版数学八年级下册第三章章末复习教学设计

2024北师大版数学八年级下册第三章章末复习教学设计

2024北师大版数学八年级下册第三章章末复习教学设计一. 教材分析北京师范大学出版社的数学八年级下册第三章主要包括锐角三角函数、平行四边形的性质、以及二元一次方程组的应用。

这一章节是初中数学的重要内容,不仅巩固了七年级学过的几何知识,还为九年级学习更高难度的数学打下基础。

本章节的教材内容紧密联系实际,富有时代感,旨在培养学生的实践能力和创新精神。

二. 学情分析八年级的学生已经掌握了基本的数学知识,对于几何图形的认知和理解也有一定的基础。

然而,学生在解题技巧、逻辑思维、以及几何证明方面还存在一定的困难。

因此,在教学过程中,需要关注学生的个体差异,针对不同层次的学生进行有区别的教学。

三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念,了解平行四边形的性质,学会解决二元一次方程组的问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.教学重点:锐角三角函数的概念,平行四边形的性质,二元一次方程组的解法。

2.教学难点:几何图形的变换,以及二元一次方程组的灵活运用。

五. 教学方法采用启发式教学法、情境教学法和小组合作学习法。

通过设置问题情境,引导学生自主探究,培养学生的动手操作能力和逻辑思维能力。

同时,鼓励学生进行小组讨论,发挥团队合作精神,提高学生的沟通能力和协作能力。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:练习本、尺子、圆规、剪刀。

3.教学资源:课件、教学案例、习题。

七. 教学过程1.导入(5分钟)利用多媒体展示生活场景中的几何图形,引导学生关注平行四边形的性质。

提问:“你们在日常生活中有没有注意到平行四边形的应用?”让学生发表自己的观点,从而引出本节课的主题。

2.呈现(10分钟)讲解锐角三角函数的概念,通过示例让学生了解锐角三角函数的计算方法。

然后,呈现平行四边形的性质,引导学生通过自主学习掌握平行四边形的判定方法和性质。

2021年北师大版八年级数学下册第三章图形的平移与旋转易错题专题突破训练2(附答案)

2021年北师大版八年级数学下册第三章图形的平移与旋转易错题专题突破训练2(附答案)

2021年北师大版八年级数学下册第三章图形的平移与旋转易错题专题突破训练2(附答案)1.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=4,则△ABC移动的距离是()A.2B.2C.1D.4﹣22.如图,线段AB=CD,AB与CD相交于O,且∠AOC=60°,CE是由AB平移所得,则AC+BD与AB的大小关系是()A.AC+BD>AB B.AC+BD=AB C.AC+BD≥AB D.无法确定3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.124.已知坐标平面内的点A(﹣2,4),如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A的坐标是()A.(1,6)B.(﹣5,6)C.(﹣5,2)D.(1,2)5.线段AB经过平移得到线段CD,其中点A、B的对应点分别为点C、D,这四个点都在如图所示的格点上,那么线段AB上的一点P(a,b)经过平移后,在线段CD上的对应点Q的坐标是()A.(a﹣1,b+3)B.(a﹣1,b﹣3)C.(a+1,b+3)D.(a+1,b﹣3)6.如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD =2,BD=3,则CD的长为()A.B.4C.D.7.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2C.:2D.1:8.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)9.下面的图形中必须由“基本图形”通过平移和旋转才能形成的图形是()A.B.C.D.10.如图所示,直角三角形ABO的周长为100,在其内部的n个小直角三角形周长之和为.11.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是cm2.12.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,,则BB1=.13.已知点M(a﹣1,5),现在将平面直角坐标系先向左平移3个单位,之后又向下平移4个单位,得到点N(2,b﹣1),则a=,b=.14.如图,在直角坐标系中,A、B的坐标分别为(6,0),(0,3),将线段AB向上平移m 个单位(m>0)得到A′B′,如果△OA′B′为等腰三角形,那么m的值为.15.在如图所示的正方形网格中,每个小正方形的边长为1各单位,格点三角形(顶点是网格线的交点的三角形)△ABC的顶点A,B的坐标分别为(1,4),(﹣3,1).(1)请在网格所在的平面内作出符合上述表述的平面直角坐标系;(2)请你将A、B、C的横坐标不变,纵坐标乘以﹣1所得到的点A1、B1、C1描在坐标系中,并画出△A1B1C1,其中点C1的坐标为.(3)△ABC的面积是.16.有一种电脑软件叫做“画图”,它有个功能,可以复制已经出现在窗口的所有图形或部分图形,粘贴的图形又可以进行任意的平移.如图,在画图窗口中已有一个正方形.从窗口中已有图形开始,复制、粘贴已有图形或部分图形一次,且通过平移后与原图形拼接,叫做一次操作.则要出现一个4×6的网格,至少需要操作次.17.下列图形中,可由基本图形平移得到的是(填图形编号)18.如图,直线PQ∥MN,点A在PQ上,直角△BEF的直角边BE在MN上,且∠B=90°,∠BEF=30°.现将△BEF绕点B以每秒1°的速度按逆时针方向旋转(E,F的对应点分别是E′,F′),同时,射线AQ绕点A以每秒4°的速度按顺时针方向旋转(Q的对应点是Q′).设旋转时间为t秒(0≤t≤45).(1)∠MBF′=.(用含t的代数式表示)(2)在旋转的过程中,若射线AQ′与边E′F′平行时,则t的值为.19.已知某函数的图象只能在第二、四象限,图象上任意一点P向x轴作垂线,垂足为A,△OAP的面积为3.(1)求该函数的解析式;(2)若P点横坐标为2,将点P沿x轴方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.20.如图,在平面直角坐标系中,已知直角三角形ABC的顶点A的坐标为(﹣2,1),顶点B的坐标为(﹣5,4),将△ABC向右平移5个单位,再向下平移3个单位后得到△A1B1C1.(1)请直接写出点C的坐标;(2)请画出△A1B1C1;(3)若点P在x轴上,且△A1B1P与△ABC的面积相等,直接写出点P的坐标.21.如图,△ABC中,∠B=19.11°,∠ACB=40.89°,AB=6,△ABC逆时针旋转一定角度后能与△ADE重合,且点C恰好为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.22.如图,已知A(2,3)和直线y=x.(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标.(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.23.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C.(2)作△A1B1C绕点O顺时针旋转90°后的△A2B2C2.24.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A 与点P,点B与点Q,点C与点R是对应的点,在这种变换下:(1)直接写出下列各点的坐标①A(,)与P(,);B(,)与Q(,);C(,)与R(,)②它们之间的关系是:(用文字语言直接写出)(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N 在三角形PQR内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.参考答案1.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=4,∴EC=2,∴BE=BC﹣EC=4﹣2.故选:D.2.解:由平移的性质知,AB与CE平行且相等,所以四边形ACEB是平行四边形,BE=AC,当B、D、E不共线时,∵AB∥CE,∠DCE=∠AOC=60°,∵AB=CE,AB=CD,∴CE=CD,∴△CED是等边三角形,∴DE=AB,根据三角形的三边关系知BE+BD=AC+BD>DE=AB,即AC+BD>AB.当D、B、E共线时,AC+BD=AB.故选:C.3.解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,因为AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=8,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:C.4.解:∵坐标平面内点A(﹣2,4),将坐标系先向左平移3个单位长度,再向上平移2个单位长度,∴点A的横坐标增大3,纵坐标减小2,∴点A变化后的坐标为(1,2).故选:D.5.解:由图可得,点A、B的对应点分别为点C、D,而B(1,3),D(2,0),∴线段AB向右平移1个单位,向下平移3个单位得到线段CD,又∵P(a,b),∴Q(a+1,b﹣3),故选:D.6.解:如图,在CD外侧作等边△CDE,连接AE,则∠ADE=90°,DE=DC,∠DCE=60°,∵∠ACB=∠DCE=60°,∴∠ACE=∠BCD,在△ACE和△BCD中,∵,∴△ACE≌△BCD(SAS),∴AE=BD,在Rt△ADE中,DE2=AE2﹣AD2=BD2﹣AD2=5,∴DE=,∴CD=,故选:A.7.解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.8.解:∵点A关于x轴的对称点坐标为(﹣1,2),∴点A坐标为(﹣1,﹣2);∴点A关于原点的对称点的坐标为(1,2).故选:A.9.解:A、只要平移即可得到,故错误;B、只能旋转就可得到,故错误;C、只有两个基本图形旋转得到,故错误;D、既要平移,又要旋转后才能得到,故正确.故选:D.10.解:由平移的性质可得,n个小直角三角形较长的直角边平移后等于AO边,较短的直角边平移后等于BO边,斜边之和等于AB边长,∴n个小直角三角形的周长之和=Rt△AOB的周长,∵直角三角形AOB的周长为100,∴这n个小直角三角形的周长之和=100.故答案为:100.11.解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.12.解:过P作PD⊥B1C于D,∵将等边△ABC沿BC方向平移得到△A1B1C1,∴∠PB1C=∠C=60°,∴∠CPB1=60°,∴△PCB1是等边三角形,设等边三角形PCB1的边长是2a,则B1D=CD=a,由勾股定理得:PD=a,∵,∴×2a×a=,解得:a=1,∴B1C=2,∴BB1=3﹣2=1.故答案为:1.13.解:由题意得a﹣1+3=2;5+4=b﹣1解得a=0;b=10,故答案为0;10.14.解:∵A、B的坐标分别为(6,0),(0,3),∴OA=6,OB=3,∴AB=3,∵将线段AB向上平移m个单位得到A′B′,∴A′B′=3,∵△OA′B′为等腰三角形,∴①当OB′=A′B′=3时,∴m=BB′=3﹣3;②当OA′=A′B′=3时,m=AA′=3,③当OB′=A′O=2+m时,∴3+m=,∴m=,综上所述,如果△OA′B′为等腰三角形,那么m的值为或3或3﹣3.故答案为:或3或3﹣3.15.解:(1)平面直角坐标系如图所示;(2)如图所示,△A1B1C1即为所求,其中点C1的坐标为(5,2);故答案为:(5,2);(3)△ABC的面积是×6×(3+3)=18.故答案为:18.16.解:如图,方法如下:答:要出现一个4×6的网格,至少需要操作5次.故答案为:5.17.解:能由一个三角形平移得到,∴①正确;因图中的图形不能由一个平移得到,∴②错误;能由一个图形经过平移得出,∴③正确;能由一个正方形经过平移得到,∴④正确;故答案为:①③④.18.解:(1)如图1,由题意得:∠FBF'=t°,∠FBM=90°,∴∠MBF'=90°﹣t°=(90﹣t)°,故答案为:(90﹣t)°;(2)①如图2,AQ'∥E'F',延长BE'交AQ'于C,则∠F'E'B=∠ACB=30°,由题意得:∠EBE'=t°,∠QAQ'=4t°,∴t+4t=30,t=6°;②如图3,AQ'∥E'F',延长BE',交PQ于D,交直线AQ'于C,则∠F'E'B=∠ACD=30°,由题意得:∠NBE'=t°,∠QAQ'=4t°,∴∠ADB=∠NBE'=t°,∵∠ADB=∠ACD+∠DAC,∴30+180﹣4t=t,t=42,综上,在旋转的过程中,若射线AQ′与边E′F′平行时,则t的值为6秒或42秒;故答案为:6秒或42秒.19.解:(1)根据函数的图象只能在第二、四象限,说明此函数图象是经过第二、四象限的双曲线,所以此函数是反比例函数,所以设反比例函数解析式为y=(k<0),因为△OAP的面积为3,所以|k|=6,因为k<0,所以k=﹣6.所以反比例函数解析式为y=﹣;(2)因为P点横坐标为2,所以P(2,﹣3),①当点P沿x轴负方向平移3个单位,P′的横坐标为2﹣3=﹣1,因为点P′恰好在该函数的图象上所以当x=﹣1时,y=﹣=6,所以P′(﹣1,6),因为6>﹣3,所以沿y轴平移的方向为正方向,所以n=6﹣(﹣3)=9;②当点P沿x轴正方向平移3个单位,P′的横坐标为2+3=5,所以当x=5时,y=﹣,所以P′(5,﹣),因为﹣>﹣3,所以沿y轴平移的方向为正方向,所以n=﹣﹣(﹣3)=.综上所述:n的值为9或,点P沿y轴平移的方向为正方向.20.解:(1)观察网格可得:点C的坐标(﹣5,1);(2)如图△A1B1C1为所画图形;(3)∵点P在x轴上,且△A1B1P与△ABC的面积相等,∴P(﹣2,0)或P(4,0).21.解:(1)∠BAC=180°﹣∠B﹣∠ACB=180°﹣19.11°﹣40.89°=120°,即∠BAD=120°,所以旋转中心为点A,旋转的度数为120°;(2)∵△ABC逆时针旋转一定角度后与△ADE重合,∴∠EAD=∠BAC=120°,AE=AC,AD=AB=6,∴∠BAE=360°﹣120°﹣120°=120°,∵点C恰好成为AD的中点,∴AC=AD=3,∴AE=3.22.解:(1)∵A(2,3),∴点A关于直线y=x的对称点B和关于原点的对称点C的坐标分别为:B(3,2),C(﹣2,﹣3);(2)四边形ABCD是矩形.理由如下:∵B(3,2)关于原点的对称点为D(﹣3,﹣2),又∵点B点D关于原点对称,∴BO=DO.同理AO=DO,∴四边形ABCD是平行四边形.∵A关于直线y=x的对称点为B,点A关于原点的对称点C,∴AC=BD,∴四边形ABCD是矩形.23.解:(1)△A1B1C如图所示:(2)△A2B2C2如图所示.24.解:(1)由图可得,①A(4,3)与P(﹣4,﹣3);B(3,1)与Q(﹣3,﹣1);C (1,2)与R(﹣1,﹣2).②由①可得:两个三角形各顶点横、纵坐标互为相反数.故答案为:4,3,﹣4,﹣3,3,1,﹣3,﹣1,1,2,﹣1,﹣2;(2)由题意:M、N两点的横坐标互为相反数,纵坐标互为相反数,∴+1﹣=0,6(a+b)﹣10+4(b﹣2a)﹣6=0,解得a=2,b=2,∴﹣>2﹣1∴6x+4﹣7x+3>8∴x<﹣1。

