微专题22 函数嵌套问题(解析版)

合集下载

函数的嵌套

函数的嵌套

函数的嵌套在编程中,我们经常会使用函数来实现某些操作,而函数的嵌套则是指在一个函数的内部调用另一个函数。

函数的嵌套可以让程序变得更加模块化和可读性更强,也可以让我们更好地管理代码。

一、函数的基本概念在介绍函数的嵌套之前,我们先来了解一下函数的基本概念。

函数是一段可重复使用的代码块,它可以接收输入参数并返回输出结果。

在Python中,函数的定义形式如下:```pythondef function_name(parameters):# function bodyreturn result```其中,function_name是函数的名称,parameters是函数的参数列表,function body是函数的具体实现,result是函数的返回值。

当我们调用一个函数时,我们需要传递给这个函数所需的参数,然后函数会执行相应的操作并返回结果。

二、函数的嵌套函数的嵌套就是在一个函数内部调用另一个函数。

通过函数的嵌套,我们可以将一个大的问题分解成多个小问题,每个小问题都由一个函数来解决,从而使程序更加模块化、可读性更强。

下面是一个简单的例子,展示了如何在一个函数内部调用另一个函数:```pythondef outer_function():print('This is the outer function.')inner_function()def inner_function():print('This is the inner function.')outer_function()```这个例子中,我们定义了两个函数:outer_function和inner_function。

outer_function是外部函数,它在执行时会先打印一条消息,然后调用inner_function函数。

inner_function是内部函数,它会打印一条消息。

当我们运行这个程序时,输出结果如下:```This is the outer function.This is the inner function.```从输出结果可以看出,当我们调用outer_function时,它会先执行自己的代码块,然后调用inner_function函数执行内部代码块。

嵌套函数的解题步骤

嵌套函数的解题步骤

嵌套函数的解题步骤
嘿,朋友们!今天咱来聊聊嵌套函数的解题步骤,这可真是个有趣
又有点头疼的玩意儿呢!
你看啊,嵌套函数就像是一个俄罗斯套娃,一层套一层,让人一时
间摸不着头脑。

但别怕呀,咱慢慢解开它的神秘面纱。

首先呢,你得搞清楚最外层的函数,它就像是整个大框架,决定了
这个嵌套函数的大致走向。

就好比盖房子,先得有个整体的结构嘛。

然后呢,再逐步往里面深入,去研究那些被包裹在里面的小函数。

这时候你就得瞪大眼睛,仔细观察它们之间的关系啦。

比如说,有的嵌套函数里面的小函数会对外面的函数产生影响,就
像小齿轮带动大齿轮一样,可神奇了呢!你得找到它们之间的联系点,这就好比在迷宫中找到那关键的通道。

在解题的时候,可别着急,要一步一步来。

就像走楼梯,得一个台
阶一个台阶地踩稳咯。

有时候可能会遇到一些复杂的情况,别慌呀!
这就像是爬山时遇到了陡峭的山坡,咱得慢慢爬,找好落脚点。

举个例子吧,假设有个嵌套函数 f(g(x)),那咱先看看 g(x)是个啥玩
意儿,它是怎么变化的,然后再考虑 f 函数对 g(x)的结果又会做些什么。

这就像是接力赛,一棒接一棒,每个环节都很重要呢!
还有啊,多做些练习也是很关键的哦!只有不断地实践,才能真正掌握嵌套函数的解题技巧呀。

就像学骑自行车,一开始可能会摔倒,但多骑几次,不就熟练了嘛。

总之呢,嵌套函数的解题步骤虽然有点复杂,但只要咱有耐心,有方法,就一定能搞定它!别被它一开始的样子吓住啦,大胆地去探索吧!相信自己,你一定可以的!就这么干,加油哦!。

嵌套函数的零点问题(解析版)

嵌套函数的零点问题(解析版)

嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.64【答案】C【解析】令t (x )=x e x ,则t (x )=1-xe x.所以当x <1时,t (x )>0,函数t (x )=x e x 单调递增;当x >1时,t(x )<0,函数t (x )=x e x单调递减.所以t (x )max =t (1)=1e.由题意g t =t 2+at -2a 必有两个根t 1<0,且0<t 2<1e.由根与系数的关系有:t 1+t 2=-a ,t 1t 2=-2a .由图可知,t 1=x e x 有一解x 1<0,即t 1=x 1e x 1.t 2=xex 有两解x 2,x 3且0<x 2<1<x 3,即t 2=x 2e x 2=x3ex 3.所以2-x 1e x 122-x 2e x 22-x3e x 3=2-t 1 22-t 2 2-t 2 =2-t 1 2-t 2 2=4-2t 1+t 2 +t 1t 2 2=4+2a -2a 2=16.故选:C2.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.1【答案】D 【解析】令y =ln x x ,则y ′=1-ln xx 2,故当x ∈(0,e )时,y ′>0,y =ln x x 是增函数,当x ∈(e ,+∞)时,y ′>0,y =ln x x是减函数;且limx →0ln xx =-∞,ln e e =1e ,lim x →+∞ln xx =0;令ln x x =t ,则可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故△=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与t 1≤1e 且t 2≤1e相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合y =ln xx 的性质可得,ln x 1x 1=t 1,ln x 2x 2=t 2,ln x 3x 3=t 2,故1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=(1-t 1)2(1-t 2)(1-t 2)=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=1;故选D .3.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a【答案】A【解析】令t =xe x ,则t ′=(x +1)e x ,故当x ∈(-1,+∞)时,t ′>0,t =xe x 是增函数,当x ∈(-∞,-1)时,t ′<0,t =xe x 是减函数,可得x =-1处t =xe x 取得最小值-1e ,x →-∞,t →0,画出t =xe x 的图象,由f (x )=0可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故Δ=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与-2e<t 1+t 2<0相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合t =xe x 的性质可得,x 1e x 1=t 1,x 2e x 2=t 1,x 3e x 3=t 2,故(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-t 1)(1-t 1)(1-t 2)2=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-1+a +1-a )2=1.故选:A .4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x 1e x 121-x 2e x 21-x3ex 3的值为A.1B.-1C.aD.-a【答案】A 【解析】令x e x =t ,构造g (x )=x e x ,求导得g (x )=1-xex ,当x <1时,g (x )>0;当x >1时,g (x )<0,故g (x )在-∞,1上单调递增,在1,+∞ 上单调递减,且x <0时,g (x )<0,x >0时,g (x )>0,g (x )max =g (1)=1e,可画出函数g (x )的图象(见下图),要使函数f (x )=x e x2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则方程t 2+at -a =0需要有两个不同的根t 1,t 2(其中t 1<t 2),则Δ=a 2+4a >0,解得a >0或a <-4,且t 1+t 2=-at 1⋅t 2=-a ,若a >0,即t 1+t 2=-a <0t 1⋅t 2=-a <0 ,则t 1<0<t 2<1e,则x 1<0<x 2<1<x 3,且g x 2 =g x 3 =t 2,故1-x 1e x121-x 2e x21-x 3ex 3=1-t 1 21-t 2 2=1-t 1+t 2 +t 1t 2 2=1+a -a 2=1,若a <-4,即t 1+t 2=-a >4t 1⋅t 2=-a >4 ,由于g (x )max =g (1)=1e ,故t 1+t 2<2e<4,故a <-4不符合题意,舍去.故选A .5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.1【答案】D【解析】令f (x )=0,分离参数得a =x x -ln x -ln x x 令h (x )=x x -ln x -ln xx由h ′(x )=ln x 1-ln x 2x -ln xx 2x -ln x 2=0 得x =1或x =e .当x ∈(0,1)时,h ′(x )<0;当x ∈(1,e )时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0.即h (x )在(0,1),(e ,+∞)上为减函数,在(1,e )上为增函数.∴0<x 1<1<x 2<e <x 3,a =x x -ln x -ln x x 令μ=ln xx则a =11-μ-μ即μ2+(a -1)μ+1-a =0,μ1+μ2=1-a <0,μ1μ2=1-a <0,对于μ=ln x x ,μ =1-ln xx 2则当0<x <e 时,μ′>0;当x >e 时,μ′<0.而当x >e 时,μ恒大于0.不妨设μ1<μ2,则μ1=ln x 1x 1,μ2=ln x 2x 2,μ3=ln x 3x 3, 1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 =(1-μ1)2(1-μ2)(1-μ3)=[(1-μ1)(1-μ2)]2=[1-(1-a )+(1-a )]2=1.故选D .6.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.9【答案】A【解析】f x =9ln x 2+a -3 x ln x +33-a x 2=0∴a -3 x ln x -3x 2 =-9ln x 2∴a -3=9ln x 23x 2-x ln x =9ln x x 23-ln xx令t =3-ln x x ,t ∈0,+∞ ,则ln xx =3-t ,∴t =-1-ln x x 2=ln x -1x 2令t =0,解得x =e∴t ∈0,e 时,t <0,t 单调递减;t ∈e ,+∞ 时,t >0,t 单调递增;∴t min =3-1e ,t ∈3-1e,+∞ ,∴a -3=9(3-t )2t =9t 2-54t +81t ∴9t 2-51+a t +81=0.设关于t 的一元二次方程有两实根t 1,t 2,∴Δ=51+a 2-4×9×81>0,可得a >3或a <-105.∵a -3=93-t 2t >0,故a >3∴a <-105舍去∴t 1+t 2=51+a 9>51+39=6,t 1t 2=9.又∵t 1+t 2=t 1+9t 1≥29=6,当且仅当t 1=t 2=3时等号成立,由于t 1+t 2≠6,∴t 1>3,t 2=9t 1<3(不妨设t 1>t 2).∵x 1<1<x 2<x 3,可得3-ln x 1x 1>3,3-ln x 2x 2<3,3-ln x 3x 3<3.则可知3-ln x 1x 1=t 1,3-ln x 2x 2=3-ln x 3x 3=t 2.∴3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3=t 1t 2 2=81.故选:A .7.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2x e x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.9【答案】D【解析】由f x =0得a =x e x -3e xe x -x,即a =x e x -31-x e x =-1-x e x -31-x e x+1,记t =1-x e x ,且设g x =1-xex ,一方面由a =-t -3t +1得t 2+a -1 t +3=0(*),当Δ>0时方程(*)有两个不相等的实数根t 1,t 2,且t 1+t 2=1-a ,t 1t 2=3;另一方面,由g x =x -1e x知g x 在-∞,1 上单调递减,在1,+∞ 上单调递增,g 1=1-1e,g 0 =1,当x →-∞时,g x →+∞,当x →+∞时,g x →1-,如图:t1≥1>t 2>1-1e,且1-x 1e x 1=t 1,1-x 2e x 2=1-x3ex 3=t 2,因此1-x 1e x 121-x 2e x 21-x 3e x 3=t 21⋅t 2⋅t 2=t 1t 2 2=9.故选:D8.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81B.-81C.9D.-9【答案】A【解析】由f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点知:9x 2+(a -3)xe x +3(3-a )e 2x =0有三个不同的实根,即a -3=9x 23e 2x -xe x =9x ex 23-x ex有三个不同实根,若t =3-xe x ,则a -3=9(3-t )2t ,整理得9t 2-(a +51)t +81=0,若方程的两根为t 1,t 2,∴t 1t 2=9,而t=xe x -e x e 2x=x -1e x,∴当x <1时,t <0即t 在(-∞,1)上单调递减;当x >1时,t >0即t 在(1,+∞)上单调递增;即当x =1时t 有极小值为3-1e ,又x 1<0<x 2<x 3,x =0有t =3,即t 1>3>t 2>3-1e.∵方程最多只有两个不同根,∴x 1<0<x 2<1<x 3,即t 1=3-x 1e x 1,t 2=3-x 2e x 2=3-x 3e x3,∴3-x1e x 123-x 2e x23-x 3ex 3=t 12t 22=81.故选:A9.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x1e x 122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.36【答案】D【解析】因为f (x )=2(a +2)e 2x -(a +1)xe x +x 2,所以f (x )=e 2x 2(a +2)-(a +1)x e x +x e x 2,因为e 2x>0,所以2(a +2)-(a +1)x e x +x e x 2=0有三个不同的零点x 1,x 2,x 3,令g x =x e x ,则g x =1-x e x,所以当x <1时g x >0,当x >1时g x <0,即g x 在-∞,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =1e ,当x >0时x e x >0,令t =x ex ∈-∞,1e ,则2(a +2)-(a +1)t +t 2=0必有两个根t 1、t 2,不妨令t 1<0、0<t 2<1e ,且t 1+t 2=a +1,t 1t 2=2a +2 ,即t 1=x e x 必有一解x 1<0,t 2=xe x 有两解x 2、x 3,且0<x 2<1<x 3,故2-x 1e x122-x 2e x22-x 3ex 3=2-t 1 22-t 2 2=4-2t 1+t 2 +t 1t 2 2=4-2a +1 +2a +2 2=36故选:D10.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.16【答案】C【解析】f (x )=(a +3)e 2x -(a +1)xe x +x 2=e 2x x e x 2-a +1 ⋅x ex +a +3 ,e 2x >0,x e x2-a +1 ⋅xex +a +3 =0有三个不同的零点x 1,x 2,x 3.令g x =x e x ,g x =1-xe x,g x 在-∞,1 递增,在1,+∞ 上递减,g x max =g 1 =1e .x >0时,xex >0.令t =x ex ∈-∞,1e,t 2-a +1 ⋅t +a +3 =0必有两个根t 1,t 2,t 1<0,0<t 2<1e,且t 1+t 2=a +1,t 1⋅t 2=a +3,t 1=x e x 有一解x 1<0,t 2=x ex 有两解x 2,x 3,且0<x 2<1<x 3,故1-x 1e x 121-x 2e x 21-x3e x 31-t 1 21-t 22=1-t 1+t 2 +t 1⋅t 2 2=1-a +1 +a +3 2=9.故选:C11.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m【答案】B【解析】令t =ln xx-1,则t =1-ln xx 2,当x >e 时,t <0,当0<x <e 时,t >0,所以t 在e ,+∞ 上递减,在0,e 上递增,所以当x =e 时,函数取得最大值1e-1,函数t =ln xx-1的图象如图所示:则ln x 1x 1-1=t 1,ln x 2x 2-1=t 2,ln x 3x 3-1=t 3,由图象知:t 2=t 3,因为关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,所以方程t +1t+m +1 =0有两个不等的实数解t 1,t 2,由韦达定理得:t 1⋅t 2=1,所以ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 =t 12⋅t 2⋅t 3=t 12⋅t 22=1,故选:B12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +x e ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1e B.0,e C.1,e D.0,1【答案】A【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+m +1 t +m +1=0.令函数g x =e ln x x ,则g x =e ⋅1-ln x x 2,由g x >0,解得0<x <e ,g x <0,解得x >e所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,且g e =1作出图象如图所示,要使关于x 的方程e ln x x +x e ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+m +1 t +m +1=0一定有两个实根t 1,t 2,且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-m +1 ,t 1t 2=m +1.所以Δ=m +1 2-4m +1 >0,解得m >3或m <-1若t 1=1,则1+m +1 ×1+m +1=0,解得m =-32,则t 2=-12此时e ln x 2x 2=t 2=-12只有1个实数根,此时原方程没有3个不等实数根,故不满足题意.若t 1=0,则m =-1,可得t 2=0,显然此时原方程没有3个不等实数根,故不满足题意.要使原方程有3个不等实数根,则t 1<0<t 2<1所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.所以e ln x 1x 1=t 1,e ln x 2x 2=e ln x 3x 3=t 2故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e t 1+t 2 =-2m +1 e ∈0,1e.故选:A13.(2023·山西阳泉·统考三模)关于x 的方程ln x x +x ln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.e B.1 C.1+m D.1-m【答案】B【解析】设f x =ln x x ,则f x =1-ln x x 2,故函数在0,e 上单调递增,在e ,+∞ 上单调递减,f e =1e,画出函数图像,如图所示:设ln x x =t ,ln x x +x ln x -x +m =0,则ln x x +1ln x x -1+m =0,即t +1t -1+m =0,化简整理得到:t 2+m -1 t +1-m =0,故t 1+t 2=1-m ,t 1t 2=1-m ,且t 1<0,0<t 2<1e,ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 =t 1-1 2t 2-1 2=t 1t 2-t 1+t 2 +1 2=1.故选:B .14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +x e ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e 【答案】BC【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+(m +1)t +m +1=0.令函数g (x )=e ln x x ,则g (x )=e ⋅1-ln x x 2,所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减.作出图象如图所示,要使关于x 的方程e ln x x +x e ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+(m +1)t +m +1=0一定有两个实根t 1,t 2(t 1<0<t 2<1),且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-(m +1),t 1t 2=m +1.所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e (t 1+t 2)=-2(m +1)e ∈0,1e.因为2e 3∈0,1e ,1e 2∈0,1e,所以BC 都符合题意,故选:BC15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.【答案】0,1e 2-e 【解析】由f x =0,两边同时除以e x x -e x 变形为x e x +e x x -e x+m =0,有x e x +1x e x-1+m =0设x e x =t 即t +1t -1+m =0,所以t 2+(m -1)t +1-m =0令g (x )=x e x ,则g (x )=1-x e x,所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,且g 0 =0,g 1 =1e,当x >0时,g (x )>0其大致图像如下.要使关于x 的方程x e x +e x x -e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3.结合图像可得关于t 的方程g (t )=t 2+(m -1)t +1-m =0一定有两个不等的实数根t 1,t 2且t 1<0<t 2<1e ,从而1<m <1+1e 2-e.t 1+t 2=1-m ,t 1⋅t 2=1-m ,则x 1e x 1=t 1,x 2e x 2=x 3ex 3=t 2.所以x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 =t 1-1 2t 2-1 2=t 1-1 t 2-1 2=t 1t 2-t 1+t 2 +1 2=[1-m -(1-m )+1]2=1m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 =m -1∈0,1e 2-e .故答案为:0,1e 2-e。

