数字图像处理高通滤波器
实验四 图像频域高通滤波
数字图像处理实验报告姓名:田蕾 学号:20091202098 专业:信号与信息处理 年级:09实验四 图像频域高通滤波一、 实验目的掌握常用频域高通滤波器的设计。
进一步加深理解和掌握图像频谱的特点和频域高通滤波的原理。
理解图象高通滤波的处理过程和特点。
二、 实验内容设计程序,分别实现截止频率半径分别为15、30、80理想高通滤波器、二阶巴特沃斯高通滤波器、二阶高斯高通滤波器对图像的滤波处理。
观察处理前后图像效果,分析实验结果和算法特点。
三、 实验原理二维理想高通滤波器的传递函数为:000.(,)(,) 1.(,)D u v D H u v D u v D ≤⎧=⎨>⎩D0是从频率矩形中点测得的截止频率长度,它将以D0为半径的圆周内的所有频率置零,而毫不衰减地通过圆周外的任何频率。
但其物理上是不可实现的。
巴特沃斯高通滤波器的传递函数为:201(,)1[](,)n H u v D D u v =+ 式中D0为截止频率距远点距离。
与低通滤波器的情况一样,可认为巴特沃斯高通型滤波器比IHPF 更平滑。
高斯高通滤波器传递函数为:220(,)/2(,)1D u v D H u v e -=- 高通滤波器能够用高斯型低通滤波器的差构成。
这些不同的滤波器有更多的参数,因此能够对滤波器的形状进行更多的控制。
四、算法设计(含程序设计流程图)五、实验结果及分析(需要给出原始图像和处理后的图像)实验结果分析:(1)理想的高通滤波器把半径为D0的圆内的所有频率完全衰减掉,却使圆外的所有的频率无损的通过。
图像整体变得模糊,边缘和细节比较清晰。
(2)巴特沃思高通滤波器和高斯高通滤波器处理后的图像中只显现边缘,边缘的强度不同,而灰度平滑的区域都变暗了。
附:程序源代码(1)理想高通滤波器:(以D0=15为例):I1=imread('D:\Matlab\project\低通、高通滤波实验原图.jpg');figure(1); imshow(I1);title('原图');>> f=double(I1); % 转换数据为双精度型g=fft2(f); % 进行二维傅里叶变换g=fftshift(g); % 把快速傅里叶变换的DC组件移到光谱中心[M,N]=size(g);d0=15; %cutoff frequency以15为例m=fix(M/2); n=fix(N/2);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);if(d<=d0)h=0;else h=1;endresult(i,j)=h*g(i,j);endendresult=ifftshift(result);J1=ifft2(result);J2=uint8(real(J1));figure(2);imshow(J2);title('IHPF滤波(d0=15)') ;(2)巴特沃斯高通滤波器:(以D0=15为例):I1=imread('D:\Matlab\project\低通、高通滤波实验原图.jpg');figure(1); imshow(I1);title('原图');f=double(I1);g=fft2(f);g=fftshift(g);[M,N]=size(g);nn=2; % 2-grade Butterworth highpass filterd0=15; % 15,30,80其中以15为例m=fix(M/2); n=fix(N/2);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h=1/(1+0.414*(d/d0)^(2*nn)); % filter transform function%h=1./(1+(d./d0).^(2*n))%h=exp(-(d.^2)./(2*(d0^2)));result(i,j)=(1-h)*g(i,j);endendresult=ifftshift(result);J1=ifft2(result);J2=uint8(real(J1));figure(2);imshow(J2);title('BHPF滤波(d0=15)');(3)高斯高通滤波器:(以D0=15为例):I1=imread('D:\Matlab\project\低通、高通滤波实验原图.jpg'); figure(1); imshow(I1);title('原图');f=double(I1);g=fft2(f);g=fftshift(g);[M,N]=size(g);d0=15;m=fix(M/2); n=fix(N/2);for i=1:Mfor j=1:Nd=sqrt((i-m)^2+(j-n)^2);h=exp(-(d.^2)./(2*(d0^2))); % gaussian filter transformresult(i,j)=(1-h)*g(i,j);endendresult=ifftshift(result);J1=ifft2(result);J2=uint8(real(J1));>> figure(2);>> imshow(J2);title('GHPF滤波(d0=15)');。
高通滤波器
ILPF空域上冲激响应卷积产生两个现象: 一是边缘渐变部分的对比度; 二是边缘部分加边(ringing)。 其原因是冲激响应函数的多个过零点。
1 低通滤波器法
f(x) h(x) g(x)
1 低通滤波器法
3)巴特沃思低通滤波器(BLPF)
n阶巴特沃思(Butterworth)滤波器
4 同态滤波
4 同态滤波
分析
fi(x,y): 缓慢变化,频率集中在低频部分 fr(x,y): 包含景物各种信息,高频分量丰富
处理
lnf x , y lnfi x , y lnfr x , y FFT lnf x , y FFT lnfi x , y FFT lnfr x ,y
H
u,
v
0 1
D u,v D0 D u,v D0
其中D u,v u2 v2
2 高通滤波器法
0.8
0.6
0.4
-4
0.2
-4
-2
0 -2
vu
2
2
4
4
0.8 0.6 0.4 0.2
-4
-2
0
2t
4
2 高通滤波器法
3)巴特沃思高通滤波器(BHPF)
n阶巴特沃思(Butterworth)高通滤波器
u
Ho
u
Ps
Ps u u Pn
u
5 维纳估计器
4)维纳去卷积
目标:信号s(t)既受到f(t)线性系统模糊,又受到 加性噪声源n(t)的污染。
设计滤波器g(t)既能去卷积,又能抑制噪声信号。
5 维纳估计器
输入信号的频谱
X u F uS u N u
输出信号的频谱
2 高通滤波器法
数字信号处理中的滤波器设计及其应用
数字信号处理中的滤波器设计及其应用数字信号处理中的滤波器是一种用于处理数字信号的工具,它能够从信号中去除杂音、干扰等不需要的部分,使信号变得更加清晰、准确。
在数据通信、音频处理、图像处理等各种领域都有着广泛的应用。
本文将探讨数字信号处理中的滤波器设计及其应用。
