北理工《概率论与数理统计》期末考试精选题汇总【含答案解析】 85
概率论与数理统计期末考试题及答案
模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: 2/3 ; ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:14212661112C C ⨯ ;没有任何人的生日在同一个月份的概率61266!12C ; 4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= 1,021,02241,2xe x xx x ⎧≤⎪⎪⎪+<≤⎨⎪>⎪⎪⎩, 概率{0.51}P X -<<=0.53142e -- ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ; 7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论与数理统计》期末考试试题及解答
概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
概率论与数理统计期末考试试卷答案
数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1, 则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 , 成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
2021年大学基础课概率论与数理统计期末考试题及答案(精选版)
学校升旗仪式讲话稿学校升旗仪式讲话稿范文(精选5篇)在社会发展不断提速的今天,接触并使用讲话稿的人越来越多,讲话稿是应用写作研究的重要文体之一。
你知道讲话稿怎样写才规范吗?以下是小编精心整理的学校升旗仪式讲话稿范文(精选5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
学校升旗仪式讲话稿1尊敬的老师、亲爱的同学们:大家好!我今天讲话的题目是《饮水思源,感怀师恩》。
一个人,无论地位有多高,成就有多大,他都不应该忘记老师在自己成长的道路上所花费的心血,所谓饮水思源。
尊师是我们中华民族的优良传统。
煌煌史书,有许多关于尊师重教的记载,列列青卷,更有数不清尊师的传说。
《吕氏春秋》中,有这样一句话“疾学在于尊师”,说的是要很快学到知识,重要的是尊重教师。
在我们求学的道路上,老师永远是付出与奉献的代名词。
他们把毕生的精力都倾注在教育事业上,把整颗心都掏给学生们,默默地把自己的一生托付给光辉的事业——教书育人。
清晨里,老师们顾不上自己的孩子,却很准时地到校辅导我们;暮色中,老师们依旧在批改备课,孜孜不倦;面对迷途的学生,老师毫不犹豫地献出自己的关爱;面对退步的学子,老师辅导答疑,任劳任怨。
师恩惠惠,润物无声,如此伟大的老师,难道不应该得到我们的尊敬吗?尊师是一个民族文明进步的标志。
作为现代中学生的我们,更应该让尊师敬长成为我们每个人的自觉行动。
在校园里,我们要努力用自己的行动使尊师成为一种风气。
但是目前仍有部分同学的表现与此极不合拍,有的同学遇见老师不能主动问好;上课明明迟到,却大摇大摆的晃入教室;课上不遵守纪律,课后不完成作业等等,这些都是不尊敬老师的行为,更有甚者,居然当众顶撞老师,如此恶劣的行为难道不应引起我们的足够重视与反思吗?人世间最大的情感失衡,第一是在父母和子女之间,第二是在教师和学生之间,而当我们意识到这点时,大多已无法弥补。
孔圣人学徒三千,每一个都对老师倍加尊敬,为了感恩,他们四处宣讲孔子的儒家学说。
北京理工大学数学专业数理统计期末试题(07000233)
北京理⼯⼤学数学专业数理统计期末试题(07000233)课程编号:07000233 北京理⼯⼤学2011-2012学年第⼆学期2010级数理统计期末试题A 卷⼀、设总体()20,X N σ,12,,,m n X X X +是抽⾃总体X 的简单随机样本,求常数c 使得随机变量2221222212mm m m n X X X Y c X X X ++++++=?+++服从F 分布,指出分布的⾃由度并证明。
⼆、设总体()2,X N µσ,其中220σσ=为已知常数,R µ∈为未知参数。
12,,,nX X X 是抽⾃总体X 的简单随机样本,12,,,n x x x 为相应的样本观测值。
1.求参数µ的矩估计;2.求参数µ和2EX 的极⼤似然估计;3.证明1n i i i X X α='=∑,其中11ni i α==∑和11ni i X X n ==∑都是µ的⽆偏估计;4.⽐较两个⽆偏估计X '和X 的有效性并解释结果。
三、设总体X 服从泊松分布()P λ,123,,X X X 是抽⾃总体X 的简单随机样本,设假设检验问题011:3;:3H H λλ==的否定域为(){}123,,0.5D X X XX =≤。
1.求该检验问题犯第⼀类错误的概率;2.求该检验问题犯第⼆类错误的概率和在1H 下的功效函数。
四、设总体X 的概率密度函数为()32,0,20,0xx e x f x x θθθ-?>?=??≤?,其中0θ>为未知参数,12,,,n X X X 是抽⾃总体X 的简单随机样本。
1.验证样本分布族是指数族,并写出其⾃然形式(标准形式);2.证明()1nii T X X==∑是充分完全(完备)统计量,并求()ET X ;3.利⽤充分完全统计量法和Cramer-Rao 不等式⽅法证明113n i i X n =∑是1θ的⼀致最⼩⽅差⽆偏估计。
概率论与数理统计期末考试试题库及答案
概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。
23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
北京理工大学数学专业概率论期末试题(07000221)
2008级《概率论》期末试题A 卷一、从1到30的整数中,不放回地任取3个数,求所取的3个数之和能被3整除的概率。
二、设袋中有9个红球和6个白球,不放回地任取两次,每次取两个球。