高中嵌套函数解法

高中嵌套函数解法

高中嵌套函数解法
在高中数学中,嵌套函数主要指的是一个函数的定义中包含了另外一个函数。

嵌套函数的解法与一般函数的解法相似,但需要按照嵌套函数的定义进行求解。

以下是一个高中嵌套函数的解法示例:
问题:已知函数 f(x) = x^2 + 2x + 1,求函数 g(x) = f(f(x)) 的解析式。

解法:
1. 首先,将 g(x) 的定义进行展开,即 g(x) = f(f(x)) = f(x^2 + 2x + 1)。

2. 将 f(x) 的定义代入,得到 g(x) = f((x^2 + 2x + 1)^2 + 2(x^2 + 2x + 1) + 1)。

3. 继续化简 g(x) 的展开式,得到 g(x) = f(x^4 + 4x^3 + 6x^2 + 4x + 1 + 2x^2 + 4x + 2 + 1)。

4. 继续化简 g(x) 的展开式,得到 g(x) = f(x^4 + 4x^3 + 8x^2 + 8x + 4)。

5. 最后,将 f(x) 的定义代入,得到 g(x) = (x^4 + 4x^3 + 8x^2 + 8x + 4)^2 + 2(x^4 + 4x^3 + 8x^2 + 8x + 4) + 1。

因此,函数 g(x) 的解析式为 g(x) = (x^4 + 4x^3 + 8x^2 + 8x + 4)^2 + 2(x^4 + 4x^3 + 8x^2 + 8x + 4) + 1。

以上就是一个典型的高中嵌套函数的解法。

实际上,嵌套函数的解法与一般函数的解法没有本质差异,只是在化简过程中需要反复代入函数的定义。

2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-, ∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-. 作出()f x 的函数图象如图所示:25()()()f x mf x m Re -=∈,25()()0f x mf x e∴--=,△2200m e=+>, 令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e<<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e-=有三个不同的实数解. 故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1) B.(0 C .1(1,1)e+D.,1)【解析】解:化简可得0()0x f x x =<,当0x >时,()0f x,12()x x e x f x e '===, 当102x <<时,()0f x'>,当12x>时,()0fx '<, 故当12x=时,函数()f x有极大值21()2f e====; 当0x <时,2()0x xxe x e x xf x x e --'==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f ;设()t f x =, 当t >()tf x =有1个解, 当t =()t f x =有2个解, 当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根, 则1t m =-∈,即01m <-<11m <<+,则m的取值范围是1)+ 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩. 故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =,当1a >时,1a >,(0,1)a .满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2-,11e + )B .(2-,0 )(⋃ 0,11e + )C .2321(,)2e e e+-+D .( 32-,0 )(⋃ 0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+, 令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=, △240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <, 关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C .6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4 B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -=,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解. 6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是() A .21(1,2]e + B .221[2,2]e e +-C .2221[2,]e e e-+ D .221(2,]e e+ 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++, 可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a , 由切线与直线610x y ++=垂直,可得36a =, 解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-, 导数为222(1)(1)()2x x f x x x x -+'=-=, 当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减. 即有1x =处()f x 取得最小值1. 则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1) 可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解, 设为1t ,2t ,12t t b +=, 可得11t =,22112t e<+, 即21112b e <-+, 解得2123b e <+,① 又212122t e e+<-, 22112t e <+, 则21222113t t b e e e+<+=+,② 由①②求并可得2212b e e <+, 故选:D .9.已知函数()1xf x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2-,0)B .3(2-,4)3-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根, ①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时, 设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e-C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e-'=, 当02x <<时,()0f x '>,()f x 递增; 当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象, 设()t f x =,关于x 的方程2()()10f x mf x m ++-=, 即为210t mt m ++-=, 解得1t =-或1t m =-, 当1t =-时,()1f x =-无实根; 由题意可得当241(0,)t m e=-∈, 解得241m e-=或1m =, 所以24(1m e ∈-,1) 故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是( )A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x xf x e-'==,解得1x =; 且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=. 假设2m =,则2210t t ++=.解得1t =-,即()1f x =-. 根据()f x 图象,很明显此时只有一个解, 故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-. 即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解, 故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e =-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根, 故12m e=-不符合题意,由此排除D故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e<<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根 【解析】解:当0x 时,||||()111x x x x xf x xe e e--=+=+=-+, 因为g (1)0=, 所以120a -+=, 所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立, ()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的, 故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的. 令()m g x t =-,则()10g m -=, 解得:0m =或2m =, 当0m =即()0g x t -=时, ()g x t =,当2t <-时,()2g x <-,无解, 当2m =即()2g x t -=时, ()2g x t =+,当2t <-时,()0g x <,无解, 故方程(())10g g x t --=没有相异实根, 故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =, 当110t e -+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =-时取得极大值为1(1)1g e-=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点, 故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点, 若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根, 故C 错误; 当111t e -<<-+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根, 当01t <时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 故此时方程(())10g g x t --=共有9个不等实根, 故D 错误. 故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+, 当1x <时,1112x -+>,则(()1)(2)2xf f x ln +=-. (1),1()(()1)(2),12ln lnx x g x f f x xln x +⎧⎪∴=+=⎨-<⎪⎩, 令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x xln <⎧⎪⎨-=⎪⎩, 解得1x =.故函数()(()1)g x f f x =+的零点是1; 由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则 2lnx t =,2t x e =,112x t -=,122x t =-, ∴1222t x x e t +=+-,12t >, 设()22t t e t ϕ=+-,12t >, 则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>, 则()t ϕ的最小值为(2)422ln ln ϕ=-. 12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞ .【解析】解:当1x 时,()0f x lnx =,则()11f x +, (()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-, ∴121(22),2t x x e t t =->, 设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25xexx e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为 12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =, 所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减, 当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=, ()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e >⎧⎪⎨<⎪⎩,解得245a e <, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意. 综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是 (2,0)- .【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩, 若()()0f x f x +-=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231ay x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310alnx x x x-+-+=有两个解, 即23263a xlnx x x x =-++,0x >, 可设23()263g x xlnx x x x =-++,0x >, 2()32129g x lnx x x '=+-+, 22()1812218120g x x x x x''=+-=,可得()g x '在(0,)+∞递增, 由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增, 即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310alnx x x x-+-+=有两个解, 故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =; ()0f x =有两个不同的解,故()f x a =有三个不同的解, 故(0,1)a ∈; 故答案为:(0,1).18.已知函数()|1|33f x x x x =--+. (1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍); ②当1x 时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8); 解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos 3sin()4684646442443f x x x x x x x x ππππππππππππ=--+=----⋯(3分) ∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分) 11442t t t +=当且仅当时取等号,4m ∴,⋯(8分) 故实数m 的取值范围是[4,)+∞.⋯(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅰ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅰ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅰ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立, 综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为: 2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解, ∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >, 或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。

微专题22 函数嵌套问题(解析版)

微专题22 函数嵌套问题(解析版)