一、滤波器的分类根据滤波器能否传递直流分量,可以将滤波器分为直流通、低通、高通、带通和带阻五种类型。
1.直流通滤波器:直流通滤波器不会滤除信号中的直流分量,只是将信号波形的幅值进行调整。
它主要用于直流电源滤波、电池充电电路等。
2.低通滤波器:低通滤波器可以通过滤除信号中的高频分量来保留低频分量,其截止频率通常指代3dB的频率,低于该频率的信号通过的幅度保持不变,而高于该频率的信号则被削弱。
低通滤波器主要用于音频处理、语音识别等。
3.高通滤波器:高通滤波器与低通滤波器相反,它滤除低频分量,只保留高频分量。
其截止频率也指代3dB的频率,高于该频率的信号通过的幅度保持不变。
高通滤波器主要用于图像处理、视频处理等。
4.带通滤波器:带通滤波器可以通过滤除一定频率范围内的信号,使得出现在该频率范围内的信号通过,而其他的信号则被削弱。
带通滤波器主要应用于频率选择性接收和频率选择性信号处理。
5.带阻滤波器:带阻滤波器可以通过滤除一定频率范围内的信号,使得不在该频率范围内的信号通过,而其他的信号则被削弱。
带阻滤波器主要应用于频率选择性抑制和降噪。
二、滤波器设计方法滤波器的设计需要考虑其所需的滤波器类型、截止频率、通/阻带宽度等参数。
现有的设计方法主要有两种:频域设计和时域设计。
1.频域设计:频域设计是一种基于频谱分析的滤波器设计方法,其核心是利用傅里叶变换将时域信号转换为频域信号,进而根据所需的滤波器类型和参数进行滤波器设计。
常见的频域设计方法包括理想滤波器设计、布特沃斯滤波器设计、切比雪夫滤波器设计等。
理想滤波器设计基于理想低通、高通、带通或带阻滤波器的理论,将所需的滤波器类型变换为频率响应函数进行滤波器设计。
数字图像处理图像滤波ppt课件
47
噪声图像
中值滤波3x3
48
平均滤波与中值滤波比较
噪声图像
均值滤波
中值滤波
均值滤波和中值滤波都采用的是2x2 的模板
49
均值,中值和最频值
均值是模板内像素点灰度的平均值,中值是数值排列 后处于中间的值,最频值是出现次数最多的灰度值;
8
常用像素距离公式
欧几里德距离
DE
(
p,
q)
x
s 2
y
t
2
范数距离
D( p, q) x s y t
棋盘距离
D( p, q) max x s , y t
9
像素间的基本运算
算术运算:
加法: p + q
减法: p - q
乘法: p * q
这三者都与直方图有着密切的关系; 直方图的一个峰对应一个区域,如果这个峰是对称的,
那么均值等于中值,等于最频值。
50
中值滤波的代码实现 Matlab中函数medfilt1和medfilt2,第一个是一维
的中值滤波,第二个是二维的中值滤波。 使用help查看函数功能
51
示例
52
代码讲解
0.25
0.10 0.05
0.125 01 2
34
56
7
P r 关系目标曲线 r
原始图像中的P-r点位置 对应变换后的P-r点位置
24
算法描述 设像素共分为L级(r = 0,1,2,…L1),变换后对应的
数字图像处理_图像的频域变换处理
图像的频域变换处理1 实验目的 1. 掌握Fourier ,DCT 和Radon 变换与反变换的原理及算法实现,并初步理解Fourier 、Radon和DCT 变换的物理意义。
2、 利用傅里叶变换、离散余弦变换等处理图像,理解图像变换系数的特点。
3、 掌握图像的频谱分析方法。
4、 掌握图像频域压缩的方法。
5、 掌握二维数字滤波器处理图像的方法。
2 实验原理1、傅里叶变换 fft2函数:F=fft2(A);fftshift 函数:F1=fftshift(F);ifft2函数:M=ifft2(F);2、离散余弦变换:dct2函数 :F=dct2(f2);idct2函数:M=idct2(F);3、 小波变换对静态二维数字图像,可先对其进行若干次二维DWT 变换, 将图像信息分解为高频成分H 、V 和D 和低频成分A 。
对低频部分A ,由于它对压缩的结果影响很大,因此可采用无损编码方法, 如Huffman 、 DPCM 等;对H 、V 和D 部分,可对不同的层次采用不同策略的向量量化编码方法,这样便可大大减少数据量,而图像的解码过程刚好相反。
(1)dwt2[CA,CH,CV,CD]=dwt2(X,’wname’)[CA,CH,CV,CD]=dwt2(X,LO_D,HI_D’)()()⎰⎥⎦⎤⎢⎣⎡-ψ=dt a b t t Rf a 1b ,a W *()⎪⎭⎫ ⎝⎛-ψ=ψa b t a 1t b ,a 112()00(,)[(,)](,)ux vy M N j M N x y f x y eF f x y F u v π---+====∑∑1100(21)(21)(,)(,)()()cos cos 22M N x y x u y v F u v f x y C u C v M Nππ--==++=∑∑CA 图像分解的近似分量,CH 水平分量,CV 垂直分量,CD 细节分量; dwt2(X,’wname ’) 使用小波基wname 对X 进行小波分解。
基于matlab对图像进行高通、低通、带通滤波
数字图像处理三级项目—高通、低通、带通滤波器摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。
低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。
低通滤波器有巴特沃斯滤波器和高斯滤波器等等,本次设计使用的低通滤波器为****。
高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器等等,本次设计使用巴特沃斯高通滤波器。
1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。
实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。
频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。
低通滤波是要保留图像中的低频分量而除去高频分量。
图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。
理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。
巴特沃斯高通滤波器在图像处理中的应用
Vo . . 1 No 2 4
20 0 7年 6月
J n ,0 7 u . 0 2
文 章 编 号 :6 2 7 1 ( 0 7)2 04 — 17 — 0 0 2 0 0 — 07 0 4
巴特 沃斯 高通 滤 波 器在 图像 处 理 中的应 院 , 南 永 州 4 5 0 ) 湖 湖 2 0 6 摘 要 :本 文 讨 论 了巴特 沃新 高通 滤 波 器的 原理 及 其 在数 字 图像 的锐 化 处理 中的 应 用
信 息处理研 究.