(1)求第二次取出的两个球都是白球的概率;(2)已知第二次取出的两个球都是白球,求第一次恰好取出一个红球和一个白球的概率。
三、设随机变量X 的密度函数为()2,1Af x x R x =∈+。
(1)求A 的值;(2)求21Y X =+的密度函数;(3)求概率()2P X X >。
四、设二维随机变量(X,Y )在区域(){},|02G x y x y =<<<上服从均匀分布。
(1)写出X ,Y 的联合密度函数(),f x y ;(2)求X,Y 的边际密度函数()(),X Y f x f y ,并判断X,Y 是否独立; (3)求概率()1P X Y +<。
五、设随机变量X 的密度函数为(),00,0x e x f x x λλ-⎧>=⎨≤⎩,求,ED 。
六、设随机变量X 服从参数为1的指数分布,Y 服从正态分布()22,3N ,且X,Y 相互独立。
(1)求()2E X Y -;(2)设,3U XY V X ==,求()cov ,U V 。
七、设随机变量X 的分布律为()1,0,1,,1P X k k n n===⋅⋅⋅-,Y 服从[]0,1上的均匀分布,且X,Y 相互独立。
令Z=X+Y ,利用特征函数法证明Z 服从[]0,n 上的均匀分布。
八、设某种电子元件的寿命服从指数分布,其平均寿命为400小时。
现购买100只这种电子元件,假设它们的寿命相互独立,求这些电子元件的寿命总和在32000小时至48000小时之间的概率。
(1)用切比雪夫不等式计算;(2)用中心极限定理计算。
2010级《概率论》期末试题A 卷一、(10分)从1到9这9个数中,有放回地取3次,每次取一个,求所取的3个数之积能被10整除的概率。
北工商《概率论与数理统计》期末考试试题A
《概率论与数理统计》期末考试试题A一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭.2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ;(C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】 (A)()210=≤+Y X P ; (B) ()211=≤+Y X P ;(C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
概率论与数理统计期末考试之计算题解答题经典含答案
概率论与数理统计期末考试之计算题、解答题(含答案)1.设A ,B 是两个事件,61)|(,31)()(===B A P B P A P ,求)|(B A P 。
解:127)(1)()()(1)(1)(1)()()|(=-+--=--==B P AB P B P A P B P B A P B P B A P B A P2.有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有一门火炮命中目标的概率。
解:设事件A,B,C 分别表示甲、乙、丙火炮命中目标(1)72.05.07.08.01)()()(1)(1)(=⋅⋅-=-=-=C P B P A P C B A P C B A P(2)47.0)()()()()()()()()()()()()(=++=++=C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P C B A C B A C B A P3.盒中有10个合格品,3个次品,从盒中一件一件的抽取产品检验,每件检验后不再放回盒中,以X 表示直到取到第一件合格品为止所需检验次数,求: (1) X 的分布律;(2) 求概率}3{<X P 。
解:X 的全部可能取值为1,2,3,4 (1)1310}1{==X P ,1210133}2{⋅==X P ,1110122133}3{⋅⋅==X P ,}3{}2{}1{1}4{=-=-=-==X P X P X P X PX 的分布律为: X1234k p1310 265 1435 2861 (2)2625}2{}1{}3{==+==<X P X P X P4.某汽车加油站的油库每周需油量X(kg)服从N (500,502)分布.为使该站无油可售的概率小于0.01,这个站的油库容量起码应多大?(注:99.0)325.2(=Φ) 解:设这个站油库容量为h (kg )时能满足题目要求,则01.0)(<>h X P即99.0)50500()(≥-Φ=≤h h X P ,由已知得:325.250500≥-h ,则)(25.616kg h ≥.5.从甲乙两个蓄电池厂的产品中分别抽取6个产品,测得蓄电池的容量(A.h)如下:甲厂 140 , 138 , 143 , 141 , 144 , 137; 乙厂135 , 140 , 142 , 136 , 138 , 140 设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的95%置信区间。
概率论与数理统计期末考试试题及答案
)B =________________.3个,恰好抽到,(8ak ==(24)P X -<= .乙企业生产的50四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== ........ 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ..................... 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯===........................................ 12分 三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. .......................................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩............................................ 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.................................. 