微专题22函数嵌套问题【题型归纳目录】题型一:“()()=f f x k ”型问题题型二:“()()=f g x k ”型问题题型三:复合函数()⎡⎤=-⎣⎦y f f x x 的零点问题题型四:复合函数()⎡⎤=-⎣⎦y f g x x 的零点问题题型五:含参二次函数复合型零点问题题型六:零点求和问题题型七:其他型【典型例题】题型一:“()()=f f x k ”型问题例1.设函数()|2|f x x x =-,0x 是函数()(())1g x f f x =-的所有零点中的最大值,若0(x k ∈,1)()k k Z +∈,则k =.【解析】解:函数()|2|f x x x =-,当(0,2)x ∈时,2()|2|(2)(1)11f x x x x x x =-=-=--+ ;作函数()|2|f x x x =-的图象如下:解(2)1x x -=,得到1x =或1x =+又0x 是函数()(())1g x f f x =-的所有零点中的最大值,所以(0)1f x =+f (2)01=<,f (3)31=>+,因为0(x k ∈,1)()k k Z +∈,所以2k =,故答案为:2.例2.设函数()|2|f x x x =-,则当(0,2)x ∈时,函数()f x 的最大值等于,若0x 是函数()(())1g x f f x =-的所有零点中的最大值,且0(x k ∈,1)()k k Z +∈,则k =.【解析】解:当(0,2)x ∈时,2()|2|(2)(1)11f x x x x x x =-=-=--+ ;作函数()|2|f x x x =-的图象如下,解|2|1x x -=得,1x =或1x =+;又0x 是函数()(())1g x f f x =-的所有零点中的最大值,0()1f x ∴=+;且f (2)01=<+f (3)31=>+;故2k =.故答案为:1,2.例3.已知函数2|(1)|,(1,3)()5,[3,)log x x f x x x +∈-⎧=⎨-∈+∞⎩,则函数()(())1g x f f x =-的零点个数为()A .3B .4C .5D .6【解析】解:令()(())10g x f f x =-=,可得1()2f x =-或()1f x =或()4f x =,函数2|(1)|,(1,3)()5,[3,)log x x f x x x +∈-⎧=⎨-∈+∞⎩的图象如图所示,由图象可知,当1()2f x =-时,有1个解;当()1f x =时,有3个解;当()4f x =时,有1个解.综上所述,函数()(())1g x f f x =-的零点个数为5个.故选:C .变式1.已知函数22log (1),0()4,0x x f x x x x -⎧=⎨-+>⎩,则函数()[()]1g x f f x =-的零点个数为()A .4B .7C .8D .9【解析】解:令()1f x =,解得2x =或1x =-,则令()0g x =,可得()2f x =±()1f x =-,作出函数()f x 的图象如图所示,由图象可知,()2f x =+3个零点,()2f x =-3个零点,()1f x =-有1个零点,故函数()g x 有7个零点.故选:B .变式2.已知函数2log (),(0)()2,(0)x x f x x x -<⎧=⎨-⎩,则函数()[()1]g x f f x =+的零点个数是()A .1个B .2个C .3个D .4个【解析】解:设()1M f x =+,解()0f M =,得2M =或1M =-,①当1M =-时,由()11f x +=-,得2log ()2x -=-或22x -=-,即得0x =或14x =-;②当2M =时,由()12f x +=得()1f x =,即2log ()1x -=或21x -=,即2x =-或3x =,综合①②得:函数()[()1]g x f f x =+的零点为:2x =-或3x =或0x =或14x =-共4个;故选:D .变式3.已知函数2()f x x x q =++,集合{|()0A x f x ==,}x R ∈,{|(())0B x f f x ==,}x R ∈,若B 为单元素集,试求q 的值.【解析】集合{|()0A x f x ==,},{|(())0}B x f f x ==A B∴⊆2211{|(()0}{|()()0}{|[(()]}24B x f f x x f x f x q x f x q ∴===++==++-B 为单元集,1()2f x ∴=-,1{}4B q ∴=-,2{|()0}{|0A x f x x x x q ===++=,}x R ∈,当A =∅时,B =∅不符题意,故A ≠∅,当1{|}2A x x ==-时,△140q =-=,解得:14q =,222111(())()()0444f f x x x x x ∴=++++++=,△11404=-⨯=21142x x ∴++==-,2304x x ++=,方程无解,不符B 为单元集,故1{|}2A x x ≠=-.∴方程20x x q ++=有2个不相等的实数解:12x x ⎧=⎪⎪⎨⎪=⎪⎩,A ∴=A B⊆∴B14q =-,解得:134q -+=或234q --=(舍去).B时有:1q =或2q =.综上,1q =题型二:“()()=f g x k ”型问题例4.已知函数2()2f x x x =--,1,0()41,0x x g x xx x ⎧+>⎪=⎨⎪+⎩ (1)求[g f (1)]的值;(2)若方程[()]0g f x a -=有4个实数根.求实数a 的取值范围.【解析】解:(1)f (1)123=--=-,[g f (1)](3)312g =-=-+=-,即[g f (1)]2=-.(2)令()f x t =,则原方程化为()g t a =,易知方程()f x t =在(,1)t ∈-∞内有2个不同的解,则原方程有4个解等价于函数()y g t =(1)t <与y a =的图象有2个不同的交点,作出函数()y g t =(1)t <的图象,如图;g (1)15144=+=,11()2142g x x x =+=⨯= ,由图象可知,当514a <时,函数()y g t =,(1)t <与y a =有2个不同的交点,即所求a 的取值范囿是[1,5)4.例5.设函数2()2f x x x =--,1,0()41,0x x g x xx x ⎧+>⎪=⎨⎪+⎩ ,()[()]h x g f x =.(1)求函数()h x 的单调递增区间.(2)若关于x 的方程()0h x a -=有4个不同的实数很,求实数a 的取值范围.【解析】解:(1)令220x x --=得,0x =,或2x =-;∴当2x - ,或0x 时,()0f x ,当20x -<<时,()0f x >;()()()21,20421,20f x x f x h x x x x x ⎧+-<<⎪∴=⎨⎪--+-⎩或 ;①当2x - 时,函数()h x 为增函数;0x 时,函数()h x 为减函数;②当20x -<<时,令()f x t =,01t <<,设()y h x =,则:14y t t=+,01t <<,22414t y t -'=,1(0,)2t ∴∈时,0y '<,14y t t =+为减函数,1(2t ∈,1)时,0y '>,14y t t=+为增函数;令21()22f x x x =--=,则212x =-±,当212x -<<--时,()f x 为增函数,()g x 为减函数,故()h x 为减函数;当112x --<<-时,()f x 为增函数,()g x 为增函数,故()h x 为增函数;当11x -<<-+()f x 为减函数,()g x 为增函数,故()h x 为减函数;当10x -+<<时,()f x 为减函数,()g x 为减函数,故()h x 为增函数;综上所述,函数()h x的单调递增区间为[12--,1]-,[12-+,)+∞,(-∞,2]-;(2)由(1)可得,当0x 或2x - 时,()1h x ;1x =-时,()h x 取得极大值54;1x =-时,()h x 取得极小值1;12x =-+时,()h x 取得极小值1.由方程()0h x a -=有4个不同的实数很,即为()y h x =的图象与直线y a =有4个交点.则a 的取值范围是[1,5)4.例6.设函数2()2f x x x =--,1,0()41,0x x g x xx x ⎧+>⎪=⎨⎪+⎩ ,()[()]h x g f x =,求函数()h x 的单调递增区间.【解析】解:令220x x --=得,0x =,或2x =-;∴当2x - ,或0x 时,()0f x ,当20x -<<时,()0f x >;∴()()()21,20421,2,0f x x f x h x x x x x ⎧+-<<⎪=⎨⎪--+-⎩或 ;(1)当2x - 时,函数()h x 为减函数;(2)当20x -<<时,令()f x t =,01t <<,设()y h x =,则:14y t t=+,01t <<,22414t y t -'=;∴1(0,)2t ∈时,0y '<,14y t t =+为减函数,1(,1)2t ∈时,0y '>,14y t t=+为增函数;令21()22f x x x =--=,则12x =-±,当2212x -<<--时,()f x 为增函数,()g x 为减函数,故()h x 为减函数;当11x -<-时,()f x 为增函数,()g x 为增函数,故()h x 为增函数;当112x -<<-+时,()f x 为减函数,()g x 为增函数,故()h x 为减函数;当102x -+<<时,()f x 为减函数,()g x 为减函数,故()h x 为增函数;(3)当0x 时,()h x 为增函数;综上所述,函数()h x的单调递增区间为[12--,1]-,[12-+,)+∞.变式4.已知函数2()2f x x x =--,1;0()1;04x x g x x x x +⎧⎪=⎨+>⎪⎩,若函数[()]y g f x a =-有4个零点,则实数a 的取值范围是.【解析】解:由题意可得函数[()]y g f x =与函数y a =有4个交点,如图所示:,结合图象可得514a < ,故答案为[1,5)4.变式5.已知函数32()31f x x x =-+,21,0()468,0x x g x xx x x ⎧+>⎪=⎨⎪---⎩ ,则当方程[()]0g f x a -=有6个解时a 的取值范围是()A .514a <<B .54a >或81a -<C .54a >D .01a 【解析】解:函数32()31f x x x =-+,21,0()()468,0x x g x g x xx x x ⎧+>⎪==⎨⎪---⎩ ,2()36f x x x ∴'=-,令()0f x '=得:0x =,或2x =,故当0x =时,函数()f x 取极大值1,当2x =时,函数取极小值3-;则()f x 与y m =的交点情况为:当3m <-,或1m >时,有一个交点;当3m =-,或1m =时,有两个交点;当31m -<<时,有三个交点;()g x 与y a =的交点情况为:当01a <<时有两个交点,一个在区间(4,3)--上,一个在区间(3,2)--上;当1a =时有两个交点,一个为3-,一个为12;当1a >时有两个交点,一个在区间1(0,)2上,一个在区间1(2-,1)上.若方程[()]0g f x a -=有6个解,()0g m a -=有两个根,均在(3,1)-上,故5(1,4a ∈,故选:A .题型三:复合函数()⎡⎤=-⎣⎦y f f x x 的零点问题例7.定义:若函数()f x 对于其定义域内的某一数0x ,有00()f x x =,则称0x 是()f x 的一个不动点,已知函数2()(1)1(0)f x ax b x b a =+++-≠.(1)当1a =,3b =时,求函数()f x 的不动点;(2)若对任意的实数b ,函数()f x 恒有两个不动点,求a 的取值范围;(3)在(2)的条件下,若()y f x =图象上两个点A 、B 的横坐标是函数()f x 的不动点,且A 、B 的中点C 在函数22()541ag x x a a =-+-+的图象上,求b 的最小值.【解析】解:(1)2()42f x x x =++,由242x x x ++=,解得2x =-或1x =-,所以所求的不动点为1-或2-.(2)令2(1)1ax b x b x +++-=,则210ax bx b ++-=①,由题意,方程①恒有两个不等实根,所以△24(1)0b a b =-->,即2440b ab a -+>恒成立,则△216160a a =-<,故01a <<.(3)设1(A x ,1)y ,2(B x ,2)y ,12()x x ≠,22()541ag x x a a =-+-+,又AB 的中点在该直线上,所以12121222()225412x x x x x x ag a a +++=-+=-+,∴1222541ax x a a +=-+,而1x ,2x 应是方程①的两个根,所以12b x x a +=-,即22541b aa a a -=-+,∴2222222111541()4()5(2)1a b a a a a a =-=-=--+-+-+,∴当1(0,1)2a =∈时,2min b =-.例8.定义:若函数()f x 对于其定义域内的某一数0x ,有00()f x x =,则称0x 是()f x 的一个不动点.已知函数2()(1)1(0)f x ax b x b a =+++-≠.()I 当1a =,2b =-时,求函数()f x 的不动点;(Ⅱ)若对任意的实数b ,函数()f x 恒有两个不动点,求a 的取值范围.【解析】解:(Ⅰ)当1a =,2b =-时,2()3f x x x =--,因为0x 为()f x 的不动点,所以20003x x x --=,即20230x x --=解得01x =-,03x =,所以1-和3是2()3f x x x =--的不动点.(Ⅱ)因为()f x 恒有两个相异的不动点,即方程()f x x =恒有两个不同的解,即2()10f x ax bx b =++-=有两个不相等的实数根,所以24(1)0b a b -->恒成立,即对任意b R ∈,2440b ab a -+>恒成立,所以2(4)440a a --⨯<,所以20a a -<,所以01a <<,所以a 的取值范围为(0,1).例9.设函数()0f x x =>,a R ∈,e 为自然对数的底数),若存在[0b ∈,1]使(f f (b ))b =成立,则a 的取值范围是.【解析】解:存在[0b ∈,1],使(f f (b ))b =成立∴存在[0b ∈,1],使f (b )1f -=(b )即函数()f x 与其反函数1()f x -在[0,1]上有交点()f x =[0,1]上为增函数∴函数()f x 与其反函数1()f x -在[0,1]的交点在直线y x =上,即函数()f x 与其反函数1()f x -的交点就是()f x 与y x =的交点令:22x e x a x +-=,则方程在[0,1]上一定有解x a e ∴=,1a e ∴ .故答案为:1a e .变式6.设函数2()f x x x c =++.若对任意x R ∈,均有(())f f x x >,则实数c 的取值范围是.【解析】解:函数2()f x x x c =++.若对任意x R ∈,均有(())f f x x >,即为2()f x x c x ++>,即222()2x x c x x c x +++++>,可得222()20x x c x c ++++>恒成立,由222()0x x c x +++ ,即有0c >,故答案为:0c >.变式7.对于函数()f x ,若()f x x =,则称x 为()f x 的“不动点”,若(())f f x x =,则称x 为()f x 的“稳定点”,记{|()}A x f x x ==,{|(())}B x f f x x ==,则下列说法错误的是()A .对于函数()f x x =,有AB =成立B .若()f x 是二次函数,且A 是空集,则B 为空集C .对于函数1()()2x f x =,有A B =成立D .对于函数()bf x x=,存在(0,)b ∈+∞,使得A B =成立【解析】解:对于A :函数()f x x =,{|}A x x x R B ====,故A 正确;对于B :若()f x 为二次函数,A 是空集,则对任意实数x ,方程()f x x =无解,这样(())f f x x =也无解,所以B 也为空集,故B 正确;对于C :函数1()(2x f x =为单调减函数,任取0x A ∈,则001(2x x =,而00001(())(())()2x f f x f f x x ===,即A B ⊆,反之,任取0y B ∈,则001(())2y f y =,若001()2y y >,则001(())2y y <,出现矛盾,若001()2y y <,则001(())2y y >,出现矛盾,所以001()2y y =,则B A ⊆,综上所述,A B =,故C 正确;对于D :对于函数()b f x x=,由()bf x x x==,得2x b =,当0b >时,x =所以{A =,又(())()b bf f x f x b xx===,所以{|0}B x x =≠,所以A B ≠,故D 错误;故选:D .变式8.对于函数()f x ,若00()f x x =,则称0x 为函数()f x 的“不动点”:若00(())f f x x =,则称0x 为()f x 的“稳定点”,如果函数2()1()f x ax a R =+∈的稳定点恰是它的不动点,那么a 的取值范围为()A .1(,]4-∞B .3(,)4-+∞C .31[,]44-D .1(1,]4-【解析】解:0x 为函数()f x 的“不动点”,则方程()f x x =,即210ax x +-=有实根,故△140a =- ,14a ∴,如果“稳定点”恰是它的“不动点”,则上述方程的根0x 为方程(())f f x x =,即21ax x +=的实根,方程(())f f x x =可化为:22(1)1a ax x ++=,即2222(1)1a ax ax ax x +-++=,利用平方差公式分解因式得,222(1)(1)()0a ax x ax x x a x ∴+++-++-=,22()(1)0a x a x x x a ∴+-+++=,函数2()1()f x ax a R =+∈的“稳定点”恰是它的“不动点”,∴方程210x x a +++=无实数根,14(1)0a ∴-+<,∴34a >-,综上,1344a >- ,故选:C .变式9.对于函数()f x ,若00()f x x =,则称0x 为函数()f x 的“不动点”;若00(())f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数2()()f x x a a R =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是()A .(-∞,1]4B .3(4-,)+∞C .3(4-,1]4D .3[4-,14【解析】解:0x 为函数()f x 的“不动点”,则方程()f x x =,即20x a x +-=有实根,故△140a =- ,∴14a,如果“稳定点”恰是它的“不动点”,则上述方程的根0x 为方程(())f f x x =,即2x a x +=的实根,方程(())f f x x =可化为:22()x a a x ++=,即2222()x a x x a x +-++=,利用平方差公式分解因式得,222()()()0x a x x a x x a x ∴+++-++-=,22()(1)0x a x x x a ∴+-+++=,函数2()()f x x a a R =+∈的“稳定点”恰是它的“不动点”,∴方程210x x a +++=无实数根,14(1)0a ∴-+<,∴34a >-,当34a =-时,221104x x a x x +++=++=解得12x =-,此时22304x a x x x +-=--=的解为112x =-,232x =,两方程具有相同的实根,能同时满足20x a x +-=有实根且22()(1)0x a x x x a +-+++=有实根,因此34a =-满足题意.综上,3144a - ,故选:D .变式10.设函数())f x a R =∈.若存在[0b ∈,1],使(f f (b ))b =成立,则a 的取值范围是()A .[0,14B .[1,2]C .[0,1]D .1[4,1]【解析】解:由(f f (b ))b =,可得f (b )1f -=(b ),其中1()f x -是函数()f x 的反函数因此命题“存在[0b ∈,1]使(f f (b ))b =成立”,转化为“存在[0b ∈,1],使f (b )1f -=(b )”,即()y f x =的图象与函数1()y f x -=的图象有交点,且交点的横坐标[0b ∈,1],()y f x =的图象与1()y f x -=的图象关于直线y x =对称,()y f x ∴=的图象与函数1()y f x -=的图象的交点必定在直线y x =上,由此可得,()y f x =的图象与直线y x =有交点,且交点横坐标[0b ∈,1],x =,化简整理得2x a x -=.[0x ∈,1],即2a x x =-,[0x ∈,1],∴根据二次函数的性质得出:104a即实数a 的取值范围为[0,1]4.故选:A .变式11.设函数()f x a R =∈,e 为自然对数的底数),若存在[0b ∈,1]使[f f (b )]b =成立,则a 的取值范围()A .[1,]e B .[0,]e C .[2,]e D .[1,1]e +【解析】解:因为存在[0b ∈,1],使[f f (b )]b =成立,所以存在[0b ∈,1],使f (b )1f -=(b ),即函数()f x 与其反函数在[0,1]上有交点,因为函数()f x =[0,1]上为单调递增函数,所以函数()f x 与其反函数在[0,1]的交点在直线y x =上,即函数()f x 与其反函数的交点即为()f x 与y x =的交点,x =,即22x e x x a x ++-=在[0,1]上有解,所以x a e x =+在[0,1]上有解,因为x a e x =+在[0,1]上单调递增,所以11a e + ,则a 的取值范围为[1,1]e +.