维普资讯
邵 阳学 院学 报 (自然科 学 版 )
第 4卷
一
维傅立 叶变 换可采用 “ 蝴蝶 图” 的快速傅立 叶
图 1a ( 所示是模糊 的电路板 图像 , ) 幅度 为 2 6 5× 2 6像素. 1b则是其 经过傅立 叶变 换后得 到的频 5 图 ( ) 谱 图. 1b的中心点是频谱 图的频 率原点 , 近 中 图 ( ) 靠 心点的 区域代表 了图像频率的低频 区 ,远 离 中心 的
文献标识码 : A
关 键 词 :傅 立 叶 变换 ; 巴特 沃 斯 高通 滤 波 器 ; 化 锐
中图分类号 :49 03
Th p l a i n o te wo t i h p s le ha pe i g o i ia a e ea p c to fBu t r r h h g a s t ri s r n n fd g t l m g i i f n i
原理 , 及其在 图像锐化处理 中应 用.
F ,= , e ( ∑ , x) , )
r o = 1
() 2 () 3
1频率域 数字 图像 处理
Fu )∑F ,e (, = ( x)
电路中的滤波器有什么作用
电路中的滤波器有什么作用滤波器是一种电子元件,用于电路中对信号进行滤波处理。
它能够从输入信号中去除一定频率范围内的干扰或杂波,使得输出信号更加干净稳定。
在电子设备中,滤波器发挥着重要的作用,下面将介绍滤波器的具体作用和应用。
一、滤波器的作用1. 信号滤波:滤波器可以将特定频率范围内的信号进行滤波处理,去除掉其他频率的信号。
这对于需要特定频率范围的信号处理非常重要。
例如,在无线通信系统中,滤波器可以用于选择特定的频段,阻止其他频率的干扰信号传输。
2. 噪声消除:在电子设备中,常常会受到来自电源、其他电路等部分的噪声干扰。
滤波器可以去除这些噪声信号,使得输出信号更加干净,提高设备的性能和稳定性。
3. 频率选择:滤波器可以根据需要选择特定的频率范围,将该频率范围内的信号通过,而阻止其他频率的信号传输。
这在无线电接收机、音频处理等方面都有广泛的应用。
4. 波形整形:滤波器可以对信号的波形进行整形处理,使得输入信号的波形更加平滑。
这对于某些电子设备的正常工作是至关重要的。
二、滤波器的应用1. 通信系统:无线通信系统中常常需要对信号进行滤波处理,以选择特定的频率范围,去除噪声和干扰。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
2. 音频处理:音频设备中常常使用滤波器进行音频信号的处理,例如对不同频段的音频信号进行增强或削弱,以实现音频效果的调节。
3. 图像处理:在数字图像处理中,滤波器常常用于对图像信号进行去噪、锐化、模糊等处理,以提高图像的质量和清晰度。
4. 电源滤波:在电力系统中,滤波器可以用于去除电源中的谐波和干扰,提供稳定的电源供电。
总结:滤波器在电子设备中的应用十分广泛,其作用包括信号滤波、噪声消除、频率选择和波形整形等。
通过滤波器的使用,可以提高电子设备的性能和稳定性,使得信号处理更加精确和可靠。
不同类型的滤波器具备不同的特点和应用范围,需要根据具体的信号处理需求选择合适的滤波器类型。
遥感数字图像处理:遥感图像处理-图像滤波
Mean 11x11
1.2 中值滤波器
在邻域平均法中,是将n×n局部区域中的灰度的平
均值作为区域中央象元的灰度值。而在中值滤波中,是 把局部区域中灰度的中央值作为区域中央象元的值。
g(x, y) median(of (x, y))
如,在3×3区域内进行中值滤波,是将区域内9个 灰度值按由小到大排列,从小的一方开始的第5个值即 为中央象元的值。
矢量微分----梯度
二元函数f(x,y)在坐标点(x,y)处的梯度向量的定义:
f
G[
f
( x,
y)]
x f
y
梯度的幅度:
G[ f (x, y)] ( f )2 ( f ) 2
x
y
梯度的幅角:
M
tg 1[ f / f ] y x
连续域的微分----离散域的差分
x f (i, j) f (i 1, j) f (i, j) y f (i, j) f (i, j 1) f (i, j)
MN
r(i, j) (m, n)t(m, n) m1 n1
将计算结果r(i,j) 放在窗口中心的像 元位置,成为新像 元的灰度值。然后 活动窗口向右移动 一个像元,再按公 式做同样的运算, 仍旧把计算结果放 在移动后的窗口中 心位置上,依次进 行,逐行扫描,直 到全幅图像扫描一 遍结束,则新图像 生成。
遥感——数字图像处理名词解释及简单整理
Unit 11、图像是对客观存在的物体的一种相似性的、生动的写真或描述。
2、图像处理的内容它是研究图像的获取、传输、存储、变换、显示、理解与综合利用的一门崭新学科。
根据抽象程度不同可分为三个层次:狭义图像处理、图像分析和图像理解。
Unit 21、图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
2、将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
3、将像素灰度转换成离散的整数值的过程叫量化。
4、表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
5、一幅大小为M×N、灰度级数为G的图像所需的存储空间,即图像的数据量,大小为M×N×g (bit)6、数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
7、对比度是指一幅图象中灰度反差的大小。
对比度=最大亮度/最小亮度8、清晰度由图像边缘灰度变化的速度来描述。
9、灰度直方图反映的是一幅图像中各灰度级像素出现的频率。