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ......................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................... 6分120.40.6Y p ................................................................ 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................. 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ............... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................. 9分 221()()[()].6D XE X E X =-= ................................................... 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计试题
《概率论与数理统计》期末试题(1)一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P .3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ,}1),{min(≤Y X P 5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X的样本,则未知参数θ的极大似然估计量为二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 ( )(A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( )(A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ.3.设随机变量X 和Y 不相关,则下列结论中正确的是 ()(A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为 ()(A )21,99αβ==. (A )12,99αβ==. (C ) 11,66αβ== (D )51,1818αβ==.5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是()(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量.(C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度. 六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.七、(11分)设某机器生产的零件长度(单位:)2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分) (1) 设()0.5P A =,()0.6P B =,(|)0.8P B A =,则,A B至少发生一个的概率为()()()() 1.10.20.9P A B P A P B P AB =+-=-=. (2) 设X 服从泊松分布,若26EX =,则P(X>1) (3) 设随机变量X 的概率密度函数为1(1),02,()4,x x f x ⎧+<<⎪=⎨⎪⎩其他. 今对X 进行8次独立观测,以Y 表示观测值大于1的观测次数,则53158888DY =⨯⨯= (4)元件的寿命服从参数为1100的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为 (5) 设测量零件的长度产生的误差X 服从正态分布2(,)N μσ,今随机地测量16个零件,得1618ii X ==∑,162134ii X==∑. 在置信度0.95下,μ的置信区0.050.025((15) 1.7531,(15) 2.1315)t t ==二、单项选择题(下列各题中每题只有一个答案是对的,请将其代号填入( )中,每小题3分,共15分)(1),,A B C 是任意事件,在下列各式中,不成立的是( ) (A )()A B B A B -=. (B )()A B A B -=.(C )()A B AB AB AB -=.(D )()()()A B C A C B C =--. (2)设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =+是某一随机变量的分布函数,在下列给定的各组数值( )中应取(A )32,55a b ==-. (B )22,33a b ==. (C )13,22a b =-=. (D )13,22a b ==.(3)设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =( )(A )(53)X F y -. (B )5()3X F y -. (C )3()5X y F +. (D )31()5X yF --.(4)设随机变量12,X X 的概率分布为101111424iX P- 1,2i =. 且满足12(0)1P X X ==,则12,X X 的相关系数为12X X ρ= ( )(A )0. (B )14. (C )12. (D )1-.(5)设随机变量1~[0,6],~(12,)4XU Y B 且,X Y 相互独立,根据切比雪夫不等式有(33)P X Y X -<<+( ) (A )0.25≤. (B )512≤. (C )0.75≥. (D )512≥. 三、(8分)在一天中进入某超市的顾客人数服从参数为λ的泊松分布,而进入 超市的每一个人购买A 种商品的概率为p ,若顾客购买商品是相互独立的,求一天中恰有k 个顾客购买A 种商品的概率。
北工商概率论期末