北师大版八年级数学下册第三章测试卷及答案

北师大版八年级数学下册第三章测试卷及答案

北师大版八年级数学下册第三章测试卷及答案一、选择题(共10小题,每小题3分,共30分)1.在以下生活现象中,属于旋转变换的是( )A .钟表的指针和钟摆的运动B .站在电梯上的人的运动C .坐在火车上睡觉的旅客D .地下水位线逐年下降2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(-2,1),则点B 的对应点的坐标为( )A .(5,3)B .(-1,-2)C .(-1,-1)D .(0,-1)4.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(-5,2),(-2,-2),(5,-2),则点D 的坐标为( )A .(2,2)B .(2,-2)C .(2,5)D .(-2,5)5.若P 与A(1,3)关于原点对称,则点P 落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A′B′C,点B 的对应点B′在边AC 上(不与点A ,C 重合),则∠AA′B′的度数为( )A .αB .α-45°C .45°-αD .90°-α7.如图,在△AOB 中,BO =32,将△AOB 绕点O 逆时针旋转90°,得到△A′OB′,连接BB′,则线段BB′的长为( )A .1 B. 2 C. 32 D.322 8.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD.下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠CC .AD ∥BC D .AD =BC9.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O′A′B′,点A 的对应点A′在直线y =34x 上,则点B 与其对应点B′之间的距离为( )A.94B .3C .4D .5 10. 如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 3二.填空题(共8小题,每小题3分,共24分)11.将线段AB 平移1 cm ,得到线段A′B′,则点B 到点B′的距离是_________.12. 一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是__________.( 填序号)13.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_______.14.如图,等边三角形AOB 绕点O 逆时针旋转到△A′OB′的位置,OA′⊥OB ,则△AOB 旋转了____度.15.如图,△ABC 的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC 绕点B 顺时针旋转90°,得到△A′BC′,则点A 的对应点A′的坐标为________.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=________.17.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4.若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC =________.18.如图,将Rt △ABC 沿着直角边CA 所在的直线向右平移得到Rt △DEF ,已知BC =a ,CA =b ,FA =13b ,则四边形DEBA 的面积等于__________.三.解答题(共7小题, 66分)19.(8分) 如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 的对应点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)若△A 2B 2C 2是△ABC 关于原点O 中心对称的图形,写出△A 2B 2C 2各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 3B 3C 3,画出△A 3B 3C 3.20.(8分) 如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD边的中点.若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.21.(8分) 如图,已知线段AB和点A′.尺规作图:作出由线段AB平移得到的线段A′B′,其中点A的对应点为A′.(不写作法,保留作图痕迹)22.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD 绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形BCD,连接AD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置,A,C,E三点恰好在同一直线上.若AB=6,AC=4,求∠BAD 的度数和AD的长.24.(10分) 如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C 并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.25.(14分) 如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B,C,F,D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F重合,请你求出平移的距离;(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH=DH.参考答案1-5ABCAB 6-10CDCCD11. 1cm12. ②③④13. 1414. 15015. (4,1)16. 20°17. 218. 23ab 19. 解:(1)如图,△A 1B 1C 1为所作.(2)A 2(3,-5),B 2(2,-1),C 2(1,-3).(3)如图,△A 3B 3C 3为所作.20.解:(1)旋转后的图形如图所示.(2)如图,连接OC.由题意可知,点C 的旋转路径是以O 为圆心,OC 的长为半径的半圆.∵OC =12+22=5,∴点C 在旋转过程中经过的路径长为5π.21. 解:如图,线段A′B′即为所求.(画法不唯一)22. (1)解:补全图形,如图所示.(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.∵∠ACB =90°,∴∠DCE +∠BCD =90°.∴∠ECF =∠BCD.∵EF ∥DC ,∴∠EFC +∠DCF =180°.∴∠EFC =90°,在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC.∴∠BDC =∠EFC =90°.23.解:∵△BAD 绕D 点顺时针旋转60°得到△CED ,∴AD =DE ,∠ADE =60°,∴△ADE 为等边三角形,∴∠E =60°,∵∠BAC =120°,∴∠BAC +∠E =180°,∴AB ∥DE ,∴∠BAD =∠ADE =60°.∵△ABD ≌△ECD ,∴CE =AB =6,∴AE =AC +CE =4+6=10,∵△ADE 为等边三角形,∴AD =AE =10.24. 解:(1)∵AC =BC ,∠A =30°,∴∠CBA =∠CAB =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠CBA =15°.(2)①由旋转的性质,得CB =C′B=AC ,∠C′BD′=∠CBD =∠A =30°,∴∠CC′B=∠C′CB=75°. ②证明:∵AC =C′B,∠C′BD′=∠A ,∴∠CEB =∠C′CB-∠CBA =45°,∴∠ACE =∠CEB -∠A =15°,∴∠BC′D′=∠BCD =∠ACE ,在△C′BD′和△CAE 中,⎩⎪⎨⎪⎧∠BC′D′=∠ACE ,C′B=CA ,∠C′BD′=∠A ,∴△C′BD′≌△CAE(ASA).25. 解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm(2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS).∴AH =DH。