以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。
10、简述灰度直方图的应用。
1).数字化参数(判断量化是否恰当)。
2). 边界阈值选取(确定图像二值化的阈值)。
3). 利用直方图统计图像中物体的面积。
4). 计算图像信息量H(熵)。
5). 利用直方图分析图像的特性。
6). 利用直方图进行图像增强。
11、对于任一像素(i,j),该像素周围的像素构成的集合{(i+p,j+q),p、q取合适的整数},叫做该像素的邻域。
12、对输入图像IP(i,j)处理时,某一输出像素JP(i,j)值由输入图像像素(i,j)及其邻域N(IP(i,j))中的像素值确定。
这种处理称为局部处理。
13、在局部处理中,当输出值JP(i,j)仅与IP(i,j)有关,则称为点处理。
14、在局部处理中,输出像素JP(i,j)的值取决于输入图像大范围或全部像素的值,这种处理称为大局处理。
数字图像处理-频域滤波-高通低通滤波
数字图像处理-频域滤波-⾼通低通滤波频域滤波频域滤波是在频率域对图像做处理的⼀种⽅法。
步骤如下:滤波器⼤⼩和频谱⼤⼩相同,相乘即可得到新的频谱。
滤波后结果显⽰,低通滤波去掉了⾼频信息,即细节信息,留下的低频信息代表了概貌。
常⽤的例⼦,⽐如美图秀秀的磨⽪,去掉了脸部细节信息(痘坑,痘印,暗斑等)。
⾼通滤波则相反。
⾼通/低通滤波1.理想的⾼/低通滤波顾名思义,⾼通滤波器为:让⾼频信息通过,过滤低频信息;低通滤波相反。
理想的低通滤波器模板为:其中,D0表⽰通带半径,D(u,v)是到频谱中⼼的距离(欧式距离),计算公式如下:M和N表⽰频谱图像的⼤⼩,(M/2,N/2)即为频谱中⼼理想的⾼通滤波器与此相反,1减去低通滤波模板即可。
部分代码:# 定义函数,显⽰滤波器模板def showTemplate(template):temp = np.uint8(template*255)cv2.imshow('Template', temp)return# 定义函数,显⽰滤波函数def showFunction(template):row, col = template.shaperow = np.uint16(row/2)col = np.uint16(col/2)y = template[row, col:]x = np.arange(len(y))plt.plot(x, y, 'b-', linewidth=2)plt.axis([0, len(x), -0.2, 1.2])plt.show()return# 定义函数,理想的低通/⾼通滤波模板def Ideal(src, d0, ftype):template = np.zeros(src.shape, dtype=np.float32) # 构建滤波器 r, c = src.shapefor i in range(r):for j in range(c):distance = np.sqrt((i - r/2)**2 + (j - c/2)**2)if distance < d0:template[i, j] = 1else:template[i, j] = 0if ftype == 'high':template = 1 - templatereturn templateIdeal2. Butterworth⾼/低通滤波Butterworth低通滤波器函数为:从函数图上看,更圆滑,⽤幂系数n可以改变滤波器的形状。
数字图像处理中的图像增强算法技巧
数字图像处理中的图像增强算法技巧图像增强是数字图像处理中的一个重要任务,旨在改善图像的视觉质量并提高图像的可读性。
图像增强算法通过改变图像的像素值,调整图像的对比度、亮度、色彩等属性,以获得更好的视觉效果。
本文将介绍几种常用的图像增强算法技巧,包括直方图均衡化、滤波、锐化和去噪等。
1. 直方图均衡化直方图均衡化是一种常用的图像增强方法,它根据图像的像素值分布情况,将像素值重新映射到更广的范围内,从而增强图像的对比度。
该方法利用图像的直方图来调整像素值的分布,使得像素值更加均匀分布,提高图像的细节和对比度。
直方图均衡化可以应用于灰度图像和彩色图像,具有简单易实现、计算效率高的优点。
2. 滤波滤波是一种常用的图像增强方法,它通过卷积操作对图像进行平滑和锐化处理。
平滑滤波器可以用来去除图像中的噪声,例如均值滤波器、中值滤波器等。
平滑滤波可以通过对像素周围的邻域像素进行平均或中值操作来实现。
锐化滤波器可以增强图像的边缘和细节,例如拉普拉斯滤波器、Sobel滤波器等。
滤波可以在时域和频域中进行,选择适当的滤波器和参数可以根据图像特点实现不同的增强效果。
3. 锐化锐化是一种图像增强方法,通过增强图像的边缘和细节以提高图像的清晰度和细节显示。
图像锐化可以通过增加图像的高频分量来实现,例如使用拉普拉斯滤波器或高通滤波器。
锐化操作可以使图像的边缘变得更加清晰,增强细节显示。
然而,过度的锐化可能会导致图像的噪声增加和伪影出现,因此,在选择锐化滤波器和参数时需要谨慎。
4. 去噪去噪是一种常用的图像增强方法,它旨在减少图像中的噪声并提高图像的质量。
图像噪声可能由于图像采集过程中的传感器噪声、信号传输过程中的干扰和图像处理过程中的误差等原因引起。
常见的去噪方法包括中值滤波、高斯滤波、小波去噪等。
中值滤波可以有效地去除椒盐噪声,通过对像素周围的邻域像素进行排序并选择中间值来实现。
高斯滤波通过对像素周围的邻域像素进行加权平均来实现,对高斯噪声有较好的去除效果。
数字信号处理的滤波与降噪方法
数字信号处理的滤波与降噪方法数字信号处理(Digital Signal Processing,DSP)是对数字信号进行处理和分析的技术,其中包括了滤波和降噪方法。