《概率论与数理统计》试卷2填空题:每小题4分,1、如果随机事件事件A 、B 满足 则称A 、B 相互独立。
2、设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,做不放回抽样,则取出次品的只数为1的概率为___ _ ___。
3、设随机变量X 的分布函数为 ⎩⎨⎧≤>= , 0 0,0 , e -1)(x x x F ,则P (X >4=___ _ ___。
4、设X 服从参数λ(λ >0)为泊松分布,则Y=3x²+2X-1的数学期望为___ _ ___。
5设随机变量X 和Y 的相关系数为0.6,若Z=X-0.3,则Y 与Z 的相关系数为Pn=___ _ ___。
二、选择题,每小题4分1、同时抛掷3枚匀称的硬币,则恰好有两枚正面向上的概率为( )A 、1/2(0.5)B 、3/8(0.375)C 、1/4 ( 0.25 )D 、1/8(0.125)2、设随机变量X- N (2,9)且P{X ≤C}=P{X}>C},则C 的值为( )(A) 2 (B) —2 (C) 0 (D) 33、设连续型随机变量X 的函数 ⎩⎨⎧≥-<= , 0 ,0 , 0)(x B A x x F 则常数A 与B 值是( ) (A) A=0,B=—1 (B ) A=0,B=1 (C) A=1,B=—1 (D) A=1,B=14、设(X 1,X 2,…,Xn)是总体X 的简单随机样本,则下列不是总体期望u 的无偏估计量的为( )(A) X (B ) 0.1(6X 1+ 4Xn ) (C) (D) X 1-X 2+X 35、设随机变量X 与Y 相互独立且都服从正态分布λ(1,2)则下列随机变量中服从标准正态分布的是( )(A) (B ) (C) X-Y (D)三、本题满分(10分)设A 、B 为随机事件,且P (A )=12,P (A/B )=41,求P (B )设二维离散型随机变量(X ,Y )的分布规律是-1 1/12 1/61 1/4 1/12 1/4求:(1)常数a 的值 (2)(X ,Y )关于X 和Y 的边缘分布律五、本题满分(10分)设随机变量X 服从指数分布,其概率密度为 ⎪⎩⎪⎨⎧≤>I = , 00,0 , )(x x x F θ其中θ〉0常数,求D (X )六、本题满分(10分)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是______.设总体X 具有分布律X 1 2 3p i θ2 2θ(1-θ) (1-θ)2 其中θ(0<θ<1)为未知参数.已知取得了样本值x 1=1,x 2=2,x 3=1,试求θ的矩估计值.八、本题满分(10分)47. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>=, 1 , 01 , 1)(2x x x x f 求函数X Y ln =的概率密度.。
北京理工大学网络教育期末考试概率论与数理统计答案
概率论与数理统计2005-0003 (题目数量:24 总分:100.0)1.单选题(题目数量:14 总分:70.0)1. 设A、B为互相独立的随机事件,P(A)=0.4, P(B)=0.7,则P(AB)=()。
A.0B.0.28C.0.3D.0.82答案:C2. -设X与Y相互独立,且知X~N(20,4),Y~N(8,2),则Z=2X-Y 服从的分布是()。
A.N(32,14)B.N(32,10)C.N(32,6)D.N(32,,18)答案:A3. 某厂生产的棉布,每米上的疵点数服从参数的泊松分布(即),则今任取棉布上至少有2个疵点的概率为()。
A. B. C. D.答案:A4. 已知离散型随机变量的分布律为:,则的数学期望()。
A.1B.1.5C.1.8D.2.1答案:A5. 在假设检验中,用和分别表示犯第一类错误和犯第二类错误的概率,则当样本容量一定时,下列说法正确的是()。
A.减小也减小B.增大也增大C.和不能同时减小,减小其中一个,另一个往往就会增大D.与同时成立答案:C6. 下列事件与事件A-B不等价的是()。
A.A-ABB.C.D.答案:C7. 一盒子中有20个相同型号的产品,其中有15个一等品,其余为二等品,今从盒子中任取一个产品,则此产品为二等品的概率为()。
A.0.75B.0.25C.1/3D.以上都不对答案:B8. 设随机变量的分布列为:则常数a=()。
A.-0.4B.0.4C.0.6D.0.3答案:A9. 设A、B为不相容的两个随机事件,且P(A)=0.2, P(B)=0.5,则P(AB)=()。
A.0B.0.1C.0.7D.0.3答案:D10. 设总体服从参数为的指数分布,即,是取自该总体的一个样本,是样本均值。
则参数的最大似然估计是()。
A. B. C. D.答案:A11. 设随机变量X的分布列为 ,则= ()。
A.0.7B.0.3C.0.5D.0.4答案:A12. 设随机变量X与Y相互独立,且都服从参数为的(0—1)分布,则有()。
概率论及数理统计期末考试试题及解答
WORD格式.《概率论与数理统计》期末试题一、填空题(每题 3 分,共 15 分)1.设事件 A,B 仅发生一个的概率为0.3 ,且 P(A)P(B)0.5,则A,B起码有一个不发生的概率为 __________.答案: 0.9解:P(ABAB)0.3即0.3P(AB)P(AB)P(A)P(AB)P(B)P(AB)0.52P(AB)因此P(AB)0.1P(AB ) P(AB)1P(AB)0.9.2.设随机变量 X 听从泊松散布,且 P( X1)4P(X2),则P(X3)______.答案:1 e 16解答:P( X1)P ( X0)P(X1)ee,P(X2)e由 P(X1)4P(X2) 知 ee2e2即 210解得 1,故P(X3)e 3.设随机变量 X 在区间 (0,2)上听从平均散布,则随机变量密度为 f Y(y)_________.答案:2 221162YX在区间 (0,4)内的概率114,0y4,f( y) F(y)f(y)YYX2y解答:设 Y 的散布函数为 F Y(y),X的散布函数为F X(x) ,密度为2F(y)P(Yy)P(Xy)P(yXy ) F(y ) F(y )YXX由于 X~U(0,2) ,因此 F(y ) 0 ,即 F Y(y)F X(y )Xy0,.