北师大版八年级数学下册第三讲 线段的垂直平分线(基础训练)(解析版)

北师大版八年级数学下册第三讲 线段的垂直平分线(基础训练)(解析版)

第三讲线段的垂直平分线一、单选题1.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条中线的交点【答案】B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【点睛】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.2.如图,已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接C D.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.105°D.110°【答案】C【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.3.如图所示,△ABC中,AB+BC=10,A、C关于直线DE对称,则△BCD的周长是()A.6 B.8 C.10 D.无法确定【答案】C【详解】∵A、C关于直线DE对称,∴DE垂直平分AC,∴AD=CD,∵AB+BC=10,∴△BCD的周长为:BC+BD+CD=BC+BD+AD=BC+AB=10故选C.4.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为()A.10°B.15°C.40°D.50°【答案】A【解析】【分析】根据三角形内角和定理求出∠ACB,根据线段垂直平分线性质得出AD=CD,推出∠ACD=∠A=40°,即可得出答案.【详解】∵在Rt△ABC中,∠A=40°,∠B=90°,∴∠ACB=50°.∵AC的垂直平分线MN分别与A B,AC交于点D,E,∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠BCA﹣∠ACD=50°﹣40°=10°.故选A.【点睛】本题考查了线段垂直平分线性质,三角形内角和定理,等腰三角形的性质的应用,能根据线段垂直平分线性质求出AD=CD是解答此题的关键.5.如图,在△ABC中,直线MN为BC的垂直平分线,交BC于点E,点D在直线MN上,且在△ABC的外面,连接BD,CD,若CA平分∠BCD,∠A=65°,∠ABC=85°,则△BCD是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【答案】A【解析】【分析】根据三角形的内角和得到∠ACB=30°,由角平分线的定义得到∠BCD=2∠ACB=60°,根据线段垂直平分线的性质得到BD=CD,于是得到结论.【详解】∵∠A=65°,∠ABC=85°,∴∠ACB=30°.∵CA平分∠BCD,∴∠BCD=2∠ACB=60°.∵直线MN为BC的垂直平分线,∴BD=CD,∴△BCD是等边三角形.故选A.【点睛】本题考查了线段垂直平分线的性质,等边三角形的判定,熟练掌握线段垂直平分线的性质是解题的关键.6.如图所示,在△ABC中,AD垂直平分BC,AC=EC,点B,D,C,E在同一条直线上,则AB+DB与DE之间的数量关系是()A.AB+DB>DE B.AB+DB<DE C.AB+DB=DE D.无法判断【答案】C【解析】∵AD垂直平分BC,∵AB=AC,BD=CD,又∵AC=EC,∴AB=AC=CE,∴AB+BD=CE+CD=DE.故选C.7.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.②③D.③④【答案】B【解析】【分析】利用等腰三角形的性质,三角形的内角的定理及垂直平分线的性质计算出∠B=∠ACB=∠BDC=72°,∠A=∠ACD=∠DCB=36°.【详解】解:∵AB=AC,∠A=36°,MN垂直平分AC,∴∠B=∠ACB=72°,DA=DC,∴∠A=∠ACD=36°.①∵∠BDC=∠A+∠ACD,∴∠BDC=36°+36°=72°,∴∠B=∠BDC,∴△BCD是等腰三角形.则①正确;②∵∠ACB=72°,∠ACD=36°,∴CD平分∠ACB. ∴线段CD是△ACB的角平分线;则②不正确;③∵DA=DC,∴C△BCD=BC+CD+DB=BC+DA+DB=BC+AB.则③正确.④△ADM是直角三角形,△BCD不是直角三角形,则④不正确.故选B.【点睛】本题考查了等腰三角形的性质和判断,在等腰三角形中如果已知一个角的度数,可以求出其它角的度数,用角之间的关系求解.8.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E,若BC=4,AC=8,则BD=()A.3 B.4 C.5 D.6【答案】C【解析】试题解析:∵∠C=90°,BC=4,AC=8,∴AB=22=45BC AC+,∵DE是AB的垂直平分线,∴DA=DB,DE⊥AB,AE=BE=25,∴△AED∽△ACB,∴AE ADAC AB=,即25845AD=解得,AD=5,∴BD=5,故选C.9.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.PA=PB【答案】D【解析】【分析】根据作图的过程可知PD是线段AB的垂直平分线,利用垂直平分线的性质即可得到结论.【详解】由题意可知:PD是线段AB的垂直平分线,所以P A=PB.故选D.【点睛】本题考查了基本作图﹣作已知线段的垂直平分线以及考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离线段.10.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【答案】C【解析】分析:由DE是△ABC中边AB的垂直平分线,根据线段垂直平分线的性质,即可得BD=AD,AB=2AE,又由△ADC的周长为9cm,即可得AC+BC=9cm,继而求得△ABC的周长.解答:解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×3=6(cm),∵△ADC的周长为9cm,即AD+AC+CD=BD+CD+AC=BC+AC=9cm,∴△ABC的周长为:AB+AC+BC=6+9=15(cm).∴△ABC的周长为15cm故答案选C.二、填空题11.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.若∠DBC=33°,∠A的度数为______.【答案】38°【解析】设∠A的度数为x,∵MN是AB的垂直平分线,∴DB=DA,∴∠DBA=∠A=x,∵AB=AC,∴∠ABC=∠C=33°+x,∴33°+x+33°+x+x=180°,解得x=38°.故答案为38°.12.如图,AE是∠BAC的角平线,AE的中垂线PF交BC的延长线于点F,若∠CAF=50°,则∠B=_______.【答案】50°【解析】∵AE是中垂线PF交BC的延长线于点F,∴AF=EF,∴∠FAE=∠FEA,∵∠FAE=∠FAC+∠CAE,∠FEA=∠B+∠BAE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠FAC=∠B=50°.故答案为50°.13.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= cm.【答案】16.【解析】试题分析:首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长-△EBC的周长=AB,据此求出AB的长度是多少即可.解:DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴AB=△ABC的周长−△EBC的周长,∴AB=40−24=16(cm).故答案为16.14.如图:∠C=90°,DE⊥AB,垂足为D,BC=BD,若AC=3cm,则AE+DE=__________.【答案】3cm.【解析】试题分析:根据∠C=90°,DE⊥AB,又有BC=BD,BE=BE,得出△BDE≌△BCE,可得DE=CE,然后可得AE+DE=AE+EC=AC=3cm.故答案为3cm.考点:全等三角形的判定与性质.15.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.【答案】40°【解析】∵MP与NQ分别垂直平分AB和AC∴∠B=∠BAP,∠QAC=∠C∵∠BAC=110°,∴∠B+∠C=70°又∵∠APQ=∠B+∠BAP∠AQP=∠C+∠QAC∴∠APQ+∠AQP=2∠B+2∠C=140°在△APQ中∠PAQ=180°-∠APQ-∠AQP=180°-140°=40°16.如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是_____度.【答案】44°【解析】试题分析:设∠BAD为x,则∠B AC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x﹣x=2x,根据题意得:(x+70°)+2x+2x=180°,解得x=22°,∴∠C=∠DAC=22°×2=44°.故答案为44°.考点:线段垂直平分线的性质.17.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于D,交BC于点E,连接AE.若CE=4,则AE=_________.【答案】8【解析】试题解析:由题意可得出:PQ 是AB 的垂直平分线,∴AE=BE,∵在△ABC 中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4, ∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.18.如图,ABC 的边AB,AC 的垂直平分线相交于点P,连接PB,PC,若A 70∠=,则BPC ∠的度数是______.【答案】20°【分析】连接AP ,由MP 为线段A B 的垂直平分线,根据垂直平分线的性质可得AP =BP ,同理可得AP =CP ,等量代换可得AP =BP =CP ,然后根据等边对等角可得∠ABP =∠BAP ,∠P AC =∠ACP 及∠PBC =∠PCB ,由已知的∠BAC 的度数求出∠BAP +∠CAP 的度数,等量代换可得∠ABP +∠ACP 的度数,同时根据三角形的内角和定理可得∠ABP +∠PBC +∠PCB +∠ACP ,进而得到∠PBC +∠PCB 的度数,再根据两角相等,即可求出所求角的度数.【详解】连接AP ,如图所示.∵MP 为线段AB 的垂直平分线,∴AP =BP ,∴∠ABP=∠BAP又∵PN为线段AC的垂直平分线,∴AP=CP,∴∠P AC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∵∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,∴∠PBC=∠PCB=20°.故答案为20°.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,以及三角形的内角和定理,利用了转化的数学思想,其中作出辅助线AP是解答本题的突破点.19.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC 边与点E,连接AD,若AE=4cm,求△ABD的周长.【答案】22cm【解析】【分析】直接利用翻折变换的性质得出AE=EC,进而得出△ABD的周长=AB+AD+BD=AB+CD+BC-CD=AB+BC,进而得出答案.【详解】由图形和题意可知:AD DC =,4AE CE cm ==,则()30822AB BC cm +=-=,故ABD 的周长22AB AD BD AB CD BC CD AB BC cm =++=++-=+=,答:ABD 的周长为22cm .【点睛】考查折叠的性质,解题的关键是根据折叠的性质找到图形中相等的线段.三、解答题20.如图在△ABC 中,AB =AC,∠BAC =120°,EF 为AB 的垂直平分线,EF 交BC 于点F,交AB 于点E .求证:BF =12FC .【答案】见解析【解析】试题分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可. 试题解析:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF 为AB 的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°-30°=90°, ∵∠C=30°,∴AF=12 CF,∵BF=AF,∴BF=12 FC.。