故选:D .变式12.设函数())f x a R =∈,若存在[1b ∈,]e ,使得(f f (b ))b =成立,则实数a 的取值范围是()A .[0,1]B .[0,2]C .[1,2]D .[1-,0]【解析】解:由(f f (b ))b =,可得f (b )1f -=(b ),其中1()f x -是函数()f x 的反函数因此命题“存在[1b ∈,]e 使(f f (b ))b =成立”,转化为“存在[1b ∈,]e ,使f (b )1f -=(b )”,即()y f x =的图象与函数1()y f x -=的图象有交点,且交点的横坐标[1b ∈,]e ,()y f x =的图象与1()y f x -=的图象关于直线y x =对称,()y f x ∴=的图象与函数1()y f x -=的图象的交点必定在直线y x =上,由此可得,()y f x =的图象与直线y x =有交点,且交点横坐标[1b ∈,]e ,x =,化简整理得lnx a =.记()F x lnx =,()G x a =,由[1x ∈,]e ,可得()[0F x ∈,1],即01a .即实数a 的取值范围为[0,1].故选:A .变式13.设函数())f x a R =∈.若方程(())f f x x =有解,则a 的取值范围为()A .1(,]4-∞B .1(0,]8C .1(,]8-∞D .[1,)+∞【解析】解:设()f x t =,0t ,则方程(())f f x x =等价为()f t x =,即tx==,t x ∴=,即()f x x =,∴x =在0x 时有解,即2x a x -=,2a x x ∴=-+在0x 时成立,设22211()()()24g x x x x x x =-+=--=--+,x ∴当12x =时,()g x 取得最大值14,1()4g x ∴,即14a,故选:A .题型四:复合函数()⎡⎤=-⎣⎦y f g x x 的零点问题例10.设()f x ,()g x 都是定义在R 上的函数,若函数(())y f g x x =-有零点,则函数(())g f x 不可能是()A .215x -B .215x +C .215x x +-D .215x x ++【解析】解:函数(())y f g x x =-有零点,∴方程(())f g x x =有解,((()))()g f g x g x ∴=,(())g f x x ∴=有解,若21(())5g f x x =-,则可判断215x x -=有解,故成立;若21(())5g f x x =+,则可判断215x x +=有解,故成立;若21(())5g f x x x =+-,则可判断215x x x +-=有解,故成立;若21(())5g f x x x =++,则可判断215x x x ++=无解,故不成立;故选:D .例11.()f x 和()g x 都是定义在R 上的函数,且方程[()]0x g f x -=有实数解,则[()]f g x 不可能是()A .32x-B .23x -C .4|1|5x --+D .4|1|5x -+【解析】解:因为[()]0x g f x -=,所以[()]g f x x =,得{[()]}()f g f x f x =,即[()]f g x x =,所以[()]g f x x =与[()]f g x x =是等价的,即[()]x g f x =有解,[()]f g x x =也有解,也就是说有解得都是有可能的,A .当32x x -=时,1x =成立;B .当23x x -=时,23x x =+结合图象有解;C .当4|1|5x x --+=时,即4|1|5x x -=-,当1x 时,得910x =,舍去;当1x <时,无解,故方程无解,C 错误;D .当4|1|5x x -+=时,得910x =有解.故选:C .例12.函数()f x 、()g x 都是定义在R 上的函数,若[()]x g f x =方程有解,则函数[()]g f x 不可能是()A .215x x +-B .215x -C .215x x ++D .215x +【解析】解:[()]x g f x =方程有解,得[()]g f x x =方程有实根,直接把四个答案分别代入,发现只有C 无解;题目要我们选不可能的,所以只能选无解的那个C .故选:C .题型五:含参二次函数复合型零点问题例13.设定义域为R 的函数|1|251,0()44,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则(m =)A .6m =B .2m =C .6m =或2D .6m =-【解析】解:当2m =时,由2()5()40f x f x -+=得()1f x =或()4f x =,当0x 时,|1|()51x f x -=-,由|1|511x --=得51log 2x =±均符合,由|1|514x --=得0x =,2x =均符合,当0x <时,2()44f x x x =++,由2441x x ++=得1x =-,3x =-均符合,由2444x x ++=得0x =(舍),4x =-符合,故2m =时,关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,所以排除A 和D ;当6m =时,由2()13()90f x f x -+=得()4f x =或()9f x =,当()4f x =时,已经解出0x =,2x =,4x =-均符合;当()9f x =时,由|1|0519x x -⎧⎨-=⎩ ,解得51log 10x =+,由20449x x x <⎧⎨++=⎩得5x =-,故6m =时,原方程只有5个不同实根,不符合题意,故排除C .故选:B .例14.设定义域为R 的函数|1|251,0()44,0x x f x x x x -⎧-=⎨++<⎩若关于x 的方程22()(21)()0f x m f x m -++=有5个不同的实数解,则(m =)A .6B .4或6C .6或2D .2【解析】解:题中原方程22()(21)()0f x m f x m -++=有5个不同的实数根,结合函数()f x 的图象可得,令()t f x =,则关于t 的方程22(21)0t m t m -++=有一根为4t =,另一个根大于4或等于0.把4t =代入方程22(21)0t m t m -++=求得2m =或6m =.当2m =时,关于t 的方程22(21)0t m t m -++=有一根为4t =,另一个根等于1,不满足条件.当6m =时,关于t 的方程22(21)0t m t m -++=有一根为4t =,另一个根等于9,满足条件.故选:A.例15.设定义域为R 的函数1(1)|1|()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,则b c +值为()A .0B .1C .1-D .不能确定【解析】解:作函数1(1)|1|()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩的图象,关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,∴方程20x bx c ++=有2个不同的实数解1,1x ,11x b ∴+=-,11x c =,故1111b c x x +=--+=-,故选:C.变式14.设定义域为R 的函数|1|21,(1)(),(1)x x f x a x --⎧+≠=⎨=⎩,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是()A .(0,1)B .3(0,)2C .(1,2)D .33(1,)(,2)22【解析】解:作出()f x 的图象如图:设()t f x =,则方程等价为22(23)30t a t a -++=,由图象可知,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,∴即要求对应于()f x 等于某个常数有3个不同实数解,∴故先根据题意作出()f x 的简图:由图可知,只有当()f x a =时,它有三个根.所以有:12a <<①.再根据22()(23)()30f x a f x a -++=有两个不等实根,则判别式△2(23)4230a a =+-⨯⨯>,解得32a ≠,故312a <<或322x <<,故选:D.变式15.设定义域为R 的函数|1|(1)()1()1(1)2x a x f x x -=⎧⎪=⎨+≠⎪⎩,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是()A .(0,1)B .11(0,)(,1)22C .(1,2)D .33(1,)(,2)22【解析】解:题中原方程22()(23)()30f x a f x a -++=有且只有5个不同实数解,∴即要求对应于()f x 等于某个常数有3个不同实数解,∴故先根据题意作出()f x 的简图:由图可知,只有当()f x a =时,它有三个根.所以有:12a <<①.再根据22()(23)()30f x a f x a -++=有两个不等实根,得:△23(23)42302a a a =+-⨯⨯>⇒≠②结合①②得:312a <<或322a <<.故选:D .变式16.设定义域为R 的函数2,1()|(1)|,1x x f x lg x x ⎧=⎨->⎩ ,若关于x 的方程2()()0f x bf x +=有4个不同的实根,则实数b 的取值范围为()A .(2,)+∞B .(0,2]C .[2-,0)D .(,2)-∞-【解析】解:作函数2,1()|(1)|,1x x f x lg x x ⎧=⎨->⎩的图象如下,,2()()0f x bf x +=,()0f x ∴=或()f x b =-,结合图象可知,方程()0f x =有且仅有一个根2x =,故方程()f x b =-有3个不同的根,故02b <- ,故20b -< ,故选:C .变式17.(多选题)函数2()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称,据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p 关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是()A .{1,2}B .{1,3,6,9}C .{1,2,3,4}D .{1,4,16,64}【解析】解:2()f x ax bx c =++的对称轴为直线2b x a=-,设方程2[()]()0m f x nf x p ++=的解为1()f x ,2()f x ,则必有211()f x y ax bx c ==++,222()f x y ax bx c ==++,那么从图象上看,1y y =,2y y =是一条平行于x 轴的直线,它们与()f x 有交点,由对称性,则方程21y ax bx c =++的两个解1x ,2x 要关于直线2b x a =-对称,即12b x x a+=-,同理方程22y ax bx c =++的两个解3x ,4x 也要关于直线2b x a =-对称,即34b x x a+=-,在A 中,可以找到对称轴为直线32x =,在C 中,可以找到对称轴为直线 2.5x =,在B 中,找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和,故答案B 不可能,在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能,故选:BD .变式18.设定义域为R 的函数2|1|,0()(1),0x x f x x x +⎧=⎨->⎩,找出一组b 和c 的值,使得关于x 的方程2()()0f x b f x c +⋅+=有7个不同的实根.【解析】解:()f x 的图象如图所示:32b =-,12c =满足条件,理由如下:设()f x t =,20t bt c ++=,由图象可得以上有关于t 的方程必须有一解为1,另一解a 在区间(0,1)中,才会使得关于x 的方程2()()0f x b f x c +⋅+=有7个解.其中,()1f x =有3个解,()(0f x a =∈,1)有四个解.所以可令11t =,212t =,即可得方程231022x x -+=,则32b =-,12c =.故答案为:32b =-,12c =.变式19.设定义域为R 的函数|1|2,(0)(),(0)x a x f x x bx c x -⎧=⎨++<⎩,f (2)4=,(3)(1)1f f -=-=.(1)求()f x 的解析式;(2)若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,求实数m 的值.【解析】解:(1)由题意,f (2)4a ==;(3)931f b c -=-+=,(1)11f b c -=-+=;则4a =,4b =,4c =;故|1|24,0()44,0x x f x x x x -⎧=⎨++<⎩ ;(2)作|1|24,0()44,0x x f x x x x -⎧=⎨++<⎩的图象如下,则若使关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则22(21)0t m t m -++=有两个不同的实数解,且有一个解为1或4;若1是22(21)0t m t m -++=得解,则21(21)0m m -++=;故0m =或2m =;若0m =,则22(21)0t m t m -++=的两个解为1,0;不成立;若2m =,则22(21)0t m t m -++=的两个解为1,4;由图知不成立;若4是22(21)0t m t m -++=得解,则2164(21)0m m -++=;故6m =或2m =;若6m =,则22(21)0t m t m -++=的两个解为4,9;不成立;故不存在.题型六:零点求和问题例16.设定义域为R 的函数1,11()1,11,11x x f x x x x⎧>⎪-⎪==⎨⎪⎪<-⎩,若关于x 的方程2()()0f x bf x c ++=有三个不同的解1x ,2x ,3x ,则222123x x x ++的值是()A .1B .3C .5D .10【解析】解:令()f x t =,做出()f x 的函数图象如下:由图象可知当1t =时,()f x t =有三解,当01t <<或1t >时,()f x t =有两解,当0t 时,方程()f x t =无解.关于x 的方程2()()0f x bf x c ++=有三个不同的解1x ,2x ,3x ,()1f x ∴=,当1x <时,令111x=-解得0x =,当1x >时,令111x =-解得2x =,当1x =时,显然1x =是()1f x =的解.不妨设123x x x <<,则10x =,21x =,32x =,∴2221235x x x ++=.故选:C .例17.设定义域为R 的函数1,1|1|()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有三个不同的实数根1x ,2x ,3x ,则222123x x x ++等于()A .5B .4C .1D .0【解析】解:分段函数的图象如图所示:由图可知,只有当()1f x =时,它有三个根.由11|1|x =-,即|1|1x -=,解得0x =,2x =或1x =.∴关于x 的方程2()()0f x af x b ++=有且只有3个不同实数解,解分别是2,1,0,即12x =,21x =,30x =,2221234105x x x ∴++=++=,故选:A .例18.设定义域为R 的函数|2|,2()4,2lg x x f x x -≠⎧=⎨=⎩,则关于x 的方程2()()0f x bf x c ++=有5个不同的实数解(1i x i =,2,3,4,5),则12345(2)(f x x x x x +++++=)A .12B .14C .2D .1【解析】解:画出()f x 的图象,由于关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,令()f x t =,则20t bt c ++=有两个不等的实数根,且其中一个为2,画出直线(2)y m m =≠,得到5个交点,其横坐标为1x ,2x ,3x ,4x ,5x ,设32x =,且12345x x x x x <<<<,由于|2|y lg x =-的图象关于直线2x =对称,则15244x x x x +=+=,即有1234510x x x x x ++++=,则12345(2)(12)101f x x x x x f lg +++++===,故选:D .变式20.(多选题)设定义域为R 的函数1,1|1|()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解1x ,2x ,3x ,且123x x x <<.下列说法正确的是()A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-【解析】解:因为函数1,1|1|()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,作出函数图象如图所示,关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解,由图象可知,只有当()1f x =时,方程有三个根1x ,2x ,3x ,且123x x x <<,故12x =-,21x =-,30x =,所以2221235x x x ++=,故选项A 正确;当()1f x =时,由2[()]()0f x af x b ++=,可得10a b ++=,故选项B 正确;因为1322022x x x +=-+=-=,故选项C 错误;因为13202x x +=-+=-,故选项D 正确;故选:ABD .变式21.设定义域为R 的函数1,1|1|()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有5个不同的解1x ,2x ,3x ,4x ,5x ,则12345x x x x x ++++=.【解析】解:作出函数1,1|1|()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩的图象,如图所示,令()f x t =,由图象可知,当1t =时,方程()f x t =有3个根,当01t <<或1t >时,方程()f x t =有2个根,则方程2()()0f x bf x c ++=,等价于20t bt c ++=,因为方程2()()0f x bf x c ++=恰有5个不同的实数解1x ,2x ,3x ,4x ,5x ,所以等价于方程20t bt c ++=有两个实数解11t =,或201t <<,或21t >,可得这5个根也关于直线1x =对称,所以123455x x x x x ++++=.故答案为:5.题型七:其他型例19.已知()f x 是定义域为(0,)+∞的单调函数,若对任意的(0,)x ∈+∞,都有13[()log ]4f f x x +=,且方程|()3|f x a -=在区间(0,3]上有两解,则实数a 的取值范围是()A .01a <B .1a <C .01a <<D .1a 【解析】解:()f x 是定义域为(0,)+∞的单调函数,对任意的(0,)x ∈+∞,都有13[()log ]4f f x x +=,∴必存在唯一的正实数a ,满足13()log f x x a +=,f (a )4=①,f ∴(a )13log a a +=②,由①②得:134log a a +=,即13log 4a a =-,41(3a a -∴=,解得3a =.故13()log 3f x x a +==,13()3log f x x ∴=-,由方程|()3|f x a -=在区间(0,3]上有两解,即有13|log |x a =在区间(0,3]上有两解,作出13|log |y x =的图象,如图所示:,结合题意,01a < ,故选:A .例20.已知定义域为(0,)+∞的单调函数()f x ,若对任意(0,)x ∈+∞,都有12[()log ]3f f x x +=”,则方程()2f x =+()A .3B .2C .1D .0【解析】解:定义域为(0,)+∞的单调函数()f x ,满足12[()log ]3f f x x +=,()2f x =+,∴必存在唯一的正实数a ,满足12()log f x x a +=,f (a )3=,①∴12()log f a a a +=,②由①②得:123log a a +=,12log 3a a =-,31()2a a -=,左增,右减,有唯一解2a =,故12()log 2f x x a +==,12()2log f x x =-,由122log 2x -=+,得2log x =∴x =,令0t =>,则22t t =,此方程只有两个正根2t =,或4t =,4x ∴=,或16x =.故方程()2f x =+2.故选:B .例21.已知定义域为(0,)+∞的单调函数()f x ,若对任意的(0,)x ∈+∞,都有12[()log ]3f f x x +=,则方程3()2f x x =-的解的个数是.【解析】解:定义域为(,)O +∞的单调函数()f x ,满足12[()log ]3f f x x +=,3()2f x x =-,∴必存在唯一的正实数a ,满足12()log f x x a +=,f (a )3=,①f ∴(a )12log a a +=,②由①②得:123log a a +=,12log 3a a =-,31()2a a -=,左增,右减,有唯一解2a =,故12()log 2f x x a +==,12()2f x log x =-,由31222log x x -=-,得312log x x =,∴由函数图象可知3()2f x x =-的解只有一个.故答案为1.。