其余f X(x) 则专业资料整理WORD格式教育资料专业资料整理WORD 格式.故11,0y4,f( y) F(y)f(y )4yYYX2y0,其余.另解在 (0,2) 上函数2yx 严格单一,反函数为h(y)y因此11f(y)f(y)4,0y4,yYX2 y0,其余.4.设随机变量 X,Y 互相独立,且均听从参数为的指数散布,2P(X1)e ,则_________, P{min(X,Y)1}=_________.答案: 2,- 4P{min(X,Y)1}1e解答:2P(X1)1P(X1)ee ,故 2P{min(X,Y)1 }1P{min(X,Y)1 }1P(X1)P(Y1)41e.5.设整体 X 的概率密度为(1)x,0x1,f(x)1.0,其余X 1,X 2,,X 是来自 X 的样本,则未知参数的极大似然预计量为_________.n答案:$11n1xlnn i 1i解答:似然函数为nnL ( x ,L,x;)(1)x(1)(x,L,x)1ni1ni1nlnLnln(1)lnxii1dlnLn nlnx@0d1ii1专业资料整理WORD格式解似然方程得的极大似然预计为教育资料专业资料整理WORD格式.$11.n1ln xni 1i二、单项选择题(每题 3 分,共 15 分)1.设 A,B,C为三个事件,且A,B 互相独立,则以下结论中不正确的选项是(A)若 P(C)1 ,则 AC与 BC也独立 .(B)若 P(C)1 ,则 AUC 与 B 也独立 .(C)若 P(C)0 ,则 AUC 与 B 也独立 .(D)若 CB,则 A 与 C也独立 . ()答案:( D) .解答:由于概率为 1 的事件和概率为0 的事件与任何事件独立,因此(A),(B),(C)都是正确的,只好选(D) .事实上由图可见A与C不独立.SABC2.设随机变量X~N(0,1),X的散布函数为(x),则P(|X|2)的值为(A) 2[1(2)]. ( B) 2(2)1.(C) 2(2). ( D) 12(2). ()答案:( A)解答: X~N(0,1) 因此 P(|X|2)1P(|X|2)1P(2X2)1(2)(2)1[2(2)1]2[1(2)]应选(A).3.设随机变量 X 和 Y 不有关,则以下结论中正确的选项是(A)X 与 Y 独立 . ( B)D( XY)DXDY.(C)D(XY)DXDY. ( D) D(XY)DXDY.()教育资料专业资料整理WORD 格式.答案:( B )解答:由不有关的等价条件知,xy0cov ( x , y )0D( XY) DXDY+2cov ( x , y )应选( B ) .4.设失散型随机变量 X 和 Y 的结合概率散布为( X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1111 69183若 X,Y 独立,则 , 的值为( A )21.( )12.,A,9999 . ()( C )11( D )51,,661818答案:( A )解答:若 X,Y 独立则有P(X2,Y2)P(X2)P(Y2)Y123X1111 1121 169183()()() 11 3939233 21 111, 291899故应选( A ) .5.设整体 X 的数学希望为 ,X 1,X 2,L,X n为来自 X 的样本,则以下结论中正确的选项是(A)X1是的无偏预计量 . ( B)X1是的极大似然预计量 .(C)X1是的相合(一致)预计量 . ( D) X1不是的预计量 . ()答案:( A)解答:EX,因此 X1是的无偏预计,应选(A) .1三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误以为是次品的概率为0.5 ,一个次品被误以为是合格品的概率为0.02 ,专业资料整理WORD格式教育资料专业资料整理WORD格式.求( 1)一个产品经检查后被以为是合格品的概率;( 2)一个经检查后被以为是合格品的产品确是合格品的概率.解:设 A‘任取一产品,经查验以为是合格品’B‘任取一产品确是合格品’则( 1) P(A)P(B)P(A|B)P(B)P(A| B)0.9 0.950.10.020.857.P( B|A)0.9977( 2).P(A)0.857四、( 12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假定在各个交通岗碰到红灯的事件是互相独立的,而且概率都是2/5. 设 X 为途中碰到红灯的次数,求 X 的散布列、散布函数、数学希望和方差 .解: X 的概率散布为23kk3kP(Xk ) C()()k0,1,2,3.355X0123即2754368PX 的散布函数为0,x0,27,0x1,12581F(x),1x2,125117,2x3, 1251,x3.EX26 3,55 2318DX3.5525五、( 10 分)设二维随机变量(X, Y) 在地区 D{(x,y)|x0,y0,xy1}上听从平均散布 . 求( 1) ( X,Y) 对于 X 的边沿概率密度;( 2) ZXY 的散布函数与概率密度 .专业资料整理WORD格式教育资料专业资料整理WORD格式.解:( 1) (X,Y)的概率密度为y2,(x,y)D1f(x,y)0,.x+y=1其余DD122x,0x1 x f(x)f(x,y)dy0z1x+y=zX0,其余(2)利用公式 f Z(z)f(x,zx)dx2,0x1,0zx1x2,0x1,xz1.此中 f(x,zx)0,0,其余其余 .当 z0或 z1时 f Z(z)0zzzz=x0z1时f(z)2dx2x2zZ故 Z 的概率密度为x f(z)2z,0z1,Z0,其余 .Z 的散布函数为0,z00,z0,zz2f(z)f(y)dy2ydy,0z1z,0z1,ZZ1,z1.1,z1或利用散布函数法0,z0,F(z)P(Zz)P(XYz)2dxdy,0z1,ZD11,z1.0,z0,2z,0z1,1,z1.2z,0z1,f(z)F(z)ZZ0,其余 .专业资料整理WORD格式六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相222互独立,且均听从N(0,2)散布.