北师大版八年级数学下册第三章图形的平移与旋转周周测1(3.1)附答案.doc

北师大版八年级数学下册第三章图形的平移与旋转周周测1(3.1)附答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】3.1图形的平移同步练习一、单选题(共8题)1、下列图案中,可以利用平移来设计的图案是()A、B、C、D、2、如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF 的位置,若CF=4,则下列结论中错误的是()A、BE=4B、∠F=30°C、AB∥DED、DF=53、在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A、1个B、2个C、3个D、4个4、如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A、3种B、6种C、8种D、12种5、如图五幅图案中,②、③、④、⑤哪一个图案可以通过平移图案①得到?()A、②B、③C、④D、⑤6、已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A、(3,0)B、(3,﹣3)C、(3,﹣1)D、(﹣1,3)7、如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A、6B、8C、10D、128、如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A、先向左平移5个单位,再向下平移2个单位B、先向右平移5个单位,再向下平移2个单位C、先向左平移5个单位,再向上平移2个单位D、先向右平移5个单位,再向下平移2个单位二、填空题(共5题)9、将图1剪成若干小块,再图2中进行拼接平移后能够得到①、②、③中的________.10、如图是一块长方形ABCD的场地,长AB=m米,宽AD=n米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为________.11、如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为________.12、如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF 的面积为15,且DG=4,则CF=________.13、要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要________元.三、解答题(共5题)14、请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.15、如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?16、16、如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再向下平移2个单位,得到△A′B′C′.在坐标系中画出△A′B′C′,并写出△A′B′C′各顶点的坐标.17、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.①请利用平移的知识求出种花草的面积.②若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?18、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;答案解析一、单选题1、D3、C4、B5、D6、C7、C8、A二、填空题9、①②10、(m-2)(n-1)米2 11、5 12、13、1200三、解答题14、解:如图所示:解说词:两只小船在水中向前滑行15、解:路等宽,得BE=DF,16、△ABE≌△CDF,17、由勾股定理,得BE= =80(m)18、S△ABE=60×80÷2=2400(m2)19、路的面积=矩形的面积﹣两个三角形的面积20、=84×60﹣2400×221、=240(m2).22、答:这条小路的面积是240m2.23、16、解:△A′B′C′如图所示;A'(2,2);B'(3,﹣2);C'(0,﹣6).17、解:①(8-2)×(8-1)=6×7=42 (米2)答:种花草的面积为42米2.②4620÷42=110(元)答:每平方米种植花草的费用是110元.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。

5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。

10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。

北师大版八年级下册数学 第三章 图形的平移与旋转 同步课时练习题(含答案)

北师大版八年级下册数学 第三章 图形的平移与旋转 同步课时练习题(含答案)