滤波和降噪是 DSP 中常见的任务,用于去除信号中的噪声、干扰或不需要的频率成分,从而提取出感兴趣的信号信息。
本文将分步骤详细介绍数字信号处理中的滤波和降噪方法。
一、滤波方法滤波是将信号经过一个滤波器,去除掉不需要的频率成分。
在数字信号处理中常用的滤波方法有以下几种:1. 低通滤波器:用于去除高频噪声或频率成分较高的信号。
常用的低通滤波器有理想低通滤波器、巴特沃斯低通滤波器和滑动平均滤波器等。
2. 高通滤波器:用于去除低频噪声或频率成分较低的信号。
常用的高通滤波器有理想高通滤波器、巴特沃斯高通滤波器和巴特沃斯带阻滤波器等。
3. 带通滤波器:用于滤除频率范围之外的信号,只保留特定频率范围内的信号。
常用的带通滤波器有巴特沃斯带通滤波器和理想带通滤波器等。
4. 带阻滤波器:用于滤除特定频率范围内的信号,只保留频率范围之外的信号。
常用的带阻滤波器有巴特沃斯带阻滤波器和理想带阻滤波器等。
5. 自适应滤波器:根据输入信号的特性和滤波器的自适应算法,实时调整滤波器的参数,以适应信号的变化。
常用的自适应滤波器有最小均方差(LMS)滤波器和最小二乘(RLS)滤波器等。
二、降噪方法降噪是指去除信号中的噪声部分,提高信号的质量和可靠性。
在数字信号处理中常用的降噪方法有以下几种:1. 统计降噪:利用信号的统计特性,通过概率分布、均值、标准差等统计量对信号进行降噪。
常用的方法有均值滤波、中值滤波、高斯滤波等。
2. 自适应降噪:根据输入信号的特性和降噪器的自适应算法,实时调整降噪器的参数,以适应信号的变化。
常用的自适应降噪方法有最小均方差(LMS)算法和最小二乘(RLS)算法等。
3. 小波降噪:利用小波变换将信号分解为不同频率的子带信号,然后通过阈值处理去除噪声子带,最后再进行小波逆变换恢复信号。
巴特沃斯高通滤波器在图像处理中的应用
巴特沃斯高通滤波器在图像处理中的应用第4卷第2期邵阳学院学报(自然科学版)Vol.4No.2Jun.,20072007年6月JournalofShaoyangUniversity(NaturalScienceEdition)文章编号:1672-7010(2007)02-0047-04陈彦(湖南永州职业技术学院,湖南永州425006)摘要:本文讨论了巴特沃斯高通滤波器的原理及其在数字图像的锐化处理中的应用.文献标识码:A关键词:傅立叶变换;巴特沃斯高通滤波器;锐化中图分类号:O439TheapplicationofButterworthhighpassfilterinsharpeningofdigitalimageCHENYan(YongzhouVocationalandTechnicalCollege,Yongzhou,Hunan425006)Abstract:InthispaperarediscussedtheButterworthhighpassfilter'sprincipleandtheapplicationinsharpeningofdigitalimage.Keywords:fouriertransform;butterworthhighpassfilter;sharpening在数字图像处理过程中常常需要对图像进行锐化处理,锐化处理的目的是突出图像中的细节或者工业检增强模糊的图像边界.锐化在军事系统制导、测到医学成像和日常生活等各个方面都有非常广泛的应该.锐化处理可以在图像的空间域通过空间微分来完成,如基于一阶微分的梯度法和基于二阶微分的拉普拉斯算子都能实现图像的锐化.同时也可以在频率域对图像进行锐化处理,图像傅立叶变换的频率分量与图像的空间特征直接相关:低频对应着图像中灰度级变化缓慢的区域,高频则对应着图像中灰度级变化较快的部分.即图像中的边缘及突变的部分与高频分量有关,因而在图像的频域处理中,就可以用高通滤波器来强化高频部分,从而实现图像的锐化处理.本文主要讨论巴特沃斯高通滤波器的原理,及其在图像锐化处理中应用.数字图像处理技术可分为“空间域”技术和“频率域”技术两大类“指图像平面自身,这类.空间域”方法是以对图像像素的直接处理为基础“.频率域”处理技术是以修改图像的傅立叶变换为基础的,巴特沃斯高通滤波器是一种频率域处理技术.1.1图像的傅立叶变换一副尺寸为M×N的数字图像可表示成一个二维离散函数f(x,y)其中x=0,1,2,…,M-1,y=0,(x,y)的傅立叶变换为:1,2,…,N-1.f(ux/M+vy/N)(u,v)=!!(Ffx,y)e-j2πM-1N-1(1)x=0y=0公式(1)是一个二维傅立叶变换,由傅立叶变换的可分性,可将该二维傅立叶变换转化为二次一维傅立叶变换进行计算.vy/N(x,v)=!(Ffx,y)e-j2πy=0M-1N-1(2)(3)1频率域数字图像处理ux/M(u,v)=!F(x,v)e-j2πFx=0收稿日期:作者简介:2007-04-25陈彦(1969-),男,湖南祁阳人,中南大学信息科学与工程学院在读硕士,永州职业技术学院计算机系讲师,主要从事智能信息处理研究.48邵阳学院学报(自然科学版)第4卷一维傅立叶变换可采用“蝴蝶图”的快速傅立叶(参考文献[2]).将二算法实现,其原理此处不作讨论维傅立叶变换转化为二次一维傅立叶变换有利于算法实现,只要二次调用一维傅立叶变换算法就可以实现二维傅立叶变换.图1(a)所示是模糊的电路板图像,幅度为256×256像素.图1(b)则是其经过傅立叶变换后得到的频谱图.图1(b)的中心点是频谱图的频率原点,靠近中心点的区域代表了图像频率的低频区,远离中心的区域是高频区.(a)256×256像素模糊的电路板图像(b)傅立叶变换后的频谱图像图1数字图像及其傅立叶变换1.2傅立叶反变换频谱图可以通过傅立叶反变换无失真地还原图像,公式1的傅立叶反变换公式如下(fx,y)=1(!!Fx=0y=0M-1N-1公式(5)与傅立叶变换公式(1)非常类似,因此*只要调用傅立叶变换算法,将F(u,v)作为输入,可**求得f(x,y),然后再对f(x,y)取复共轭即可得到f*(x,y).