高中数学总复习考点知识专题讲解与提升练习02 函数的嵌套问题(解析版)

高中数学总复习考点知识专题讲解与提升练习02 函数的嵌套问题(解析版)

高中数学总复习考点知识专题讲解与提升练习第2讲函数的嵌套问题一.选择题(共15小题)1.(2021•合肥一模)已知函数,0()1,0x x e x f x xe x lnx x -⎧-=⎨--->⎩,则函数()(())()F x f f x ef x =-的零点个数为()(e 是自然对数的底数). A .6B .5C .4D .3【解答】解:不妨设1()(0)x f x e x -=-,2()1(0)x f x xe x lnx x =--->, 易知,1()0f x <在(-∞,0]上恒成立,且在(-∞,0]单调递增;211()1(1)()x x x f x e xe x e x x '=+--=+-,设1()(0)x g x e x x=->,由当0x +→时,()g x →-∞,g (1)10e =->,且函数()g x 在(0,)+∞上单增,故函数()g x 存在唯一零点0(0,1)x ∈,使得0()0g x =,即010x e x -=,则00001,0xx e lnx x =+=, 故当0(0,)x x ∈时,()0g x <,2()0f x '<,2()f x 单减;当0(x x ∈,)+∞时,()0g x >,2()0f x '>,2()f x 单增,故0220000()()10x min f x f x x e x lnx ==---=,故2()0f x ;令()t f x =,()()0F t f t et =-=,当0t 时,0t e et ---=,解得1t =-,此时易知()1f x t ==-有一个解;当0t >时,10t te t lnt et ----=,即1t te t lnt et ---=,作函数2()f t 与函数y et =如下图所示,由图可知,函数2()f t 与函数y et =有两个交点,设这两个交点为1t ,2t ,且10t >,20t >, 而由图观察易知,1()f x t =,2()f x t =均有两个交点,故此时共有四个解; 综上,函数()(())()F x f f x ef x =-的零点个数为5. 故选:B .【点评】本题考查函数与方程,考查分段函数零点个数的判定,考查利用导数研究函数的零点问题,考查转化思想,换元思想,数形结合思想,分类讨论思想以及数据分析能力,运算求解能力,逻辑推理能力等综合数学素养,属于较难题目.2.(2021•绵阳模拟)已知函数()||x e f x x =,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是()A .21(1,)21e e ---B .(1,)+∞C .21(21e e --,2)D .21(21e e --,)+∞【解答】解:当0x >时,()x e f x x =,函数的导数22(1)()x x x e x e e x f x x x --'==,当1x >时,()0f x '>,当01x <<时,()0f x '<,则当1x =时函数取得极小值f (1)e =,当0x <时,()x e f x x =-,函数的导数22(1)()x x x e x e e x f x x x --'=-=-,此时()0f x '>恒成立,此时函数为增函数, 作出函数()f x 的图象如图:设()t f x =,则t e >时,()t f x =有3个根, 当t e =时,()t f x =有2个根 当0t e <<时,()t f x =有1个根, 当0t 时,()t f x =有0个根,则2()2()10()f x af x a m R -+-=∈有四个相异的实数根, 等价为2210()t at a m R -+-=∈有2个相异的实数根, 其中0t e <<,t e >, 设2()21h t t at a =-+-,则(0)0()0202h h e a a ⎧⎪>⎪<⎨⎪-⎪-=>⎩,即2102100a e ae a a ->⎧⎪-+-<⎨⎪>⎩,即21121a e a e >⎧⎪⎨->⎪-⎩, 即2121e a e ->-,即实数a 的取值范围是21(21e e --,)+∞,故选:D .【点评】本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度. 3.(2021•海淀区校级开学)已知函数()f x 是定义域为R 的奇函数.当0x >时,5sin(),0142()1()1,14x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈,有且仅有2个不同实数根,则实数a 的取值范围是()A .(-∞,55)(44-⋃,)+∞B .(-∞,565){}(454-⋃,)+∞ C .5(,)[14-∞--,51](4⋃,)+∞D .5(4-,5)4【解答】解:作出函数的图象如图所示,令()f x t =,则由图象可得: 当11t -或54t =±时,方程()f x t =有1解;当514t -<<-或514t <<时,方程()f x t =有2解;当54t <-或54t >时,方程()f x t =无解; 因为25[()](56)()60fx a f x a -++=,所以6()5f x =或()f x a =,因为关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有2个不同实数根, 又6()5f x =有2 解,所以()f x a =无解或方程()f x a =的解也是方程6()5f x =的解,故54a <-或65a =或54a >, 故选:B .【点评】本题主要考查了方程根的个数的判定与应用问题,其中解答中涉及到一元二次方程根的求解,函数的图象的应用等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中正确作出函数的图象和合理应用()f x t =的根的个数的应用是解答的关键. 4.(2021•三门峡一模)已知函数(1),0(),0xln x x f x xe x +⎧=⎨-<⎩,方程2()()0()f x mf x m R +=∈有四个不相等的实数根,则实数m 的取值范围是() A .1(,)e-∞-B .1(e-,0)C .1(e-,)+∞D .1(0,)e【解答】解:当0x <时,()x f x xe =-, 则()(1)x f x x e '=-+, 由()0f x '=得1x =-,当1x <-时,()0f x '>, 当10x -<<时,()0f x '<,即当1x =-时,函数()f x 取得极大值,此时1(1)f e-=, 且当0x <时,()0f x >, 当0x 时,()(1)0f x ln x =+, 设()t f x =,则当1t e=时,方程()t f x =有两个根,当1t e >或0t =时,方程()t f x =有1个根,当10t e<<时,方程()t f x =有3个根, 当0t <时,方程()t f x =有0个根,则方程2()()0()f x mf x m R +=∈等价为20t mt +=, 即0t =或t m =-,当0t =时,方程()t f x =有1个根,∴若方程2()()0()f x mf x m R +=∈有四个不相等的实数根,则等价为()t f x =有3个根, 即10m e<-<,得10m e-<<, 故选:B .【点评】本题主要考查函数根的个数的判断,求函数的导数,研究函数的取值范围,利用换元法和图象法进行求解是解决本题的关键. 5.(2021秋•北碚区校级月考)已知函数(1),0(),0xln x x f x x e x +⎧=⎨-<⎩,函数1()(())2g x f f x =-零点的个数为()A .4B .3C .2D .1【解答】解:令()u f x =,令()0g x =,则1()02f u -=,当0u 时,则()(1)f u ln u =+,所以,1(1)2ln u +=,∴1u =. 当0u <时,()u f u ue =-,则()(1)u f u u e '=-+, 当1u <-时,()0f u '>;当10u -<<时,()0f u '<.此时,函数()y f u =在1u =-处取得极大值,且极大值为11(1)2f e-=<.所以,当0u <时,1()2f u <,则方程1()02f u -=在0u <时无解.再考虑方程()1f x =的根的个数, 作出函数()u f x =的图象如下图所示,1112e>>,所以,直线1u=与函数()u f x=的图象只有一个交点,因此,函数()g x只有一个零点,故选:D.【点评】本题考查函数的零点个数,考查复合函数的零点个数问题,解决本题的关键在于灵活处理内层函数与外层函数零点之间的关系,属于难题.6.(2021春•渝北区校级期末)已知函数(),0()21,0xxln x x xf x x xexe--<⎧⎪=⎨--⎪⎩,()()g x f x x a=+-.若()g x 存在三个零点,则实数a的取值范围是()A.23(1,)e--B.23(0,2)e-C.32(0,2)e-D.32[1,2)e--【解答】解:因为()()g x f x x a=+-存在三个零点,所以方程()f x x a=-+存在三个实根,因为当0x<时,()f x x a=-+,即()ln x a-=有且只有一个实根,所以当0x时,()f x x a=-+,即21xxae-=有且只有2个实根,令21xxye-=,0x,则22(21)32()x xx xe x e xye e---'==,由32x<,得0y'>,由32x>,得0y'<,所以21xxye-=在3[0,)2上递增,在3(,)2+∞上递减,所以当32x=时,21xxye-=取得最大值323222ee-=,又0x=时,1y=-,x→+∞时,0y→,由函数21xxye-=,0x的图象可知,3202a e-<<.所以实数a 的取值范围是32(0,2)e -. 故选:C .【点评】本题考查了函数的零点方程根的关系,转化成函数图象的交点的关系是关键,考查数形结合的思想,是中档题.7.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是() A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解答】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =±,当1a >时,1a >,(0,1)a -.满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确;故选:D .【点评】本题考查分段函数的应用,函数与方程的应用,考察最值思想以及计算能力.本题如果直接求解,难度比较大,关于a 的不等式组不易求解.采用回代验证,方便快速得到结果.8.(2021•大东区一模)已知函数()||xe f x x =,关于x 的方程2()2()10()f x af x a a R -+-=∈有3个相异的实数根,则a 的取值范围是()A .21(21e e --,)+∞B .21(,)21e e --∞-C .21(0,)21e e --D .21{}21e e --【解答】解:当0x >时,()x e f x x =,函数的导数22(1)()x x x e x e e x f x x x --'==, 当1x >时,()0f x '>,当01x <<时,()0f x '<,则当1x =时函数取得极小值f (1)e =,当0x <时,()x e f x x =-,函数的导数22(1)()x x x e x e e x f x x x --'=-=-,此时()0f x '>恒成立,此时函数为增函数, 作出函数()f x 的图象如图:设()t f x =,则t e >时,()t f x =有3个根, 当t e =时,()t f x =有2个根当0t e <<时,()t f x =有1个根, 当0t 时,()t f x =有0个根,则2()2()10()f x af x a m R -+-=∈有三个相异的实数根, 等价为2210()t at a m R -+-=∈有2个相异的实数根, 其中0t e <<,t e =, 当t e =时,2210e ae a -+-=,即2121e a e -=-,此时满足条件. 故选:D .【点评】本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度.9.(2021秋•天津期末)已知函数2()(||xe f x e x =为自然对数的底数),关于x 的方程2[()]2()20()f x af x a a R -+-=∈恰有四个不同的实数根,则a 的取值范围为()A .(1,)+∞B .(2,)+∞C .2(,)21e e +∞-D .242(,)41e e -+∞-【解答】解:2()||xe f x x =, 0x >时,2()x e f x x =,22(21)()x e x f x x -'=, 令()0f x '>,解得:12x >,令()0f x '<,解得:102x <<,故()f x 在1(0,)2递减,在1(2,)+∞递增,故1()()22min f x f e ==,0x <时,2()x e f x x =-,22(21)()0x e x f x x -'=->, 函数()f x 的图象,如图示:,设()t f x =,方程2[()]2()20f x af x a -+-=等价于2220t at a -+-=,而△2244(2)4480a a a a =--=-+>, 若关于x 的方程恰有四个不同的实数根, 则102t e <<,22t e >, 设2()22g t t at a =-+-,则(0)0(2)0g g e >⎧⎨<⎩,即2204420a e ae a ->⎧⎨-+-<⎩解得:24241e a e ->-,故选:D .【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,换元思想,考查二次函数的性质,是一道中档题. 10.(2021秋•谯城区校级期末)已知函数2||,0()41,0lnx x f x x x x >⎧=⎨--+⎩,若关于x 的方程22()2()10f x af x a -+-=有8个不相等的实数根,则实数a 的取值范围为()A .(2,4)B .(2,4]C .[2,4]D .[2,4) 【解答】解:设()f x t =,则22()2()10f x af x a -+-=, 化为22210t at a -+-=,作出()f x 的图象,由图知,若关于x 的方程22()2()10f x af x a -+-=有8个不相等的实数根, 则关于t 的方程22210t at a -+-=有两个不等实根1215t t <<. 设22()21(1)(1)g t t at a t a t a =-+-=---+,,则由图知,1115a a -⎧⎨+<⎩,解得:24a <,故选:D .【点评】本题主要考查了函数的零点与方程根的关系,同时考查了转化的思想和数形结合的思想,属于中档题.11.(2021•郑州校级模拟)已知函数()y f x =是定义域为R 的偶函数.当0x 时,5sin()(01)42()1()1(1)4x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈,有且仅有6个不同实数根,则实数a 的取值范围是()A .01a <<或54a =B .01a 或54a =C .01a <或54a =D .514a <或0a = 【解答】解:函数()y f x =是定义域为R 的偶函数,当0x 时,5sin()(01)42()1()1(1)4x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,当0x <时,5sin(),10()4241,1x x x f x x π⎧--⎪=⎨⎪+<-⎩. 作出函数()f x 的图象如右.由于关于x 的方程25[()](56)()60f x a f x a -++=, 解得()f x a =或6()5f x =,当01x 时,()[0f x ∈,5]4,1x >时,()(1f x ∈,5)4.由65154<<,则6()5f x =有4个实根, 由题意,只要()f x a =有2个实根,则由图象可得当01a <时,()f x a =有2个实根,当54a =时,()f x a =有2个实根.综上可得:01a <或54a =. 故选:C .【点评】本题考查函数的奇偶性和单调性的运用,考查方程和函数的转化思想,运用数形结合的思想方法是解决的常用方法.12.(2021•和平区四模)已知函数32()32f x x x =-+,函数22(3)1,0()1()1,02x x g x x x ⎧-++<⎪=⎨-+⎪⎩,则关于x 的方程[()]0(0)g f x a a -=>的实根最多有()A .4个B .5个C .6个D .7个【解答】解:作出函数()f x 和()g x 的图象如图: 由[()]0(0)g f x a a -=>得[()]g f x a =,(0)a > 设()t f x =,则()g t a =,(0)a > 由()y g t =的图象知,①当01a <<时,方程()g t a =有两个根143t -<<-,或242t -<<-, 由()t f x =的图象知,当143t -<<-时,()t f x =有0个根, 当242t -<<-时,()t f x =有0个根, 此时方程[()]0(0)g f x a a -=>有0个根,②当1a =时,方程()g t a =有两个根13t =-,或212t = 由()t f x =的图象知,当13t =-时,()t f x =有0个根, 当212t =时,()t f x =有3个根, 此时方程[()]0(0)g f x a a -=>有3个根,③当514a <<时,方程()g t a =有两个根1102t <<,或2112t <<, 由()t f x =的图象知,当1102t <<时,()t f x =有3个根, 当2112t <<时,()t f x =有3个根,此时方程[()]0(0)g f x a a -=>有336+=个根, ④当54a =时,方程()g t a =有两个根10t =,或21t =, 由()t f x =的图象知,当10t =时,()t f x =有3个根, 当21t =时,()t f x =有3个根,此时方程[()]0(0)g f x a a -=>有336+=个根 ⑤当54a >时,方程()g t a =有1个根11t >,由()t f x =的图象知,当1112t >时,()t f x =有3或2个或1个根, 此时方程[()]0(0)g f x a a -=>有3或2个或1个根, 综上方程[()]0(0)g f x a a -=>的实根最多有6个根, 故选:C .