北师大版八年级下册数学第三章图形的平移与旋转同步课时练习题3.1图形的平移第1课时平移的认识01基础题知识点1平移的认识1.下列现象中属于平移的是(A)A.升降电梯从一楼升到五楼B.闹钟的钟摆运动C.树叶从树上随风飘落D.汽车方向盘的转动2.下列选项中能由左图平移得到的是(C)3.如图,由△ABC平移得到的三角形有(B)A.15个B.5个C.10个D.8个知识点2平移的性质4.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是(B)A.40°B.50°C.90°D.130°5.下列说法:①图形平移,对应点所连的线段互相平分;②确定一个图形平移后的位置需要知道平移的方向和距离;③平移不改变图形的形状和大小,只改变图形的位置;④一个图形和它经过平移所得的图形的对应线段平行(或在一条直线上)且相等.其中正确的有(C)A.1个B.2个C.3个D.4个6.如图,△ABC沿着点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为(A) A.2 B.3 C.5 D.77.如图,已知线段DE是由线段AB平移而得,AB=DC=4 cm,EC=5 cm,则△DCE的周长是13cm.8.如图,△ABC经过一次平移到△DFE的位置,请回答下列问题:(1)点C的对应点是点E,∠D=∠A,BC=FE;(2)连接CE,那么平移的方向就是点C到点E的方向,平移的距离就是线段CE的长度;(3)连接AD,BF,BE,与线段CE相等的线段有AD,BF.知识点3 平移作图9.下列平移作图错误的是(C)10.如图,经过平移,四边形ABCD 的顶点A 移到了点A′. (1)指出平移的方向和平移的距离; (2)画出平移后的四边形A′B′C′D′.解:(1)如图,连接AA′,平移的方向是点A 到点A′的方向,平移的距离是线段AA′的长度. (2)如图,四边形A′B′C′D′即为所求.02 中档题11.如图,已知△ABC 平移后得到△DEF ,则下列说法中,不正确的是(C)A .AB =DE B .BC ∥EFC .平移的距离是线段BD 的长 D .平移的距离是线段AD 的长 12.(2017·西安期中)如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC 方向平移BE 距离得到此图形,其中AB =6,BE =5,DH =3,则四边形DHCF 的面积为(C)A .35 B.652 C.452D .3113.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿着射线BC 的方向平移2个单位长度后,得到△A′B′C′,连接A′C ,则△A′B′C 的周长为12.14.(2016·安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.解:(1)点D 以及四边形ABCD 另两条边如图所示. (2)得到的四边形A′B′C′D′如图所示.15.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草. (1)请利用平移的知识求出种花草的面积;(2)若空白的部分种植花草共花费了4 620元,则每平方米种植花草的费用是多少元?解:(1)(8-2)×(8-1)=6×7=42(平方米). 答:种花草的面积为42平方米. (2)4 620÷42=110(元).答:每平方米种植花草的费用是110元.03 综合题16.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =4,现将△ABC 沿CB 方向平移到△A′B′C′的位置. (1)若平移距离为3,求△ABC 与△A ′B ′C ′重叠部分的面积;(2)若平移距离为x(0≤x ≤4),用含x 的代数式表示△ABC 与△A ′B ′C ′重叠部分的面积.解:(1)由题意,得CC′=3,BB ′=3,∴BC ′=1.又由题意易得,重叠部分是一个等腰直角三角形, ∴重叠部分的面积为12×1×1=12.(2)当平移的距离是x 时,CC ′=BB′=x , 则BC′=4-x.∴重叠部分面积为12(4-x)2.第2课时 沿x 轴或y 轴方向平移的坐标变化01 基础题知识点 沿x 轴或y 轴方向平移的坐标变化 1.(2017·平顶山市宝丰县期中)如图,在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位长度,所得到的点的坐标是(C)A.(1,3) B.(2,2)C.(2,4) D.(3,3)3.在平面直角坐标系中,将线段OA向下平移2个单位长度,平移后,点O,A的对应点分别为点O1,A1.若点O(0,0),A(1,4),则点O1,A1的坐标分别是(B)A.(0,-2),(-1,4) B.(0,-2),(1,2)C.(-2,0),(1,4) D.(-2,0),(-1,4)4.(2017·郴州)在平面直角坐标系中,把点A(2,3)向左平移1个单位长度得到点A′,则点A′的坐标为(1,3).5.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.解:如图所示.由图可知,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).02中档题6.将△ABC各顶点的纵坐标加“-3”,连接这三点所成的三角形是由△ABC(B)A.向上平移3个单位长度得到的B.向下平移3个单位长度得到的C.向左平移3个单位长度得到的D.向右平移3个单位长度得到的7.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=-3.8.如图,把“QQ”笑脸放在平面直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位长度后,右眼B的坐标是(3,3).9.如图,在平面直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,-1),点B落在点B1,则点B1的坐标为(1,1).10.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化,若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标应为(4,2.2).11.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,7),点C的坐标为(6,5);(2)将△ABC向下平移7个单位长度,请画出平移后的△A1B1C1;(3)如果M为△ABC内的一点,其坐标为(a,b),那么平移后点M的对应点M1的坐标为(a,b-7).解:平移后的△A1B1C1如图所示.第3课时沿x轴,y轴方向两次平移的坐标变化01基础题知识点沿x轴,y轴方向两次平移的坐标变化1.将点(1,2)先向左平移3个单位长度,再向上平移1个单位长度,所得的点的坐标是(A) A.(-2,3) B.(4,3)C.(-2,1) D.(4,1)2.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为(D)A.(4,3) B.(2,4)C.(3,1) D.(2,5)3.在如图所示的平面直角坐标系内,画在透明胶片上的四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是(B)A.先向右平移5个单位长度,再向下平移1个单位长度B.先向右平移5个单位长度,再向下平移3个单位长度C.先向右平移4个单位长度,再向下平移1个单位长度D.先向右平移4个单位长度,再向下平移3个单位长度4.将点P(-4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,-1),则x=-6,y=2.5.(2017·西安高新区期中)在平面直角坐标系中,点A,B的坐标分别为(-3,1),(-1,-2),将线段AB沿某一方向平移后,得到点A的对应点A′的坐标为(-1,0),则点B的对应点B′的坐标为(1,-3).6.如图,下列网格中,每个小正方形的边长都是1个单位长度,图中鱼的各个顶点A,B,C,D都在格点上.(1)把鱼先向右平移4个单位长度,再向上平移2个单位长度,请你画出平移后得到的图形;(2)写出A,B,C,D四点平移后的对应点A′,B′,C′,D′的坐标.解:(1)如图所示,四边形A′B′C′D′即为所求.(2)A′(4,2),B′(0,6),C′(2,2),D′(1,1).02中档题7.如图,线段AB经过平移得到线段A1B1,其中A,B的对应点分别为A1,B1,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为(A)A.(a-4,b+2) B.(a-4,b-2)C.(a+4,b+2) D.(a+4,b-2)8.如图,△ABC各顶点的坐标分别为A(-2,6),B(-3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)△DEF如图所示,其各顶点的坐标分别为D(2,9),E(1,5),F(4,6).(2)连接AD.由图可知,AD=32+42=5.∴如果将△DEF看成是由△ABC经过一次平移得到的,那么这一平移的平移方向是由A到D的方向,平移的距离是5个单位长度.03综合题9.在平面直角坐标系中,把点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(-6,-2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3(0,1);(2)写出点A n的坐标:A n(-6+2n,-2+n)(用含n的代数式表示).3.2图形的旋转第1课时旋转的认识01基础题知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.(2017·西安期中)如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为(B)A.40°B.70°C.80°D.140°3.如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转角度为60°.知识点2旋转的性质4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是(C) A.15 °B.60°C.45°D.75°5.(2017·平顶山市宝丰县期末)如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(B)A.(2,2) B.(2,4)C.(4,2) D.(1,2)6.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC=130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.02 中档题 7.(2016·大连)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点C 和点E 是对应点,若∠CAE =90°,AB =1,则BD =2.8.(2017·西安期中)如图,在△ABC 中,∠C =90°,AC =8,BC =6,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B ,D 两点间的距离为210.9.(2017·朝阳市建平县期末)如图,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F. (1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数.解:(1)证明:∵△ABC 绕点A 按逆时针方向旋转100°得到△ADE , ∴∠BAD =∠CAE ,AB =AD ,AC =AE. 又∵AB =AC ,∴AB =AC =AD =AE. ∴△ABD ≌△ACE(SAS).(2)∵∠CAE =100°,AC =AE , ∴∠ACE =∠AEC.∴∠ACE =12×(180°-∠CAE)=12×(180°-100°)=40°.03 综合题 10.(2017·陕西蓝田县期末)如图,在Rt △ABC 中,∠B =90°,AB =BC =2,将△ABC 绕点C 顺时针旋转60°,得到△DEC ,连接AE ,则AE 的长为2+6.第2课时 旋转作图01 基础题 知识点 旋转作图1.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是(C)2.(2017·广州)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为(A)3.(2017·枣庄)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是(B)A.96 B.69 C.66 D.994.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图.5.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.02中档题6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是把平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到7.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P沿逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示. (2)△A″B″C″如图所示.8.(2017·平顶山市宝丰县期末)如图所示的网格中,每个小正方形的边长都是1,△ABC 的三个顶点都在格点上,点A(-4,2),点D(0,5).(1)画出△ABC 绕点D 逆时针方向旋转90°后的△EFG ; (2)写出点E ,F ,G 的坐标.解:(1)如图所示,△EFG 即为所求.(2)如图所示,E(3,1),F(1,2),G(3,4).小专题(五) 教材P89T12的变式与应用教材母题:(教材P89T12)如图,△ABC ,△ADE 均是顶角为42°的等腰三角形,BC ,DE 分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?解:∵△ABC ,△ADE 均是顶角为42°的等腰三角形, ∴∠BAC =∠DAE =42°,AB =AC ,AD =AE.∵∠BAD =∠BAC -∠DAC ,∠CAE =∠DAE -∠DAC , ∴∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS).∴△ABD 与△ACE 可通过旋转相互得到,△ABD 以点A 为旋转中心,逆时针旋转42°,使△ABD 与△ACE 重合.1.如图,△ABC 和△ADE 都是等腰直角三角形.(1)求证:BD =CE ;(2)△ABD 可以看作是由△ACE 逆时针旋转90°得到的.证明:△ABC 和△ADE 都是等腰直角三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°. ∴∠BAD =∠CAE.在△BAD 和△CAE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE(SAS). ∴BD =CE.2.如图,点P 是等边△ABC 内一点,PA =4,PB =3,PC =5.线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ. (1)求PQ 的长.(2)求∠APB 的度数.解:(1)∵AP =AQ ,∠PAQ =60° ∴△APQ 是等边三角形. ∴PQ =AP =4. (2)连接QC.∵△ABC ,△APQ 都是等边三角形, ∴∠BAC =∠PAQ =60°.∴∠BAP =∠CAQ =60°-∠PAC.