求(1)命中环形地区D{(x,y)|1xy2}的教育资料专业资料整理.概率;( 2)命中点到目标中心距离WORD格式22ZXY的数学希望 .解:( 1)P{X,Y)D}f(x,y)dxdyyDx D01212221rr 2r11ed ( )eee ;88828124821( 2)222218EZE(XY)xyedxdy22xy 822rr 112882 rerdrderdr84000222 rrr21888reedredr2.0 022七、(11 分)设某机器生产的部件长度(单位:cm )2X~N( ,) ,今抽取容量为 16 的样20.16 本,测得样本均值x10 ,样本方差0.95 的置信区s. ( 1)求的置信度为间;(2)查验假定2H 0:0.1 (明显性水平为 0.05 ) .专业资料整理WORD格式(附注) t 0.05 (16)1.746,t 0.05 (15)1.753,t0.025 (15)2.132,2220.4 (16)26.296,0.05 (15)24.996,0.025 (15)27.488.解:(1)的置信度为 1 下的置信区间为ss( Xt(n1),Xt(n 1))/2/2nnX10,s0.4,n16,0.05,t(15)2.1320.25因此的置信度为0.95 的置信区间为(9.7868 , 10.2132 )(2)H0:0.1222(n1).的拒绝域为教育资料专业资料整理WORD格式.2215S2151.624 0.05 (15)24.996由于,0.5222424.996(15),因此接受H.0.26 0专业资料整理WORD格式教育资料专业资料整理。
北理工数理统计期末考试题及答案
)
=
Pq
(
X 1
-0 /3
3C)
=
1-
P0
(
X 1
-0 /3
�< 3C)
=
1-
F(3C
)
=
0.05
\ F(3C) = 0.95
1
1.645
\ C = 3 u0.05 = 3 » 0.5483
\ 犯第一类错误概率为:
aj* (m) = ìïíïïîïbj0(,m),
H 0成立 H1成立
=
íïïïîìïF(30,C),
北京理工大学 2012-2013 年学年第二学期
å 1 n
x = n i=1 Xi 是 l 的 UMVUE。
三.设总体
X
~
N (m1,s2 )
,
X1,
X
2
,
X
n
是抽自总体的简单随机样本;总体
Y ~ ( ) N m2,s2 , Y1,Y2,Yn 是抽自总体Y 的简单随机样本,两组样本相互独立,且
s
2
step3 : L− S → UMVUE
X1, X 2 , X n 的联合概率密度为:
n
( ) ( ) P(
X1
=x1 , X 2
=x2 ,…, X n
=xn
)
λ =e ∑ −nλ
xi
i=1
( x1!x2! )xn! −1
=h( x)
g
t
x λ 1
f (= x1θ ) P= ( X1 x1 ) P= ( X 2 x2 )P= ( X n xn )
n
å 即 bj (m) = Pm ( XC) = P( xi3C) = P(3X -3m3C -3m) =1-F(3C -3m) 。 i
概率论与数理统计考试题及答案
一、填空题(每小题3分,共30分)1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 .2、设()0.7,()0.3P A P AB ==,则()P A B =________________.3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .4、设随机变量X 的分布律为(),(1,2,,8),8aP X k k ===则a =_________.5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= .6、设随机变量X 的分布律为则2Y X =的分布律是 .7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是. 9、设总体()~10,X b p ,12,,,n X X X 是来自总体X 的样本,则参数p 的矩估计量为 .10、设123,,X X X 是来自总体X 的样本,12311ˆ23X X X μλ=++是()E X μ=的无偏估计,则λ= .二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ;(3)求712P X ⎧⎫<≤⎨⎬⎩⎭.四、(本题12分)设二维随机向量(,)X Y 的联合分布律为试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么? 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X .六、(本题12分)设离散型随机变量X 的分布律为(),0,1,2,!x e P X x x x θθ-=== , 0θ<<+∞其中θ为未知参数,n x x x ,,,21 为一组样本观察值,求θ的极大似然估计值. 七、(本题10分)某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=)? (附:()()()0.0250.0250.0250.050.0255 2.5706,6 2.4469,7 2.3646, 1.65, 1.96,6 2.45t t t z z ======一、填空题(每小题3分,共30分) 1、ABC 或A BC2、0.63、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 9、10X 10、16二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========...............2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯=......................................7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ......................................................................12分三、(本题12分)设随机变量X 的概率密度为(1)确定常数k ; (2)求X 的分布函数()F x ; (3)求712P X ⎧⎫<≤⎨⎬⎩⎭.