因为(fx,y)是实函数,所以(fx,y)=f(x,y).u,v)e(ux/M+vy/N)-j2π(4)1.3图像频域滤波频率域图像处理过程称为频域滤波,其基本步骤如图2所示:公式(4)两边取复共轭得:*f(x,y)=1!!F(x=0y=0M-1N-1*(ux/M+vy/N)u,v)e-j2π(5)图2频域滤波基本步骤图中的H(u,v)是传递函数,它的作用是在傅立叶变换中抑制某些频率但保留另一些频率,故又称为滤波器.f(x,y)是输入图像,F(u,v)是其傅立叶变换,设G(u,v)是滤波后的傅立叶变换,那么:(u,v)=H(u,v)H(u,v)GG经过傅立叶反变换后可得到滤波处理后的数字图像.2巴特沃斯高通滤波2.1巴特沃斯高通滤波原理n阶截止频率为D0的巴特沃斯高通滤波器的传递函数为:(u,v)=Hbhp(6)实现G的算法并不复杂,因为H和F都是二维离散函数,H和F相乘实际上是逐个元素相乘,即H的第一个元素乘以F的第一个元素得G的第一个元素,……,以此类推可求得G.1(u,v)]1+[D0/D(7)49(u-M/2)+(v-N/2)其中:D(u,v)=!(8)(u,v)=a+bHbhp(u,v)H(9)公式(9)称为高频加强滤波器,是在高通滤波传(u,v)前乘以一个系数b,再加上偏移a递函数Hbhp实现的.其中的偏移a保证零频率成分不被滤除掉.显然:当a=0,b=1时该函数蜕变为巴特沃斯高通滤器.当b>1时,频域中的高频成份得以加强,这正是我们称之为高频加强滤波器的原因.3巴特沃斯高通滤波器在图像锐化中的实际应用(u,v)=由公式(7)Hbhp图3巴特沃斯高通传递函数截面图1(u,v)]1+[D0/D,和公(u,v)=F(u,v)H(u,v)知,F由频域滤波模型G(u,v)中的低频(小于D0)成分,因乘上一个远小于1(u,v)值而被衰减.而高频成分却被乘以一个接的H(u,v)值而保留.这即是所谓的高通滤波.近于1的H(u,v)=a+bHbhp(u,v)可知,通过调整D0,a,式(9)Hb三个参数,可以得到不同的锐化效果,在锐化处理中既要突出细节,又要防止锐化过冲引起失真.下面通过一个具体的例子来讨论如何设置这三个参数,以得到满意的锐化图像.n=2时称为2阶巴特沃斯高通滤波器,2阶巴特沃斯滤波器中是理想滤波的尖锐和高斯型滤波的完全光滑之间的一种过渡,是有效滤波和可接受的振铃特性之间的折衷.(锐化)2.2高频提升滤波高频滤波后的图像,由于滤掉了频域中的零频率成分,其背景的灰度级减小到接近黑色.把滤波后的图像叠加到原图像上,即可对原图像实现锐化处理.3.1根据原图像的频谱确定截止频率D0截止频率D0越大,滤掉的低频成分越多,同样损失的高频成份也越多.那么究竟如何确定截止频率D0呢?通过图4(a)可以获得一些有用的信息,图中半径为87的内圈囊括了所有低频成分;因此将截止频率D0设置为87是比较合适的,这样既可以滤掉内圈的低频成分,又能保留大部分高频成分.如果将D0设置为128,则会损失过多的高频分量.(a)内圈半径87像素,外圈半径128像素图4(b)经D0=87的巴特沃斯高通滤波后的频谱确定截止频率D0图4是两种截止频率的锐化效果比较,(a)图的截止频率D0设为87,(b)图的截止频率D0设为128.显然(a)图具有更清楚的边缘,更好的锐化效果.这也就验证了上述分析.50邵阳学院学报(自然科学版)第4卷(a)D0=87,a=0.3,b=2高频加强(b)D0=128,a=0.3,b=2高频加强图5两种截止频率的锐化效果比较3.2参数a和b对图像锐化的影响(u,v)=a+bHbhp(u,v)可知,a反映了原由公式H图的贡献,b则体现了高频因素的影响.显然减少a值增大b值,可以提高锐化效果.但在实际应用中必须防止锐化过度.图6显示了不同a和b值对锐化效果的影响.从中可以看到,集成块上的字显得向上突起,说明锐化过度.因此a和b值的大小,必需慎重取舍.一般来说a的典型取值在0.25到0.5之间,b的典型取值在1.5到2之间.D0=87,a=0.1,b=2高频加强D0=87,a=0.2,b=5高频加强图6参数a和b对锐化效果的比较4结束语本文分析了数字图像的傅立叶变换以及巴特沃斯高通滤波器的原理.笔者在VC++环境下实现了巴特沃斯高通滤波器算法,并将它运用到数字图像的锐化处理中,通过实验分析了参数调整方法.结果表明,截止频率的选择与数字图像的频谱分布有很大的关系,这种关系是下一步的研究重点,我们希望找到一种算法能根据频谱分布自动选择合理的截止频率,从而增加系统的智能性.参考文献:[1]阮秋琦,阮宇智.数字图像处理[M].北京:电子工业出版社,2004.[2]何斌,马天予,王运坚,朱红莲.VisualC++数字图像处理(第二版)[M].北京:人民邮电出版社,2002.。
数字图像处理和分析习题及答案解析
数字图像处理和分析习题及答案解析第⼀章绪论课后4.1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 什么是图像识别与理解图像识别与理解是指通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
⽐如要从⼀幅照⽚上确定是否包含某个犯罪分⼦的⼈脸信息,就需要先将照⽚上的⼈脸检测出来,进⽽将检测出来的⼈脸区域进⾏分析,确定其是否是该犯罪分⼦。
3. 简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
4.⼀个数字图像处理系统由哪⼏个模块组成答:⼀个基本的数字图像处理系统由图像输⼊、图像存储、图像输出、图像通信、图像处理和分析5个模块组成5.连续图像和数字图像如何相互转换答:数字图像将图像看成是许多⼤⼩相同、形状⼀致的像素组成。