在△ABP 和△ACQ 中,⎩⎨⎧AB =AC ,∠BAP =∠CAQ ,AP =AQ ,∴△ABP ≌△ACQ(SAS).∴BP =CQ =3,∠APB =∠AQC. ∵在△PQC 中,PQ 2+CQ 2=PC 2,∴△PQC 是直角三角形,且∠PQC =90°. ∵△APQ 是等边三角形,∴∠AQP =60°.∴∠APB =∠AQC =60°+90°=150°.3.如图1,在△ABC 中,D ,E 分别是AB ,AC 上的点,AB =AC ,AD =AE ,然后将△ADE 绕点A 顺时针旋转一定角度,连接BD ,CE ,得到图2,将BD ,CE 分别延长至M ,N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)在图2中,BD 与CE 的数量关系是BD =CE ;(2)在图3中,判断△AMN 的形状,及∠MAN 与∠BAC 的数量关系,并证明你的猜想. 解:△AMN 为等腰三角形,∠MAN =∠BAC. 证明:易证△BAD ≌△CAE , ∴∠ABD =∠ACE ,BD =CE. 又∵DM =12BD ,EN =12CE ,∴BM =CN.在△ABM 和△ACN 中,⎩⎨⎧BM =CN ,∠ABM =∠ACN ,BA =CA ,∴△ABM ≌△ACN(SAS).∴AM =AN ,∠BAM =∠CAN ,即∠BAC +∠CAM =∠CAM +∠MAN. ∴△AMN 为等腰三角形,∠MAN =∠BAC.3.3 中心对称01 基础题知识点1 中心对称的有关概念及性质 1.下列说法正确的是(B)A .全等的两个图形一定成中心对称B .关于某个点中心对称的两个图形一定全等C .关于某个点中心对称的两个图形不一定全等D .不全等的两个图形有可能关于某点中心对称2.如图,已知△ABC 与△A′B′C′关于点O 成中心对称,则下列说法不正确的是(B)A .∠ABC =∠A′B′C′B .∠BOC =∠B′A′C′ C .AB =A′B′D .OA =OA′3.如图所示的4组图形中,左边图形与右边图形成中心对称的有(C)A .1组B .2组C.3组D.4组4.如图,线段AB和CD关于点O中心对称,若∠B=40°,则∠D的度数为40°.5.如图,△ADE是由△ABC绕A点旋转180°后得到的,那么△ABC与△ADE关于A点中心对称,A点叫做对称中心.6.小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距4公里.知识点2画中心对称的图形7.如图,已知四边形ABCD和点O,画出四边形ABCD关于点O成中心对称的四边形A′B′C′D′.解:四边形A′B′C′D′如图所示.知识点3中心对称图形8.(2017·陕西师范大学附属中学期中)下列四个图形中是中心对称图形的是(D)9.(2017·成都)下列图标中,既是轴对称图形,又是中心对称图形的是(D)10.(2017·玉林)五星红旗上的每一个五角星(A)A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形11.请写出一个是中心对称图形的几何图形的名称:正方形(答案不唯一).02中档题12.(2017·河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是(C)A .①B .②C .③D .④13.如图是一个以点O 为对称中心的中心对称图形,若∠A =30°,∠C =90°,OC =1,则AB 的长为(A)A .4 B.33C.233D.43314.如图,△ABC 与△DEF 关于O 点中心对称,则线段BC 与EF 的关系是平行且相等.15.(2017·平顶山市宝丰县期中)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:DF =BE.证明:∵△ABO 与△CDO 关于O 点中心对称, ∴OB =OD ,OA =OC. ∵AF =CE ,∴OF =OE.在△DOF 和△BOE 中,⎩⎨⎧OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE(SAS). ∴DF =BE.16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.解:(1)根据中心对称的性质,可得:对称中心是D1D的中点.∵点D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵点A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是4-2=2.∴点B,C的坐标分别是(-2,4),(-2,2).∵A1D1=2,点D1的坐标是(0,3),∴点A1的坐标是(0,1).∴点B1,C1的坐标分别是(2,1),(2,3).综上可得:顶点B,C,B1,C1的坐标分别是(-2,4),(-2,2),(2,1),(2,3).03综合题17.如图,已知四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2成轴对称或中心对称吗?若是,请在图上画出对称轴或对称中心.解:(1)(2)如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2成轴对称,对称轴是直线EF,如图.周周练(3.1~3.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列现象是数学中的平移的是(D)A.骑自行车时的轮胎滚动B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.生产中传送带上的电视机的移动过程2.(2017·西安期中)下列图形是中心对称图形的是(C)3.平面直角坐标系中,将正方形向上平移3个单位长度后,得到的正方形各顶点与原正方形各顶点坐标相比(A) A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘3D.纵坐标不变,横坐标乘34.将如图所示的图案以圆心为中心,旋转180°后得到的图案是(D)5.(2016·长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42°B.48°C.52°D.58°6.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是(A)A.(-4,-2) B.(4,-2)C.(-2,-3) D.(-2,-4)7.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是(D)A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长8.(2017·西安高新区期中)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转的度数分别为(B)A.4,30°B.2,60°C.1,30°D.3,30°二、填空题(每小题5分,共30分)9.(2017·黔东南)在平面直角坐标系中有一点A(-2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为(1,-1).10.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点A(填“A”“B”或“C”).11.(2017·平顶山市宝丰县期中)正三角形绕其中心至少旋转120度能与原三角形重合.12.(2017·宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.13.(2017·太原)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右平移4个单位长度,得到△A′B′C′,点A,B,C的对应点分别为A′,B′,C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′,B′,C′的对应点分别为A″,B″,C″,则点A″的坐标为(6,0).14.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转60度角后,两张图案构成的图形是中心对称图形.三、解答题(共38分)15.(12分)如图,△ABC沿直线l向右平移3 cm得到△FDE,且BC=6 cm,∠B=40°.(1)求BE;(2)求∠FDB的度数;(3)找出图中相等的线段(不另外添加线段); (4)找出图中互相平行的线段(不另外添加线段).解:(1)∵△ABC 沿直线l 向右平移了3 cm , ∴CE =BD =3 cm.∴BE =BC +CE =6+3=9(cm). (2)∵∠FDE =∠B =40°,∴∠FDB =140°.(3)相等的线段有AB =FD ,AC =FE ,BC =DE ,BD =CE =CD. (4)平行的线段有AB ∥FD ,AC ∥FE.16.(12分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1,平移△ABC ,使点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标. 解:(1)如图所示.(2)旋转中心的坐标为(32,-1).17.(14分)如图,固定一块三角板,另一块三角板按图示开始平移至两条较大直角边重合时停止.(两个同学为一组,利用30°角的三角板作图形的平移运动)(1)观察平移过程中的重叠部分是什么图形?你能把它画出来吗? (2)分别求出平移距离为4 cm 或10 cm 时,重叠部分的面积. 解:(1)平移过程中的重叠部分是三角形或五边形,如图:(2)当平移距离为4 cm 时,重叠部分是三角形OAA′,如图1,此时AA′=4 cm. ∵∠OAA ′=∠OA′A =60°, ∴△OAA ′是等边三角形. ∴S △OAA ′=4 3 cm 2.当平移距离为10 cm时,重叠部分是五边形ODC′CE,如图2,此时AA′=10 cm. ∵AC=A′C′=7 cm,∴A′C=AC′=3 cm.∵∠A=∠A′=60°,∠AC′D=∠A′CE=90°,∴C′D=CE=3 3 cm.∴S五边形ODC′CE=S△OAA′-S△AC′D-S△A′CE=12×10×53-12×3×33×2=163(cm2).3.4简单的图案设计01基础题知识点1分析图案的形成过程1.在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是(C)2.如图,国旗上的四个小五角星,通过怎样的变化可以相互得到(D)A.轴对称B.平移C.旋转D.平移或旋转3.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是(C)4.如图所示的图案中,可以由一个“基本图案”连续旋转45°得到的是(B)A. B. C. D.5.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是(D)A.①⑤B.②④C.③⑤D.②⑤知识点2利用平移、旋转、轴对称等方式设计图案6.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是(C)A. B.C. D.7.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.8.(2017·西安期中)如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.解:如图所示.(1)(2)(3)02中档题9.下列能通过基本图形旋转得到的有(D)A.1个B.2个C.3个D.4个10.如图,下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,它们旋转的角度均是60°.11.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90°,180°,270°,你会得到一个什么样的立体图形?解:得到的是一个星星图案,如图.12.定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,请仿照图2的画法,在图3所示的8×8网格中重新设计一个由四个全等的筝形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影.解:如图所示:答案不唯一.13.请运用平移、轴对称和旋转分析下面图案的设计过程.解:若从原图中提取的基本图案如图所示,则可按下面的两种几何变换(不唯一)得到整个图案:形成方式一:形成方式二:03综合题14.已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).图1图2解:答案不唯一,以下提供三种图案.章末复习(三)图形的平移与旋转01基础题知识点1平移1.下列图形中,可由左图经过平移得到的是(C)A B C D2.(2016·安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是(A)A.(-2,-4) B.(-2,4)C.(2,-3) D.(-1,-3)3.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.4.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC ,并写出点A ,B ,C 的坐标; (2)求出△AOA 1的面积.解:(1)如图所示,A(-3,1),B(0,2),C(-1,4). (2)S △AOA 1=12×4×1=2.知识点2 旋转 5.(2016·新疆)如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是(D)A .60°B .90°C .120°D .150°6.如图,在△ABC 中,∠ACB =90°,AB =5,BC =4,将△ABC 绕点C 顺时针旋转90°,若点A ,B 的对应点分别是点D ,E ,画出旋转后的三角形,并求点A 与点D 之间的距离.(不要求尺规作图)解:如图.连接AD.在Rt △ABC 中,AB =5,BC =4,∴AC =AB 2-BC 2=3.由旋转的性质,得CD =AC =3,∠ACD =90°. ∴AD =AC 2+CD 2=3 2. 知识点3 中心对称 7.(2017·郑州月考)下列图形中,是中心对称图形的是(A)8.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是(A)A .(3,-1)B .(0,0)C .(2,-1)D .(-1,3)知识点4图案设计9.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.02中档题10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是(C)A.30°B.60°C.72°D.90°11.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是(A)A.△ABC绕点C顺时针旋转90°,再向下平移3 个单位长度B.△ABC绕点C顺时针旋转90°,再向下平移1 个单位长度C.△ABC绕点C逆时针旋转90°,再向下平移1 个单位长度D.△ABC绕点C逆时针旋转90°,再向下平移3 个单位长度12.(2017·西安高新区期中)某景点拟在如图的长方形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为200米.13.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.解:如图所示:答案不唯一.14.(2017·郑州月考)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿x轴正方向平移8个单位长度得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1。