【点评】本题主要考查根的个数的判断,利用换元法转化为两个函数的交点个数问题,利用分类讨论和数形结合是解决本题的关键.综合性较强,难度较大.13.(2021•余姚市模拟)已知函数32()32f x x x =-+,210()420x x g x x x x x ⎧+>⎪=⎨⎪---⎩,则方程[()]0(g f x a a -=为正实数)的根的个数不可能为()A .6个B .5个C .4个D .3个 【解答】解:函数32()32f x x x =-+,画出函数()f x 的图象,如图示:我们易求出()f x 与y a =的交点情况为: 当2a >时,有一个交点; 当2a =时,有两个交点; 当02a <<时,有三个交点;21,0()42,0x x g x xx x x ⎧+>⎪=⎨⎪---⎩, 画出函数()g x 的图象,如图示:我们易求出()g x 与y a =的交点情况为: 当2a >时,有2个交点; 当2a =时,有2个交点;当02a <<时,有2个交点;∴方程[()]0(g f x a a -=为正实数)的根的个数可能为:4个,5个,6个, 不可能为3个, 故选:D .【点评】本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键.14.(2021春•安徽期末)已知函数32()31f x x x =-+,21,0()468,0x x g x x x x x ⎧+>⎪=⎨⎪---⎩,则当方程[()]0g f x a -=有6个解时a 的取值范围是()A .514a <<B .54a >或81a -<C .54a >D .01a【解答】解:函数32()31f x x x =-+,21,0()()468,0x x g x g x x x x x ⎧+>⎪==⎨⎪---⎩,2()36f x x x ∴'=-,令()0f x '=得:0x =,或2x =,故当0x =时,函数()f x 取极大值1,当2x =时,函数取极小值3-; 则()f x 与y m =的交点情况为: 当3m <-,或1m >时,有一个交点; 当3m =-,或1m =时,有两个交点; 当31m -<<时,有三个交点;()g x 与y a =的交点情况为:当01a <<时有两个交点,一个在区间(4,3)--上,一个在区间(3,2)--上; 当1a =时有两个交点,一个为3-,一个为12;当1a >时有两个交点,一个在区间1(0,)2上,一个在区间1(2-,1)上.若方程[()]0g f x a -=有6个解,()0g m a -=有两个根,均在(3,1)-上, 故5(1,)4a ∈, 故选:A .【点评】本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键.15.(2021春•舒城县校级期中)已知函数()||(0)x f x x e x =≠,其中e 为自然对数的底数,关于x 的方程2()0()f x f x λ+-=有四个相异实根,则实数λ的取值范围是()A .1(0,)e B .)+∞C .2(,)e e ++∞D .1(2,)e e++∞【解答】解:,0()||,0x xxx e x f x x e x e x ⎧>==⎨-<⎩. 当0x >时,由()x f x x e =,得()(1)0x x x f x e x e e x '=+=+>,()f x ∴在(0,)+∞上为增函数;当0x <时,由()x f x x e =-,得()(1)x x x f x e x e e x '=--=-+. 当(,1)x ∈-∞-时,()0f x '>,当(1,0)x ∈-时,()0f x '<,∴当1x =-时,函数()f x 取得极大值为1(1)f e-=. 作出函数()||(0)x f x x e x =≠的图象的大致形状:令()f x t =,则方程2()0()f x f x λ+-=化为20t tλ+-=, 即220t t λ-+=, 要使关于x 的方程2()0()f x f x λ+-=有四个相异实根, 则方程220t t λ-+=的两根一个在1(0,)e,一个在1(,)e+∞之间.则2120e e λ-+<,解得12e eλ>+. ∴实数λ的取值范围是1(2e e+,)+∞. 故选:D .【点评】本题考查根的存在性及根的个数判断,考查利用导数求极值,考查数学转化思想方法及数形结合的解题思想方法,是中档题. 二.多选题(共1小题)16.(2021秋•广州月考)已知函数21,()()(2),x e x mf x m R x x m ⎧-=∈⎨-+<⎩,则() A .对任意的m R ∈,函数()f x 都有零点B .当3m -时,对12x x ∀≠,都有1212()(()())0x x f x f x --<成立C .当0m =时,方程[()]0f f x =有4个不同的实数根D .当0m =时,方程()()0f x f x +-=有2个不同的实数根【解答】解:对于A :作出函数1x y e =-和244y x x =---的图象如图所示:当0m >时,函数()f x 只有1个零点, 当20m -<时,函数()f x 有2个零点,当2m -时,函数()f x 只有1个零点,故A 正确; 对于B :当3m -时,函数()f x 单调递增,若当3m -时,对12x x ∀≠,都有1212()(()())0x x f x f x --<成立,则()f x 单调递减,故B 错误; 对于:0C m =时,()0f t =得12t =-,20t =, 当1()2f x t ==-时,方程有两个解, 当2()0f x t ==时,方程有两个解,所以方程[()]0f f x =有4个不同的实数根,故C 正确;对于D :当0m =时,方程()()0f x f x +-=的根为()()f x f x =--的根, 令()()h x f x =--, 作出()f x ,()h x 的图象:可得函数()f x 与()h x 有三个交点,其中包括0x =, 即方程()()f x f x +-有三个根, 故选:AC .【点评】本题考查函数与方程之间的关系,解题中注意转化思想的应用,属于中档题. 三.填空题(共7小题)17.(2021春•安徽期末)已知函数()x e f x x=,关于x 的方程2()2()30()f x af x a a R -+-=∈有3个相异的实数根,则a的取值范围是23(,3)21ee--.【解答】解:由题得2(1)()(0)xe xf x xx-'=≠,当1x>时,()0f x'>,函数单调递增;当01x<<时,()0f x'<,函数单调递减;当0x<时,()0f x'<,函数单调递减;作出函数()xef xx=的图象如右图,令()t f x=,则2()23g t t at a=-+-,设函数()g t的两零点分别为1t,2t①1t<,2t e>,则2(0)30()230g ag e e ae a=-<⎧⎨=-+-<⎩,解得23(,3)21eae-∈-②1t e=,2t e>,则22()23044(4)0g e e ae aa ea a⎧=-+-=⎪>⎨⎪=-->⎩,此时无解,综上:23(,3)21eae-∈-,故答案为:23(,3)21ee--【点评】本题考查函数零点与方程根的关系,数形结合思想,分类讨论思想,属于中档题.18.(2021春•衡阳期末)已知函数()y f x =是定义域为R 的偶函数.当0x 时,5sin()(01)42()1()1(1)4x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,则f (1)=54,若关于x 的方程2[()]()0(f x af x b a ++=,))b R ∈,有且仅有6个不同实数根,则实数a 的取值范围是. 【解答】解:f (1)55sin()424π==,作函数()y f x =的图象如右图,设方程20x ax b ++=的两个根为1x ,2x ; ①若154x =,2514x <<, 故129(4x x a +=-∈,5)2, 故5(2a ∈-,9)4-;②若101x <,2514x <<, 故129(1,)4x x a +=-∈, 故9(4a ∈-,1)-;故答案为:54,5(2-,99)(44--⋃,1)-.【点评】本题考查了函数的性质的判断与应用,同时考查了数形结合的思想的应用. 19.(2021秋•全国Ⅰ卷月考)已知函数()f x 是定义域在R 上的偶函数,当0x 时,3sin(),01,22()1()1,1,2x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩则函数3()(())4g x f f x =-的零点个数为2.【解答】解:()f x 是偶函数,∴作出函数()f x 的图象如图,当01x 时,022xππ,则,33sin()222x π, 当1x >时,13()1(1,)22x +∈,由3()(())04g x f f x =-=得3(())4f f x =,设()t f x =,则3()4f t =,由3()4f t =,得01t <<或10t -<<, 当10t -<<时,()t f x =无解,当01t <<时,()t f x =有两个交点,即()g x 有两个零点, 故答案为:2.【点评】本题主要考查函数与方程的关系,利用换元法转化为两个方程根的个数问题,以及利用数形结合是解决本题的关键,是中档题.20.(2021秋•常熟市月考)已知函数32()31f x x x =-+,2442,0()1|2|1,02x x x g x x x ⎧-+>⎪=⎨-++⎪⎩,若函数(())y g f x a =-有6个零点(互不相同),则实数a 的取值范围为1(,2)2. 【解答】解:作出函数()f x 与()g x 的图象如图:令()f x t =,则由图可知,当()f x t =有3个交点时,(3,1)t ∈-,当(3,1)t ∈-时,要使()0y g t a =-=,即函数图象在(3,1)t ∈-时,y a =与()y g t =要有2个交点,根据图象可知1(3)2g -=,故1(2a ∈,2),故答案为:1(2,2).【点评】本题主要考查函数零点个数求解参数取值范围,分段函数图象的画法,数形结合是关键,综合性强,属于难题.21.(2021春•让胡路区校级月考)已知函数()||xe f x x =,关于x 的方程2()2()10()f x af x a m R -+-=∈有四个相异的实数根,则a 的取值范围是21(21e e --,)+∞.【解答】解:当0x >时,()x e f x x =,函数的导数22(1)()x x x e x e e x f x x x--'==, 当1x >时,()0f x '>,当01x <<时,()0f x '<,则当1x =时函数取得极小值f (1)e =,当0x <时,()x e f x x =-,函数的导数22(1)()x x x e x e e x f x x x--'=-=-,此时()0f x '>恒成立, 此时函数为增函数, 作出函数()f x 的图象如图:设()t f x =,则t e >时,()t f x =有3个根, 当t e =时,()t f x =有2个根 当0t e <<时,()t f x =有1个根, 当0t 时,()t f x =有0个根,则2()2()10()f x af x a m R -+-=∈有四个相异的实数根, 等价为2210()t at a m R -+-=∈有2个相异的实数根, 其中0t e <<,t e >, 设2()21h t t at a =-+-,则(0)0()0202h h e a a ⎧⎪>⎪<⎨⎪-⎪-=>⎩,即2102100a e ae a a ->⎧⎪-+-<⎨⎪>⎩,即21121a e a e >⎧⎪⎨->⎪-⎩, 即2121e a e ->-,故答案为:21(21e e --,)+∞【点评】本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度. 22.(2021春•鼓楼区校级期末)函数2()(3)x f x x e =-,关于x 的方程2()()10f x mf x -+=恰有四个不同的实数解,则正数m 的取值范围为336(6e e +,)+∞. 【解答】解:2()(23)(3)(1)x xf x x x e x x e '=+-=+-, 令()0f x '=得,3x =-或1,当3x <-时,()0f x '>,函数()f x 在(,3)-∞-上单调递增,且()0f x >, 当31x -<<时,()0f x '<,函数()f x 在(3,1)-上单调递减, 当1x >时,()0f x '>,函数()f x 在(1,)+∞上单调递增, 所以()36()3f x f e =-=极大值,()f x f =极小值(1)2e =-, 令()f x t =,则方程210t mt -+=有两个不同的实数根1t ,2t ,且一个根在36(0,)e内,一个根在36(e,)+∞内, 或者两个根都在(2,0)e -内,或者一个根在(2,0)e -内,一个根为36e ,因为m 为正数,所以120t t m +=>,又121t t =,所以1t ,2t 都为正根,所以两个根不可能在(2,0)e -内,令2()1g x x mx =-+,因为(0)10g =>, 所以只需36()0g e <,即6336610m e e-+<,得3366e m e >+, 即m 的取值范围为:336(6e e +,)+∞, 故答案为:336(6e e +,)+∞. 【点评】本题主要考查了利用导数研究函数的极值,考查了函数的零点与方程根的关系,是中档题.23.(2021春•德阳期中)已知函数||()x x f x e=,若关于x 的方程2()()10f x mf x m -+-=有四个不相等的实数根,则实数m 的取值范围是1(1,1)e +. 【解答】解:化简得(0)()(0)x xx x e f x x x e ⎧⎪⎪=⎨-⎪<⎪⎩, 当0x 时,()0f x ,21()()x x x x e xe x f x e e--'==, 若01x <<时,()0f x '>,若1x >时,()0f x '<,所以当1x =时,函数()f x 有极大值f (1)1e=, 当0x <时,2()1()0()x x x xe x e xf x e e ---⋅-+'==<,()f x 为减函数, 作出函数()f x 的图象如图所示,由方程2()()10f x mf x m -+-=得,(()(1))(()1)0f x m f x ---=,所以()1f x =或()1f x m =-,由图象知方程()1f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则()1f x m =-要有三个解,由函数图象知101m e <-<, 所以111m e <<+. 故答案为:1(1,1)e +【点评】本题考查了根的存在性及根的个数的判断,考查了利用函数的导函数分析函数的单调性,考查了学生分析问题和解决问题的能力,数形结合求得结果.四.解答题(共2小题)24.已知函数()y f x =的定义域为R ,且(2)y f x =+的函数图象关于2x =-对称,当0x 时,3sin()(01)22()1()1(1)2x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程24()(45)()50()f x a f x a a R -++=∈,有且仅有6个不相同实数根,则实数a 的取值范围.【解答】解:(2)y f x =+的函数图象关于2x =-对称,将(2)y f x =+的图象右移2个单位,可得()y f x =的图象,可知图象关于y 轴对称.作出函数()y f x =的图象,关于x 的方程24()(45)()50f x a f x a -++=, 即有5()4f x =或()f x a =.()y f x =和直线54y =的交点有4个,即5()4f x =的解的个数为4,由题意可得()f x a =有两个解.即()y f x =和直线y a =有两个交点, 由图象可得32a =或01a <.综上可得a 的范围是(0,31]{}2.【点评】本题考查函数方程的转化思想的运用,考查方程的根的分布情况,注意运用数形结合的思想方法,属于中档题.25.已知函数1()f x x x=+,若关于x 的方程2()(1)()20f x m f x m -++=有四个不同的实数根,则实数m 的取值范围是多少?【解答】解:关于x 的方程2()(1)()20f x m f x m -++= 有4个不同的实数根,令1()t f x x x ==+,则2t ,或2t -,故关于t的一元二次方程2(1)20t m t m-++=有两个实数根,且这2个实数根大于2或小于2-.令2()(1)2g t t m t m=-++,①若这两个根都大于2,则由2(1)80122(2)20m mmg⎧=+->⎪+⎪>⎨⎪=>⎪⎩,求得3m>+②若这两个根都小于2-,则由2(1)80122(2)460m mmg m⎧=+->⎪+⎪<-⎨⎪-=+>⎪⎩,求得m∈∅.③若这两个根一个大于2,另一个小于2-,则由(2)460(2)20g mg-=+<⎧⎨=<⎩,可得m∈∅.综上可得,m的范围为(3+,)+∞.【点评】本题主要考查方程根的个数判断,体现了转化、分类讨论、数形结合的数学思想,属于难题.。