这样,数字图像可以⽤⼆维矩阵表⽰。
将⾃然界的图像通过光学系统成像并由电⼦器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,⽽进⼀步将图像的幅度值(可能是灰度或⾊彩)整数化的过程称为量化。
《数字图像处理》实验教案
《数字图像处理》实验教案一、实验目的1. 理解数字图像处理的基本概念和原理;2. 掌握常用的数字图像处理方法和技术;3. 培养实际操作数字图像处理工具的能力;4. 提高对数字图像处理问题的分析和解决能力。
二、实验内容1. 图像读取与显示:使用图像处理软件,读取、显示和保存不同格式的图像文件;2. 图像基本运算:进行图像的加、减、乘、除等基本运算;3. 图像滤波:使用低通滤波器、高通滤波器、带通滤波器等对图像进行滤波处理;4. 图像增强:采用直方图均衡化、对比度增强等方法改善图像质量;5. 边缘检测:使用Sobel算子、Canny算子等方法检测图像边缘。
三、实验原理1. 图像读取与显示:介绍图像处理软件的基本操作,掌握图像文件格式的转换;2. 图像基本运算:介绍图像像素的运算规则,理解图像基本运算的原理;3. 图像滤波:介绍滤波器的原理和应用,掌握滤波器的设计和实现方法;4. 图像增强:介绍图像增强的目的和方法,理解直方图均衡化和对比度增强的原理;5. 边缘检测:介绍边缘检测的原理和算法,掌握不同边缘检测方法的特点和应用。
四、实验步骤1. 图像读取与显示:打开图像处理软件,选择合适的图像文件,进行读取、显示和保存操作;2. 图像基本运算:打开一幅图像,进行加、减、乘、除等基本运算,观察结果;3. 图像滤波:打开一幅图像,选择合适的滤波器,进行滤波处理,观察效果;4. 图像增强:打开一幅图像,选择合适的增强方法,进行增强处理,观察质量改善;5. 边缘检测:打开一幅图像,选择合适的边缘检测方法,进行边缘检测,观察边缘效果。
五、实验要求1. 熟练掌握图像处理软件的基本操作;2. 能够正确进行图像的基本运算;3. 能够合理选择和应用不同类型的滤波器;5. 能够根据图像特点选择合适的边缘检测方法。
六、实验环境1. 操作系统:Windows 10或更高版本;2. 图像处理软件:MATLAB或OpenCV;3. 编程环境:MATLAB或C++;4. 硬件要求:普通计算机或服务器。
基于数字图像处理技术的图像锐化处理分析
基于数字图像处理技术的图像锐化处理分析目录基于数字图像处理技术的图像锐化处理分析 (1)一、概述 (2)二、图像锐化的概念 (2)三、锐化处理原理 (3)1、微分运算锐化 (3)1.1一阶微分运算 (3)1.2二阶微分运算 (5)2、高通滤波法 (8)四、专业图片处理产品中关于锐化的参数控制 (9)五、数字图像处理的前景 (10)一、概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20 世纪60年代初期。
图像处理的基本目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。
随着图像处理技术的深入发展,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更局、更深层次发展。
在数字图像处理中,图像经转换或传输后,质量可能下降,难免有些模糊。
另外,图像平滑在降低噪声的同时也造成目标的轮廓不清晰和线条不鲜明,使目标的图像特征提取、识别、跟踪等难以进行,这一点可以利用图像锐化来增强。
图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像。
二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分奠定定基础。
图像锐化一般有两种方法:一是微分法,二是高通滤波法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理高通滤波器
姓名:*** 学号:**********
高通滤波是常见的频域增强的方法之一。
高通滤波与低通滤波相反,它是高频分量顺利通过,使低频分量受到削弱。
这里考虑三种高通滤波器:理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器。
这三种滤波器涵盖了从非常尖锐(理想)到非常平坦(高斯)范围的滤渡器函数,其转移函数分别为:
1、理想高通滤波器(IHPF )
),(),(10),(D v u D D v u D v u H >≤⎩⎨⎧= 2、巴特沃斯高通滤波器(BHPF ) n v u D D v u H 20),()12(11),(⎥⎦
⎤⎢⎣⎡-+= 3、高斯高通滤波器(GHPF ) 2022/v ,u D 1),(D e
v u H )(--=
一、数字图像高通滤波器的实验过程:
1、理想高通滤波器程序
clear all ;clc;
image = imread('test.jpg');
gimage_15 = func_ihpf(image,15);
gimage_30 = func_ihpf(image,30);
gimage_80 = func_ihpf(image,80);
figure
subplot(221),imshow(image);
title('Original');
subplot(222),imshow(gimage_15);
title('d0=15');
subplot(223),imshow(gimage_30);
title('d0=30');
subplot(224),imshow(gimage_80);
title('d0=80');