新北师大版八年级数学下册各章测试题附答案(全册)

新北师大版八年级数学下册各章测试题附答案(全册)

第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。

2021年北师大版八年级数学下册第3章图形的平移与旋转章末综合优生辅导训练(附答案)

2021年北师大版八年级数学下册第3章图形的平移与旋转章末综合优生辅导训练(附答案)

2021年北师大版八年级数学下册第3章图形的平移与旋转章末综合优生辅导训练(附答案)1.如图,在△ABC中,∠B=50°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,则∠CB′C′的度数为()A.50°B.60°C.80°D.100°2.如图,将△ABC绕点B按逆时针方向旋转40°到△DBE(其中点D与点A对应,点E 与点C对应),连接AD,若AD∥BC,则∠ABE的度数为()A.25°B.30°C.35°D.40°3.如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在()A.区域①处B.区域②处C.区域③处D.区域④处6.如图,平面内某正方形内有一长为10宽为5的矩形,它可以在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,则该正方形边长的最小整数n为()A.10B.11C.12D.137.如图,△ABC中∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B、C、D恰好在同一直线上,则∠E的度数为()A.50°B.75°C.65°D.60°8.如图,将△ABC绕点A顺时针旋转,得到△ADE,且点D在AC上,下列说法错误的是()A.AC平分∠BAE B.AB=AD C.BC∥AE D.BC=DE9.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A.①②B.②③C.③④D.②③④10.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC=()A.2B.3C.4D.511.如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A'B'C'D',则阴影部分的面积为cm2.12.正六边形绕其中心旋转一定的角度与原图形重合,则这个旋转角至少为.13.若点(﹣m,n+3)与点(2,﹣2m)关于原点对称,则m+n=.14.在△ABC中,∠BAC=120°,D为BC的中点,AE=6,把AD绕点A逆时针旋转120°,得到AF,若CF=7,∠ACF=∠AEC,则AC=.15.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合.(1)△ABC旋转了度.(2)连接CE,判断△AEC的形状是.(3)若∠ACE=20°,则∠AEC的度数为.16.如图,在等边△ABC中,AB=12,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.17.如图,边长为a的正方形ABCD绕点A逆时针旋转30°得到正方形A'B'C'D',图中阴影部分的面积为.18.如图,有一块长为a米,宽为3米的长方形地,中间阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1米能得到它的右边线,若草地的面积为12米2,则a =.19.如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为.20.如图是由边长为1的小正方形构成的网格.每个小正方形的顶点叫做格点.△ABC的顶点在格点上,仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)将边AB绕点B逆时针旋转90°得到线段BA';(2)画△ABC的高AD;(3)将点D竖直向下平移3个单位长度得到点D',画出点D';(4)画线段A'B关于直线BC的对称线段BA″.21.在下面的正方形网格中按要求作图.(1)在图①中将△ABC平移,使点A与点C重合,得到△CPQ;(2)在图②中将△ABC绕点C逆时针旋转90°,得到△MNC;(3)在图③中作△FGH,使其与△ABC关于线段DE对称.22.已知△ABC是等边三角形,点P在BC的延长线上,以P为旋转中心,将线段PC逆时针旋转n°(0<n<180)得线段PQ,连接AP,BQ.(1)如图1,若PC=AC,画出n=60时的图形,直接写出BQ和AP的数量及位置关系;(2)当n=120时,若点M为线段BQ的中点,连接PM.判断MP和AP的数量关系,并证明.23.如图,将△ABC绕点A按顺时针方向旋转一定角度得△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=65°,求∠CDE的度数.(2)若∠BAC=90°,∠B=60°,AC=,求CD的长.24.如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点.25.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,点B 的对应点为E,点A的对应点D落在线段AB上,DE与BC相交于点F,连接BE.(Ⅰ)求证:DC平分∠ADE;(Ⅱ)试判断BE与AB的位置关系,并说明理由;(Ⅲ)若BE=BD,求∠ABC的大小.(直接写出结果即可)参考答案1.解:∵将△ABC绕点A按逆时针方向旋转得到△A′B′C′,∴AB=AB′,∠C′B′A=∠B,∴∠AB′B=∠B,∵∠B=50°,∴∠C′B′A=∠AB′B=50°,∴∠CB′C′=180°﹣∠C′B′A﹣∠AB′B=80°,故选:C.2.解:∵将△ABC绕点B按逆时针方向旋转40°,∴AB=DB,∠ABD=∠CBE=40°,∴∠BAD=∠BDA=70°,∵AD∥BC,∴∠DAB=∠ABC=70°,∴∠ABE=∠ABC﹣∠EBC=30°,故选:B.3.解:∵△ABE的周长=AB+BE+AE=10(cm),由平移的性质可知,BC=AD=EF=1(cm),AE=DF,∴四边形ABFD的周长=AB+BE+EF+DF+AD=10+1+1=12(cm).故选:A.4.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.5.解:在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,这个正方形应该添加区域②处,故选:B.6.解:∵矩形长为10宽为5,∴矩形的对角线长为:==5,∵矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,∴该正方形的边长不小于5,∵11<5<12,∴该正方形边长的最小正数n为12.故选:C.7.解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∠E=∠ACB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°﹣∠BAD)=15°,∴∠E=∠ACB=180°﹣∠BAC﹣∠B=180°﹣100°﹣15°=65°,故选:C.8.解:将△ABC绕点A顺时针旋转,得到△ADE,∴∠BAC=∠DAE,AB=AD,BC=DE,故A、B、D选项正确;∵∠C=∠E,但∠C不一定等于∠DAE,∴BC不一定平行于AE,故C选项,错误;故选:C.9.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①错误,③正确;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误.故选:C.10.解:在CB上取一点G使得CG=CD,∵△ABC是等边三角形,∴∠ACB=60°,∴△CDG是等边三角形,∴CD=DG=CG,∵∠BDG+∠EDG=60°,∠EDC+∠EDG=60°,∴∠BDG=∠EDC,在△BDG和△EDC中,,∴△BDG≌△EDC(SAS),∴BG=CE,∴BC=BG+CG=CE+CD=4,解法二:证明△ABD≌△CBE(SAS),可得AD=EC=3,∴BC=AC=AD+CD=3+1=4.故选:C.11.解:由题意,空白部分是矩形,长为5﹣2=3(cm),宽为3﹣1=2(cm),∴阴影部分的面积=5×3×2﹣2×2×3=18(cm2),故答案为:18.12.解:正六边形可以被经过中心的射线平分成6个全等的部分,则旋转至少360°÷6=60°,能够与本身重合.故答案为:60°.13.解:∵点(﹣m,n+3)与点(2,﹣2m)关于原点对称,∴﹣m=﹣2,n+3=2m,解得:m=2,n=1.∴m+n=2+1=3.故答案为:3.14.解:过点D作DH∥CE交AB于点H,过点E作EG⊥CA的延长线于点G,∵把AD绕点A逆时针旋转120°,得到AF,∴∠DAF=120°,AD=AF,∵∠BAC=∠DAF=120°,∴∠DAH=∠CAF,∵DH∥CE,∴∠AEC=∠AHD,∵∠AEC=∠ACF,∴∠ACF=∠AHD,在△ACF与△AHD中,,∴△ACF≌△AHD(AAS),∴AC=AH,CF=DH=7,设EH=x,∴AH=AC=6+x,∵∠BAC=120°,∴∠EAG=60°,∴AG=AE=3,由勾股定理可知:EG==3,∵点D是BC的中点,DH∥CE,∴DH是△CBE的中位线,∴CE=14,在Rt△CEG中,CG2+EG2=CE2,∴(6+x+3)2+(3)2=142,∴x=4,∴AC=x+6=4+6=10.故答案为:10.15.解:(1)∵∠BAC=40°,∴∠BAD=140°,∴△ABC旋转了140°,故答案为:140;(2)由旋转的性质可知,AC=AE,∴△AEC是等腰三角形,故答案为:等腰三角形;(3)由旋转的性质可知,∠CAE=∠BAD=140°,又AC=AE,∴∠AEC=(180°﹣140°)÷2=20°,故答案为:20°.16.解:∵△ABC是等边三角形,∴BC=AB=12,∵BC=3BD,∴BD=BC=4,由旋转的性质得:△ACE≌△ABD,∴CE=BD=4.故答案为:4.17.解:设B′C′与CD交于点E,连接AE.在Rt△AB′E与Rt△ADE中,∠AB′E=∠ADE=90°,,∴Rt△AB′E≌Rt△ADE(HL),∴∠B′AE=∠DAE.∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=a.∴S四边形AB′ED=2S△ADE=2××a×a=a2.∴阴影部分的面积=S正方形ABCD﹣S四边形AB′ED=(1﹣)a2.故答案为:(1﹣)a2.18.解:依题意有3a﹣3×1=12,解得a=5.故答案为:5.19.解:由旋转的性质可知:BC=DE=1,AB=AD,∠BAD=90°,在Rt△ABC中,AC=3,BC=1,∠ACB=90°,由勾股定理得:AB=AD===,在Rt△ADB中,BD===2,即:BD的长为2,故答案为:2.20.解:(1)如图,线段BA′即为所求作.(2)如图,线段AD即为所求作.(3)如图,点D′即为所求作.(4)如图,线段BA″即为所求作.21.解:(1)如图,△CPQ为所作;(2)如图,△MNC为所作;(3)如图,△FGH为所作.22.解:(1)BQ=AP,BQ∥AP,如图1所示:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,又∵PC=AC,∴∠P AC=∠APC,∵∠ACB=∠P AC+∠APC=60°,∴∠P AC=∠APC=30°,∴∠BAP=90°,∵将线段PC逆时针旋转60°得线段PQ,∴PC=PQ,∠CPQ=60°,∴AB=AC=CP=PQ,∠APQ=90°,∴∠BAP+∠APQ=180°,∴AB∥PQ,∴四边形ABQP是平行四边形,∴BQ=AP,BQ∥AP;(2)AP=2MP,理由如下:如图2,以CP为边作等边三角形CHP,连接BH,∵△CHP和△CBA都是等边三角形,∴CB=CA,CP=CH,∠ACB=∠HCP=∠CPH=60°,∴∠BCH=∠ACP,在△ACP和△BCH中,,∴△ACP≌△BCH(SAS),∴AP=BH,∵将线段PC逆时针旋转120°得线段PQ,∴CP=PQ,∠CPQ=120°,∵∠CPH+∠CPQ=180°,∴点H,点P,点Q三点共线,∵BM=MQ,PQ=CP=HP,∴BH=2MP,∴AP=2MP.23.解:(1)∵将△ABC绕点A按顺时针方向旋转一定角度得△ADE,∠B=65°,∴AB=AD,∠B=∠ADE=65°,∴∠B=∠ADB=65°,∴∠CDE=180°﹣∠ADB﹣∠ADE=180﹣65°﹣65°=50°;(2)∵直角△ABC中,AC=,∠B=60°,又∵AD=AB,∠B=60°,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.24.(1)证明:∵线段AD绕点A逆时针旋转60°得到线段AE,∴△ADE是等边三角形,在等边△ABC和等边△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE.(2)证明:如图,过点C作CG∥BP交DF的延长线于点G.∴∠G=∠BDF,∵∠ADE=60°,∠ADB=90°,∴∠BDF=30°,∴∠G=30°,由(1)可知,BD=CE,∠CEA=∠BDA,∵AD⊥BP,∴∠BDA=90°,∴∠CEA=90°,∵∠AED=60°,∴∠CED=30°=∠G,∴CE=CG,∴BD=CG,在△BDF和△CGF中,,∴△BDF≌△CGF(AAS),∴BF=FC,即F为BC的中点.25.(Ⅰ)证明:∵△DCE是由△ACB旋转得到,∴CA=CD,∠A=∠CDE,∴∠A=∠CDA,∴∠CDA=∠CDE,∴CD平分∠ADE.(Ⅱ)解:结论:BE⊥AB.由旋转的性质可知,∠ACD=∠BCE,∵CA=CD,CB=CE,∴∠CAD=∠CDA=∠CBE=∠CEB,∵∠ABC+∠CAB+∠ACD+∠DCB=180°,∴∠ABC+∠CBE+∠DCB+∠BCE=180°,∴∠DCE+∠DBE=180°,∵∠DCE=90°,∴∠DBE=90°,∴BE⊥AB.(Ⅲ)如图,设BC交DE于O.连接AO,过点B作BH⊥CD交CD的延长线于H,作BT⊥CE于T,∵∠H=∠BTC=∠HCT=90°,∴∠HBT=∠DBE=90°,∴∠DBH=∠EBT,∵BD=BE,∠H=∠BTE=90°∴△BHD≌△BTE(AAS),∴BH=BT,∵BH⊥CH,BT⊥CE,∴∠DCO=∠DEB=45°,∵∠ACB=90°,∴∠ACD=∠OCD,∵CD=CD,∠ADC=∠ODC,∴△ACD≌△OCD(ASA),∴AC=OC,∴∠AOC=∠CAO=45°,∵∠ADO=135°,∴∠CAD=∠ADC=67.5°,∴∠ABC=22.5°,∵∠AOC=∠OAB+∠ABO,∴∠OAB=∠ABO=22.5°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章复习
一、选择题(每小题3分,共30分)
1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能
2、在图形平移的过程中,下列说法中错误的是( )
A 、图形上任意点移动的方向相同
B 、图形上任意点移动的距离相同
C 、图形上可能存在不动的点
D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点
D
4、如右图所示,观察图形,下列结论正确的是(
) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。