嵌套函数问题

嵌套函数问题

嵌套函数问题嵌套函数,就是指在某些情况下,您可能需要将某函数作为另一函数的参数使用,这一函数就是嵌套函数.一般地,对于定义在区间D 上的函数()y f x =(1)若存在0x D ∈,使得00()f x x =,则称0x 是函数()y f x =的一阶不动点,简称不动点;(2)若存在0x D ∈,使00(())f f x x =,则称0x 是函数()y f x =的二阶不动点,简称稳定点.类型一 嵌套函数中不动点稳定点问题 典例1 (){}|A x f x x ==,()(){}|B x f f x x ==.(1)求证:A B ⊆;(2)若()()21,f x ax a R x R =-∈∈,且A B =≠∅,求实数a 的取值范围; (3)若()f x 是R 上的单调递增函数,0x 是函数的稳定点,问0x 是函数的不动点吗? 若是,请证明你的结论;若不是,请说明的理由.【解析】(1)若A =∅,则A B ⊆显然成立;若A ≠∅,设t A ∈,()()()(),f t t f f t f t t ===,t B ∴∈,故A B ⊆.(2)2,1A ax x ≠∅∴-=有实根,14a ∴≥-.又A B ⊆,所以()2211a ax x --=, 即3422210a x a x x a --+-=的左边有因式21ax x --,从而有()()222110ax x a x ax a --+-+=A B =,2210a x ax a ∴+-+=要么没有实根,要么实根是方程210ax x --=的根.若2210a x ax a +-+=没有实根,则34a <; 若2210a x ax a +-+=有实根且实根是方程210ax x --=的根,则由方210ax x --=, 得22a x ax a =+,代入2210a x ax a +-+=,有210ax +=.由此解得12x a=-, 再代入得111042a a +-=,由此34a =,故a 的取值范围是13,44⎡⎤-⎢⎥⎣⎦. (3)由题意:x 0是函数的稳定点, 则00))((x x f f =,① 若00)(x x f >,)(x f 是R 上的单调增函数,则)())((00x f x f f >,所以)(00x f x >,矛盾 ② 若)(00x f x >,)(x f 是R 上的单调增函数,则))(()(00x f f x f >,所以00)(x x f >,矛盾 故00)(x x f =,所以x 0是函数的不动点.类型二 嵌套函数中零点个数问题典例2若函数()32f x x ax bx c =+++有极值点1x ,2x ,且()11f x x =,则关于x 的方程()()()2320f x a f x b ++=的不同实根的个数是_____.【解析】函数()32f x x ax bx c =+++有极值点1x ,2x ,说明方程2'()320f x x ax b =++=的两根为1x ,2x , ∴方程()()()2320f x af x b ++=的解为1()f x x =或2()f x x =,若12x x <,即1x 是极大值点,2x 是极小值点,由于()11f x x =,∴1x 是极大值,1()f x x =有两解,12x x <,21()()f x x f x =>只有一解,∴此时只有3解,若12x x >,即1x 是极小值点,2x 是极大值点,由于()11f x x =,∴1x 是极小值,1()f x x =有2解,12x x >,21()()f x x f x =<只有一解,∴此时只有3解.类型三 嵌套函数中参数问题典例3 已知函数()()221,0,0x ax a x f x ln x x ⎧--+≥⎪=⎨-<⎪⎩ ()212g x x a =+-.若函数()()y f g x =有4个零点,则实数a 的取值范围是________. 【解析】令()()0,f t t g x ==当10a -<时()f t 有两个零点121,1t t =->,需1211a a --∴当1=0a -时()f x 有三个零点, 1231,0,=2t t t =-=, 121a -=- 所以()()y f g x =有5个零点,舍; 当10a ->时,由于121a ->-所以24440a a ∆=+-> ,且2112a a a a +->- 5-11a << 综上实数a 的取值范围是()511,⎫-⋃+∞⎪⎪⎝⎭【小结】求解复合方程问题时,往往把方程[()]0f g x =分解为()0f t =和()g x t =处理,先从方程()0f t =中求t ,再带入方程()g x t =中求x 的值.巩固1. 设函数a x e x f x -+=)((a R ∈,e 为自然对数的底数),若曲线x y sin =上存在点),(00y x ,使00))((y y f f =成立,则a 的取值范围是__________ 【解析】由题意可得 y 0=si nx 0∈[-1,1],f (y 0)=e y 0+y 0-a ,∵曲线y =si nx 上存在点(x 0,y 0)使得f (f (y 0))=y 0,∴存在y 0∈[0,1],使f (y 0)=y 0成立, 即f (x )=x 在[0,1]上有解,即 e x +x -x 2=a 在[0,1]上有解. 令g (x )=e x +x -x 2,则a 为g (x )在[0,1]上的值域.∵当x ∈[0,1]时,g ′(x )=e x +1-2x >0,故函数g (x )在[0,1]上是增函数, 故g (0)≤g (x )≤g (1),即1≤a ≤e , 故答案为:[1,e ]巩固2.已知函数()y f x =是定义域为R 的偶函数. 当0x ≥时,5sin() (01)42()1() 1 (1)4x x x f x x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程2[()]()0f x af x b ++=(,a b R ∈),有且仅有6个不同实数根,则实数a 的取值范围是_____.【解析】作出5sin() (01)42()1() 1 (1)4x x x f x x π⎧≤≤⎪⎪=⎨⎪+>⎪⎩的图象如下,又∵函数()y f x =是定义域为R 的偶函数, 且关于x 的方程2[()]()0f x af x b ++=,,a b R ∈有且仅有6个不同实数根,∴20x ax b ++=的两根分别为154x =,2514x <<或101x <≤,2514x <<, 由韦达定理可得a x x -=+21,若451,4521<<=x x ,则2549<-<a ,即4925-<<-a ,若101x <≤,2514x <<,则491<-<a ,即149-<<-a ,从而可知4925-<<-a 或149-<<-a巩固3.已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.【解析】(1) f ′(x )=3x 2+2ax +b ,f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0,得a =0,b =-3 (2)由(1)知f (x )=x 3-3x .因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2,于是函数g (x )的极值点只可能是1或-2.当x <-2时,g ′(x )<0;当-2<x <1时,g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0,故1不是g (x )的极值点.所以g (x )的极值点为-2. (3)令f (x )=t ,则h (x )=f (t )-c .先讨论关于x 的方程f (x )=d 根的情况,d ∈[-2,2].当|d |=2时,由(2)可知,f (x )=-2的两个不同的根为1和-2,注意到f (x )是奇函数,所以f (x )=2的两个不同的根为-1和2.当|d |<2时,因为f (-1)-d =f (2)-d =2-d >0,f (1)-d =f (-2)-d =-2-d <0, 所以-2,-1,1,2都不是f (x )=d 的根.由(1)知f ′(x )=3(x +1)(x -1). ①当x ∈(2,+∞)时,f ′(x )>0,于是f (x )是单调增函数,从而f (x )>f (2)=2, 此时f (x )=d 无实根.同理,f (x )=d 在(-∞,-2)上无实根.②当x ∈(1,2)时,f ′(x )>0,于是f (x )是单调增函数,又f (1)-d <0,f (2)-d >0,y =f (x )-d 的图象不间断,所以f (x )=d 在(1,2)内有唯一实根.同理,f (x )=d 在(-2,-1)内有唯一实根.③当x ∈(-1,1)时,f ′(x )<0,故f (x )是单调减函数,又f (-1)-d >0,f (1)-d <0,y =f (x )-d 的图象不间断,所以f (x )=d 在(-1,1)内有唯一实根.由上可知:当|d |=2时,f (x )=d 有两个不同的根x 1,x 2满足|x 1|=1,|x 2|=2; 当|d |<2时,f (x )=d 有三个不同的根x 3,x 4,x 5满足|x i |<2,i =3,4,5. 现考虑函数y =h (x )的零点.当|c |=2时,f (t )=c 有两个根t 1,t 2满足|t 1|=1,|t 2|=2,而f (x )=t 1有三个不同的根,f (x )=t 2有两个不同的根,故y =h (x )有5个零点.当|c |<2时,f (t )=c 有三个不同的根t 3,t 4,t 5满足|t i |<2,i =3,4,5,而f (x )=t i (i =3,4,5)有三个不同的根,故y =h (x )有9个零点.综上可知,当|c |=2时,函数y =h (x )有5个零点;当|c |<2时,函数y =h (x )有9个零点.巩固4.已知函数2()(0)f x ax bx c a =++≠,且()f x x =没有实数根,(())f f x x =是否有实数根?并证明你的结论.2()(1)0f x x ax b x c -=+-+=无实数根,2(1)40b ac ∆=--<.(())0f f x x -=即为222()()0a ax bx c b ax bx c c x ++++++-=, 22222()()0a ax bx c ax ax b ax bx c c x ++-+++++-=,2222()()(1)(1)(1)0a ax bx c x ax bx c x b ax b x c b +++++-+++-++=,222(1)(1)(1)(1)0a ax b x c ax b x c b ax b x c ⎡⎤⎡⎤⎡⎤++++-++++-+=⎣⎦⎣⎦⎣⎦, 222(1)(1)10ax b x c a x a b x b ac ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦.于是有2(1)0ax b x c +-+=或22(1)10a x a b x b ac +++++=.21(1)40b ac ∆=--<;2222222(1)4(1)(1)4440a b a ac b a b ac a ⎡⎤∆=+-++=---<-<⎣⎦.故均不存在实数根.巩固5.设x b ax x x f cos )(2++=,{}{}∅≠==∈=0)]([,0)(x f f x R x x f x ,则满足条件的所有实数b a ,的取值分别为___________.【解析】由0)0(=f 易得0=b .a x x x f -==⇒=21,00)((i ) 当0=a 时,显然成立(ii ) (ii )当0≠a 时,记{}0)]([==x f f x B ,令t x f =)(,则0)(=t f ,可知a t t -==21,0 即0)(=x f 和a x f -=)(的解只能为a -,0,故a x f -=)(必须无解,解得40<<a 综上:40,0<≤=a b巩固6.设R x ∈,若函数)(x f 为单调递增函数,且对任意实数x ,都有1])([+=-e e x f f x(e 是自然对数的底数),则)2(ln f 的值等于_______.【解析】由()1x f f x e e ⎡⎤-=+⎣⎦,采用换元()xt f x e =+,即有: ()1f t e =+……(1) ()x f x e t =+……(2);可知:()1f e t =+……(3);又已知函数()f x 为增函数,可知1t =,代入(2)式有()1x f x e =+;因此()ln2ln 213f e =+=;巩固7.)(x f 是定义在正实数集上的单调函数,且满足对任意x ˃ 0,都有[()ln ]1e f f x x -=+,则(1)f = ______.【解析】()ln f x x -必为常数函数,否则存在两个不同数,其对应值均为1e +,与单调函数矛盾. 所以可设()ln f x x c -=.则()ln f x x c =+. 将c 代入,得()1e f c =+,即ln c c +1e =+. ∵ln y x x =+是单调增函数, 当c = e 时,ln c c +1e =+成立, ∴()ln e f x x =+.则(1)e f =.巩固8. 已知定义在()∞+,0上的函数)(x f 为单调函数,且1)1)(()(=+xx f f x f ,则_______)1(=f . 【解析】设b f =)1(,可求得答案为251±.巩固9.设定义域为R 的函数|1|25 1 0()4 4 0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m =_____.【解析】∵题中原方程22()(21)()0f x m f x m -++=有7个不同的实数根 ∴即要求对应于()f x 等于某个常数有3个不同实数解和4个不同的实数解 ∴故先根据题意作出()x f 的简图:由图可知,只有当()4f x =时,它有三个根故关于x 的方程22()(21)()0f x m f x m -++=有一个实数根4 ∴()2244-4210m m ⋅++=,∴2m =或6=m ,6=m 时方程22()(21)()0f x m f x m -++=()()()4036132=⇔=+-⇔x f x f x f或()9=x f ,有5个不同的实数根∴2=m。

高考数学热点必会题型第3讲-函数与方程和零点问题与嵌套函数(解析版)

高考数学热点必会题型第3讲-函数与方程和零点问题与嵌套函数(解析版)

高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,5【答案】B【分析】利用零点存在性定理求解即可【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=, 因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln ah a a =-,则()1e a h a a'=-,令()1e a m a a =-,则()21e a m a a '=+,∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =xa x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =xa x考虑函数()e xg x x =,则()()2e 1x x g x x-'=, 当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增; 故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④C .②③④D .①③④【答案】D【分析】根据给定函数,计算(2)-f x 判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点,所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,, ()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根, 此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1x x f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根, 综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上的公切线之间,故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个.故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327x xg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.①当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ②当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4 C .(]3,4 D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=, 因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点,所以()()166m f +<且()()11010mf +>,即7e11e m m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞.故选: C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩设()e ex x xg x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅, 由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解. 【详解】当13x ≤≤时,由210ax x -<+恒成立可得,211a x x⎛⎫<- ⎪⎝⎭恒成立, 令2211111()()24f x x x x ⎛⎫=-=-- ⎪⎝⎭,1113,,13x x ⎡⎤≤≤∴∈⎢⎥⎣⎦,∴当111,123x ⎡⎤=∈⎢⎥⎣⎦,即当2x =时, ()f x 取得最小值为()()min124f x f ==-, 因为211a x x⎛⎫<- ⎪⎝⎭恒成立,所以()min a f x <,即14a <-.故选:B .例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( ) A .6eB.(2eC.(2eD .2e【答案】AB【分析】本题的含义是不等式左边的最大值小于等于右边的最小值,t 是常数, 因此先要算出左边的最大值和右边的最小值,再计算不等式即可.【详解】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增, 所以对[0,)x ∀∈+∞,()()102f x f ≥=; ()()42e xg x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=- ,当1x >时,()'0g x < ;当01x <<时,()'0g x > ,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2e,⎡+∞⎣内, (2e +与2e 均不在区间()2e,⎡+∞⎣内; 故选:AB .【题型】八、一元二次不等式能成立问题31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( )A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞(C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】由题意得到20x x a -+≤有解,进而由根的判别式列出不等式,求出实数a 的取值范围.【详解】若p ⌝是真命题,由题意知不等式20x x a -+≤有解,140a ∴∆=-≥,解得:14a ≤. 因此,实数a 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦. 故选:A例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论.【详解】由2210x x λ-+<可得,221x x λ>+, 因为1,22x ⎡⎤∈⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可, 设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增, 所以()min f x f ==⎝⎭所以λ>故答案为:)+∞。