解 (1)由概率密度的性质知故16k =. .................................................................................................................................3分(2)当0x ≤时,()()0x F x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰;当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩..............................................................................9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.............................................................12分四、(本题12分)设二维随机向量(,)X Y 的联合分布律为 试求:(1) a 的值; (2)X 和Y 的边缘分布律; (3)X 与Y 是否独立?为什么? 解 (1)由分布律的性质知故0.3a = ..................................................................................................................................4分 (2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................6分120.40.6Y p .................................................................................................................8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故所以X 与Y 不相互独立. .........................................................................................................12分 五、(本题12分) 设随机变量X 的概率密度为 求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ...........................6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ ..........................................................9分221()()[()].6D XE X E X =-= ...........................................................................................12分六、(本题12分)设离散型随机变量X 的分布律为(),0,1,2,!x e P X x x x θθ-===,0θ<<+∞其中θ为未知参数,n x x x ,,,21 为一组样本观察值,求θ的极大似然估计值.解 似然函数()1111!!niii x nnx n i i i i eL e x x θθθθθ=--==∑==∏∏ ............................................................................4分 对数似然函数()111ln ln ln !nni i i i L n x x θθθ===-+⋅+∑∏........................................................................6分 1ln L nii xd n d θθ==-+∑ .....................................................................................................8分 解似然方程ln L 0d d θ=得11ˆn i i x x n θ===∑. ................................................................................10分 所以θ的极大似然估计值为ˆ.x θ= ........................................................................................12分 七、(本题10分)某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=)?(附:()()()0.0250.0250.0250.050.0255 2.5706,6 2.4469,7 2.3646, 1.65, 1.96t t t z z =====) 解 总体()2~,X N μσ,总体方差已知,检验总体期望值μ是否等于32.50.