%被调函数子函数G(u,v)=F(u,v)H(u,v)
function gimage = func_ihpf(image,d0)
image = double(image);
f = fftshift(fft2(image));
[M,N]=size(f);
a0 = fix(M/2);
b0 = fix(N/2);
for i=1:M
for j=1:N
D = sqrt((i-a0)^2+(j-b0)^2);
if(D>d0)
h=1;
else
h=0;
end
g(i,j)=h*f(i,j);
end
end
gimage = uint8(real(ifft2(ifftshift(g))));
2、巴特沃斯高通滤波器程序
clear all;clc;
image = imread('test.jpg');
gimage_15 = func_bhpf(image,15);
gimage_30 = func_bhpf(image,30);
gimage_80 = func_bhpf(image,80);
figure
subplot(221),imshow(image);
title('Original');
subplot(222),imshow(gimage_15);
title('d0=15');
subplot(223),imshow(gimage_30);
title('d0=30');
subplot(224),imshow(gimage_80);
title('d0=80');
%被调函数子函数G(u,v)=F(u,v)H(u,v)
function gimage = func_bhpf(image,d0) image = double(image);
f = fftshift(fft2(image));
[M,N]=size(f);
nn = 1; %巴特沃斯阶数
a0 = fix(M/2);
b0 = fix(N/2);
for i=1:M
for j=1:N
D = sqrt((i-a0)^2+(j-b0)^2);
if(D == 0)
h=0;
else
h=1/(1+0.414*(d0/D)^(2*nn));
end
g(i,j)=h*f(i,j);
end
end
gimage = uint8(real(ifft2(ifftshift(g))));
3、高斯高通滤波器程序
clear all;clc;
image = imread('test.jpg');
gimage_15 = func_ghpf(image,15);
gimage_30 = func_ghpf(image,30);
gimage_80 = func_ghpf(image,80);
figure
subplot(221),imshow(image);
title('Original');
subplot(222),imshow(gimage_15);
title('d0=15');
subplot(223),imshow(gimage_30);
title('d0=30');
subplot(224),imshow(gimage_80);
title('d0=80');
%被调函数子函数G(u,v)=F(u,v)H(u,v)
function gimage = func_ghpf(image,d0)
image = double(image);
f = fftshift(fft2(image));
[M,N]=size(f);
a0 = fix(M/2);
b0 = fix(N/2);
for i=1:M
for j=1:N
D = sqrt((i-a0)^2+(j-b0)^2);
h=1-exp(-(D.^2)./(2*(d0^2)));
g(i,j)=h*f(i,j);
end
end
gimage = uint8(real(ifft2(ifftshift(g))));
二、图像频域边缘增强的实验结果分析与讨论
1、理想高通滤波器
图1理想高通滤波器滤波效果(d0=15,30,80)
当d0=15时,滤波后的图像无直流分量,但灰度的变化部分基本保留。
当d0=30时,滤波后的图像在图像轮廓的大部分信息仍然保留。
当d0=80时,滤波后的图像只剩下边缘及斑点等信号突变部分。
2、巴特沃斯高通滤波器
图2一阶巴特沃斯高通滤波器滤波效果(d0=15,30,80)
图3十五阶巴特沃斯高通滤波器滤波效果(d0=15,30,80)类似于低通滤波器的时候,巴特沃斯高通滤波器比理想高通滤波器更加平滑,边缘失真情况比后者小的多。
巴特沃思滤波器有一个参数,称为滤波器的“阶数”。
当此参数的值较高时,巴特沃思滤渡器接近理想滤波器。
因此,巴特沃思滤波器可看做两种“极端”滤波器的过渡。
一个一阶的巴特沃思滤波器没有振铃,在二阶中振铃通常很微小,但阶数增高时振铃便成为一个重要因素。
3、高斯高通滤波器
图4高斯高通滤波器滤波效果(d0=15,30,80)
高斯高通滤波器得到的结果比前两种滤波器更为平滑,结果图像中对于微小边缘和细条,如钢环的棱的过滤也是较为清晰的。
从实验的仿真结果我们可以看出,不同的滤波器对图像的滤波效果是不同的。
它们的共同点是图像在经过高通滤波后,消除了模糊,突出了边缘,使低频分量得到了抑制,从而增强了高频分量,使图像的边沿或线条变得清晰,实现了图像的锐化。
但理想高通滤波器出现了明显的振铃现象,即图像边缘有抖动现象;而Butterworth滤波器高通效果较好,但是计算复杂,其优点是有少量的低频通过,故H(u,v)是渐变的,振铃不明显;高斯高通滤波效果比前两者都要好些,但振铃也不明显,但是计算较为复杂。
而且不同的滤波半径和不同的滤波器阶数对图像的滤波效果也是不同的。
滤波半径越越小,则图像的滤波效果越好;滤波器阶数越高,则滤波效果越好。