5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形
6
、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180° 7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°
C
D
E
图2
A
B
C
D
O
图3
图1
8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)
9、经过平移, 和 平行且相等, 相等。

10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。

11、如图3所示,∠AOB=∠COB=60°,OA=OB,OC=OD,把△AOC 绕点O 顺时针旋转60°,点A 将与点 重合,点C 将与点 重合,因此△AOC 与△BOD 可以通过 得到。

12、正方形至少旋转 能与自身重合,正六边形至少旋转 能与自身重合。

13、如图4,等边三角形ABC 旋转后能与等边三角形DBC 重合,那么在图形所在的平面上可以作为旋转中心的点共有 个。

14、如图5,△ABC ≌△CDA,BD 交AC 于点O ,则△ABC 绕点O 旋转 后与△CDA 重合,△ABO 可以由△CDO 绕点 旋转 得到。

三、解答题(58分)
15、(10分)如右图所示,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A


4
图5
时针旋转后,
能与△ACP ′重合,如果AP=3,求PP ′的长。

16、(10分)如图所示,在等腰直角三角形ABC 中,AD 为斜边上的高,点E 、F 分别在AB 、AC 上,△AED 经过旋转到了△CDF 的位置。

⑴ △BED 和△AFD 之间可以看成是经过怎样的变换得到的?
⑵ AD 与EF 相交于点G ,试判断∠AED 与∠AGF 的大小关系,并说明理由。

A
B
C
P ′ P
17、(10分)某产品的标志图案如图1所示,要在所给的图形图2中,把A、
B、C三个菱形通过一种或几种变换,使之变为与图1一样的图案。

(1)请你在图2中作出变换后的图案(最终图案用实线表示)
(2)你所用的变换方法是。

(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述。


①将菱形B向上平移;②将菱形B绕点O旋转120°;③将菱形B绕点O旋转120°。


1 图2
第三章测试题答案
(图形的平移与旋转)
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、C
5、A
6、B
7、C
8、B
9、D 10、B
二、填空题(每小题4分,共32分)
2。

13、以大11、对应点所连的线段和对应线段;对应角。

12、13;61
五角星的中心。

14、平移,旋转,轴对称。

15、B;D;相互旋转。

16、90°;60°。

17、三。

18、180°;O;180°。

三、解答题(58分)
19、解:(1)点A的对应点是点D ;
(2)AD=3㎝;
(3)∠ABC=∠DEF;
(4)从图形发现了:①对应线段、对应角相等;②对应点所连的线段平行(或在同一直线)且相等。

20、解:作图如下:
所以△DEF 就是△ABC 平移后的图形。

21、解:∵△ABP 绕点A 逆时针旋转后与△ACP ′重合,
∴AP ′= AP=3,∠BAP=∠CAP ′,
∴∠PAP ′=∠PAC+∠CAP ′=∠PAC+∠BAP=∠BAC=90°,
∴PP ′=22
AP =232 =
23.
22、解:⑴△BED 绕点D 顺时针旋转90°得到的△AFD ;
△AFD 绕点D 逆时针旋转90°得到的△BED 。

(2)∵△AED 经过旋转到了△CDF 的位置,∴∠ADE=∠CDF,DE=DF,
∵∠EDF=∠ADE+∠ADF, ∴∠EDF=∠CDF+∠ ∵AD 为斜边上的高,∴∠ADC=90°, ∴∠ ∴△EFD 是等腰直角三角形,∴∠ DFE=45∴∠AGF=∠ADF+∠ DFE=∠ADF+45°, ∵∠CFD=∠ADF+∠DAF=∠ADF+45°, ∴∠AGF=∠CFD, ∵∠AED=∠CFD, ∴∠AED=∠AGF.
23、解:(1 (224、解:(1)过点O 分别作OP ⊥ 则∠OPM=∠OQN=90° A
B
C
P ′
P
图2
∵∠POM+∠MOQ=∠QON+∠MOQ=90°, ∴∠POM=∠QON, ∴△POM ≌△QON, ∴ABCD APOQ AMON S S S 正方形正方形四边形4
1
=
= =4
9
3412=⨯㎝2。

(2)如果正方形OGEF 的边长是4㎝,则
ABCD APOQ AMON S S S 正方形正方形四边形4
1
==
=4
9
3412=⨯㎝2。

所以阴影部分的面积不变,仍为4
9

2。

(3)如果正方形OGEF 的边长是5㎝或6㎝,则 ABCD APOQ AMON S S S 正方形正方形四边形4
1
=
= =4
9
3412=⨯㎝
2。

所以阴影部分的面积不变,仍为4
9
㎝2。

(4)由此可以发现:若正方形ABCD 的边长是3㎝不变,改变正方形OGEF 的边长,但两个正方形重叠的阴影部分的面积仍为4
9
㎝2。

相关文档
最新文档