(1) 提出待检假设0010:32.50;:32.50.H H μμμμ==≠= ...........................................1分(2) 选取统计量0/X Z nμσ-=,在0H 成立的条件下(0,1)Z ~N ......................................2分(3) 对于给定的检验水平0.05α=,查表确定临界值于是拒绝域为(, 1.96)(1.96,).W =-∞-+∞ ...........................................................................5分 (4) 根据样本观察值计算统计量Z 的观察值:0029.44532.50 2.45 6.8041.1/x z nμσ--==⨯=- ........................................................8分(5)判断: 由于0z W ∈,故拒绝H 0,即不能认为这批零件的平均尺寸是32.50毫米...............................................................................................................................................10分。
北理工《概率论与数理统计》题库复习资料
北理工《概率论与数理统计》FAQ (一)一、【古典概型】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果. (1)其中无空盒的结果有A 44种,所求概率P =4444A =323. 答:无空盒的概率是323. (2)先求恰有一空盒的结果数:选定一个空盒有C 14种,选两个球放入一盒有C 24A 13种,其余两球放入两盒有A 22种.故恰有一个空盒的结果数为C 14C 24A 13A 22,所求概率P (A )=4221324144A A C C =169. 答:恰有一个空盒的概率是169. 二、【条件概型】盒中有3个红球,2个白球,每次从袋中任取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同的球,若从合中连续取球4次,试求第1、2次取得白球、第3、4次取得红球的概率。
解 设Ai 为第 i 次取球时取到白球,则 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =52)(1=A P 73)|(213=A A A P 63)|(12=A A P 84)|(3214=A A A A P求得:3 / 70三、【条件概型+全概型】市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2%、1%、3%,试求市场上该品牌产品的次品率。
解 设B 买到一件次品,A1为买到甲厂一件产品 A2为买到乙厂一件产品 A3为买到丙厂一件产品 可得:)()|()()|()()|(332211A P A B P A P A B P A P A B P ++= = ≈⨯+⨯+⨯2103.04101.04102.00.00225 四、【贝叶斯公式】商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1,0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?解 设A :从一箱中任取4只检查,结果都是好的. B 0, B 1, B 2分别表示事件每箱含0,1,2只次品已知:P (B 0)=0.8, P (B 1)=0.1, P (B 2)=0.11)|(0=B A P 54)|(4204191==C C B A P 1912)|(4204182==C C B A P由Bayes 公式:∑==2111)|()()|()()|(i iiB A P B P B A P B P A B P 0848.019121.0541.018.0541.0≈⨯+⨯+⨯⨯=五、 【伯努利概型】在体育比赛中,若甲选手对乙选手的胜率是0.6,那么甲在五局三胜与三局两胜这两种赛制中,选择哪个对自己更有利 解:在五局三胜赛制中,甲获胜的概率为P 5(3)+P 5(4)+P 5(5) =0.6826在三局两胜赛制中,甲获胜的概率为 P 3(2)+P 3(3) =0.648 甲应选择五局三胜制。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计期末考试试题及解答
概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题
1. 一盒子中有20个相同型号的产品,其中有15个一等品,其余为二等品,今从盒子中任取一个产品,则此产品为二等品的概率为 .
答 案:
知 识 点:古典概率的计算
难度系数:1
2. 设A 、B 为不相容的两个随机事件,且P (A )=0.2, P (B )=0.5,则P (AB )= , ()P A B = .
答 案:0, 0.7
知 识 点:随机事件概率的性质
难度系数:2
3. 一个袋子中有红球6个,白球4个,从中任取一个球,则取得红球的概率为 .
答 案:
知 识 点:古典概率的计算
难度系数:1
4. 设A 、B 为互相独立的随机事件,P (A )=0.4, P (B )=0.7,则
P (AB )= ,()P A B = .
答 案:0.28, 0.82
知 识 点:概率的公理化性质
难度系数:2
5. 已知()()4070.B A P ,
.A P =-=,则()=AB P 。
答 案:0.3
知 识 点:概率性质
难度系数:2
6. 设连续型随机变量X ~N (,
2),则P (X >)= .
答 案: 知 识 点:常见的连续型随机变量的性质 难度系数:2
7. 若X 是连续型随机变量,则对任常数C 有()==C X P 。
答 案: 0
知 识 点:连续型随机变量的性质 难度系数:2
8. 设随机变量X 的概率密度函数(),020
,Acosx x f x π⎧≤≤⎪=⎨⎪⎩;其它。
则应有=A 。
答 案:
知 识 点:概率密度函数的性质 难度系数:2
9. 设连续型随机变量X 的分布函数为()2
0,1;,12;1,2.x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩
则常数
=A 。
答 案: 41
知 识 点:分布函数的性质
难度系数:2
10. 已知随机变量X 服从正态分布()110,N ,若()50.a X P =≤,则=a 。