嵌套函数问题的类型及求解技巧

嵌套函数问题的类型及求解技巧
首先将内层函数换元即设fxt然后根据题设条件解出相应t的值或范围最后利用函数fx或利用函数yfx与yt的图像关系解得题
嵌套函数问题的类型及求解技巧
我们把形如y=f[f(x)]或y=f[g(x)]的一类函数称为嵌套函数,把含有嵌套函数的函数问题称为嵌套函数问题.嵌套函数问题有两类基本形式:1.“f[f (x)]”型这一类型是同一个函数f(x)自身嵌套问题,求解这一类型的策略是:首先将“内层函数”换元,即设f(x)=t,然后根据题设条件解出相应t的值或范围,最后利用函数f(x)或利用函数y=f(x)与y=t的图像关系解得问题.

c语言函数嵌套

c语言函数嵌套

c语言函数嵌套(原创版)目录1.C 语言函数嵌套的概念2.函数嵌套的实现方式3.函数嵌套的注意事项4.函数嵌套的实例解析正文C 语言函数嵌套是指在一个函数中调用另一个函数。

这种技术可以实现代码的模块化和复用,使得程序的设计更加简洁和清晰。

在 C 语言中,函数嵌套可以通过返回值和参数来实现。

首先,让我们了解一下函数嵌套的实现方式。

在 C 语言中,可以通过在函数内部调用另一个函数来实现函数嵌套。

被调用的函数可以是自定义的函数,也可以是系统提供的标准库函数。

调用方式和使用普通函数一样,只是在函数内部进行调用。

其次,函数嵌套的注意事项。

在使用函数嵌套时,应当避免函数调用过深,以免导致程序运行效率降低。

同时,应当注意函数嵌套可能会引发的递归调用过深问题。

如果发现函数嵌套过于复杂,可以考虑使用其他设计模式,如模块化或结构体等。

接下来,我们通过一个实例来解析函数嵌套。

假设我们需要计算一个矩形的面积和周长,可以定义两个函数分别计算面积和周长。

在计算面积的函数中,我们需要知道矩形的长和宽,而这两个参数可以通过用户输入或其他方式获取。

下面是一个简单的函数嵌套实例:```c#include <stdio.h>// 获取用户输入的矩形长和宽void getDimensions(double *length, double *width) {printf("请输入矩形的长:");scanf("%lf", length);printf("请输入矩形的宽:");scanf("%lf", width);}// 计算矩形的面积double calculateArea(double length, double width) {return length * width;}// 计算矩形的周长double calculatePerimeter(double length, double width) { return 2 * (length + width);}int main() {double length, width;getDimensions(&length, &width);double area = calculateArea(length, width);double perimeter = calculatePerimeter(length, width); printf("矩形的面积为:%.2lf", area);printf("矩形的周长为:%.2lf", perimeter);return 0;}```在上面的代码中,我们定义了一个`getDimensions`函数来获取用户输入的矩形长和宽,然后分别调用`calculateArea`和`calculatePerimeter`函数计算矩形的面积和周长。

函数嵌套问题(解析版)--新高考数学函数压轴小题专题突破

函数嵌套问题(解析版)--新高考数学函数压轴小题专题突破

函数嵌套--新高考数学函数压轴小题专题突破1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为()A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-,∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增,()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-.作出()f x 的函数图象如图所示: 25()()()f x mf x m R e -=∈,25()()0f x mf x e∴--=,△2200m e=+>,令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e <<,此时1()f x t =无解,2()f x t =有三解;(2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解;(3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解;综上,25()()f x mf x e-=有三个不同的实数解.故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为()A.(1,1)+B.(0C .1(1,1)e +D.,1)【解析】解:化简可得0()0xx f x x e =<⎪⎩,当0x >时,()0f x,2()()x x x e e f x e ''=== 当102x <<时,()0f x '>,当12x >时,()0f x '<,故当12x =时,函数()f x有极大值1212()22f e e==;当0x <时,()0f x '==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为12(22f e=;设()t f x =,当2t e >时,方程()t f x =有1个解,当t =()t f x =有2个解,当202t e <<时,方程()t f x =有3个解,当0t =时,方程()t f x =有1个解,当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-,当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则1(0,2t m e =-∈,即01m <-<11m <<+,则m 的取值范围是21)2e +故选:A.3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=.如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩ .故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是()A .(,0)-∞B .[1,)+∞C .(,0)[2-∞ ,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1),或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =±,当1a >时,1a >,(0,1)a -.满足题意.当1a =时,2a =,0a =,不满足题意.考察选项可知,D 正确;故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是()A .(2-,11e+)B .(2-,0)(⋃0,11e +)C .2321(,)2e e e +-+D .(32-,0)(⋃0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+,令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnx f x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e =+,故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=,△240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t ,由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <,关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C.6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是()A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=,解得:0m =或12,当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根,当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根,故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为()A .6,4B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -= ,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解.6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称,0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是()A .21(1,2]e +B .221[2,2]e e +-C .2221[2,]e e e -+D .221(2,]e e +【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++,可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a ,由切线与直线610x y ++=垂直,可得36a =,解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-,导数为222(1)(1)()2x x f x x x x -+'=-=,当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减.即有1x =处()f x 取得最小值1.则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1)可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解,设为1t ,2t ,12t t b +=,可得11t =,22112t e <+,即21112b e <-+,解得2123b e <+,①又212122t e e+<-,22112t e <+,则21222113t t b e e e+<+=+,②由①②求并可得2212b e e <+,故选:D .9.已知函数()1x f x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是()A .3(2-,0)B .3(2-,43-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根,①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时,设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-.故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是()A .(0,2)B .1(1,2)e -C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e -'=,当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减,可得()f x 在0x =处取得极小值0,在2x =处取得极大值241e <,作出()y f x =的图象,设()t f x =,关于x 的方程2()()10f x mf x m ++-=,即为210t mt m ++-=,解得1t =-或1t m =-,当1t =-时,()1f x =-无实根;由题意可得当241(0,t m e =-∈,解得241m e -=或1m =,所以24(1m e ∈-,1)故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是()A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x x f x e -'==,解得1x =;且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=.假设2m =,则2210t t ++=.解得1t =-,即()1f x =-.根据()f x 图象,很明显此时只有一个解,故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-.即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解,故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e=-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根,故12m e=-不符合题意,由此排除D 故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是()A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e <<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根【解析】解:当0x 时,||||()111x x x x x f x xe e e --=+=+=-+,因为g (1)0=,所以120a -+=,所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立,()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的,故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的.令()m g x t =-,则()10g m -=,解得:0m =或2m =,当0m =即()0g x t -=时,()g x t =,当2t <-时,()2g x <-,无解,当2m =即()2g x t -=时,()2g x t =+,当2t <-时,()0g x <,无解,故方程(())10g g x t --=没有相异实根,故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =,当110t e -+<<时,12(1,2)t e+∈+,由上可知()f x 在1x =-时取得极大值为1(1)1g e -=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点,故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点,若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根,故C 错误;当111t e -<<-+时,1()2(1,1)g x t e=+∈+,由C 可知此时有三个不等实根,当01t <时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根,当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根,故此时方程(())10g g x t --=共有9个不等实根,故D 错误.故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是1,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是.【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+,当1x <时,1112x -+>,则(()1)(2)2x f f x ln +=-.(1),1()(()1)(212ln lnx x g x f f x x ln x +⎧⎪∴=+=⎨-<⎪⎩,令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x x ln <⎧⎪⎨-=⎪⎩,解得1x =.故函数()(()1)g x f f x =+的零点是1;由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <,当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-,令112m t e -=->,则2lnx t =,2t x e =,112x t -=,122x t =-,∴1222t x x e t +=+-,12t >,设()22t t e t ϕ=+-,12t >,则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>,则()t ϕ的最小值为(2)422ln ln ϕ=-.12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞.【解析】解:当1x 时,()0f x lnx =,则()11f x +,(()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>,(()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <,当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-,令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-,∴121(22),2t x x e t t =->,设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25x ex x e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =,所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减,当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,45作出函数()f x的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=,则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立;或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e>⎧⎪⎨<⎪⎩,解得245a e <,故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解,当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意.综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0a x x f x x lnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是(2,0)-.【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0a x x f x x lnx x x ⎧++<⎪=⎨⎪->⎩,若()()0f x f x +-=在定义域上有四个不同的解等价于231a y x x =++关于原点对称的函数231a y x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310a lnx x x x -+-+=有两个解,即23263a xlnx x x x =-++,0x >,可设23()263g x xlnx x x x =-++,0x >,2()32129g x lnx x x '=+-+,2()1812120g x x x ''=+--=,可得()g x '在(0,)+∞递增,由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增,即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310a lnx x x x-+-+=有两个解,故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是(0,1).【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =;()0f x = 有两个不同的解,故()f x a =有三个不同的解,故(0,1)a ∈;故答案为:(0,1).18.已知函数()|1|33f x x x x =--+.(1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍);②当1x 时,令()0f x =,得1x =或3x =,∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解,解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8);解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈.(1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()244103f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围.【解析】解:(1)23()sin(2cos 1sin cos cos sin cos cos4684646442443f x x x x x x x x ππππππππππππ=--+=--=-=-⋯ (3分)∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈ ,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分)11442t t t += 当且仅当时取等号,4m ∴,⋯(8分)故实数m 的取值范围是[4,)+∞.⋯(12分)20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=.(Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅱ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅲ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围.【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅱ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立,综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为:2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解,∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >,或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。

函数的嵌套——精选推荐

函数的嵌套——精选推荐

函数的嵌套⼀、函数嵌套
1.函数的嵌套调⽤
在调⽤⼀个函数的过程中⼜调⽤其他函数
将⼀个⼤⼯能拆解成很多⼩功能
每个函数名都是全局变量,可以在全局有效
2.函数的嵌套定义
在函数内定义其他函数
⼦函数只能能在函数中被使⽤,⼦函数名只在局部有效
最外层函数相当于⼀个容器,装了很多⼦函数
3.函数的嵌套调⽤和嵌套定义的区别
嵌套定义⽤的⽐较少
嵌套定义的函数只能在外层函数内有效,嵌套定义的函数不能被其他函数引⽤
嵌套调⽤的函数名是全局变量名,可以在全局有效。

嵌套函数的解题方法

嵌套函数的解题方法

嵌套函数的解题方法嘿,朋友们!今天咱来聊聊嵌套函数的解题方法,这可真是个有趣又有点头疼的玩意儿呢!你看啊,嵌套函数就像是一个俄罗斯套娃,一层套着一层。

有时候你得小心翼翼地把外层剥开,才能看到里面那精致的小娃娃。

那怎么去剥开这个套娃呢?咱得有招儿啊!比如说,咱遇到一个嵌套函数,先别慌,稳住阵脚。

就好像你走进一个迷宫,得先观察观察地形对吧。

看看这个函数是怎么嵌套的,有哪些部分是关键的节点。

然后呢,咱可以试着从最外层开始分析。

就像剥洋葱一样,一层一层地往里深入。

每剥一层,你就对这个函数的结构更清楚一些。

这时候,你得有耐心,别着急,慢慢来。

咱可以通过一些具体的例子来理解。

比如说有个函数 f(g(x)),那咱就得先搞清楚 g(x)是个啥玩意儿,它的作用是什么。

然后再看 f 这个函数对 g(x)的结果又做了些什么。

这就好比你要搞清楚一道菜是怎么做出来的,先得知道每种食材的特点,然后再看它们是怎么组合在一起烹饪的。

还有啊,有时候可以通过换元的方法来简化问题。

把里面那复杂的部分用一个新的变量来表示,这样一下子就清晰多了。

这就像你给一个复杂的东西起了个简单的名字,叫起来方便多了。

再比如说,有时候你得从结果反推回去。

就像侦探破案一样,根据线索一点点找到真相。

看看要得到最终的结果,前面的步骤应该是怎样的。

哎呀,想想看,这嵌套函数就像一个神秘的城堡,里面藏着好多秘密等你去发现呢!你要是掌握了这些解题方法,不就像是找到了打开城堡大门的钥匙吗?举个例子吧,有个嵌套函数h(f(x)),已知h(y)的表达式和一些条件,那咱就得从这些条件入手,去推导 f(x)应该是什么样的。

这过程可能有点烧脑,但当你解开谜团的时候,那成就感可不是一般的大呀!总之呢,对付嵌套函数,咱得有耐心、有方法、有智慧。

别被它那复杂的外表给吓住了,其实它就。

函数嵌套 求函数值 -回复

函数嵌套 求函数值 -回复

函数嵌套求函数值-回复函数嵌套是指在一个函数内部调用另一个函数。

当我们需要在一个函数内部对某些动作进行多次执行时,可以将这些动作封装在一个函数内,并在主函数中调用该函数。

这样可以提高代码的可读性和重用性。

要求求函数的值,首先需要定义一个函数,然后在主函数中调用这个函数并传入相应的参数。

接下来,我们将一步一步回答如何使用函数嵌套来求函数的值。

第一步,定义主函数:主函数是程序的入口,我们可以在这里定义函数,调用函数,并传入相应的参数。

首先,我们需要定义一个主函数main():pythondef main():pass第二步,定义嵌套函数:在主函数内定义嵌套函数,以供主函数调用。

假设我们需要求一个数的平方和,我们可以定义一个函数square()来计算数字的平方:pythondef square(x):return x * x第三步,调用嵌套函数:在主函数中调用嵌套函数,并传入相应的参数。

为了求一个数的平方和,我们可以在主函数中定义一个列表,然后使用嵌套函数求出每个数字的平方,并将结果累加起来:pythondef main():numbers = [1, 2, 3, 4, 5] # 定义一个列表result = 0for number in numbers:result += square(number)print("平方和为:", result)第四步,运行程序:最后,我们需要在主函数之外运行程序,以便执行主函数中的代码。

我们可以添加以下代码来运行程序:pythonif __name__ == '__main__':main()通过运行程序,我们就能得到函数的值。

在这个例子中,我们定义了一个列表[1, 2, 3, 4, 5],并使用函数嵌套来求出每个数字的平方和。

最终,程序会输出平方和的结果。

总结:通过使用函数嵌套,我们可以将一个复杂的问题分解为多个小的函数,从而提高代码的可读性和重用性。

(完整word版)嵌套函数相关问题的研究与拓展

(完整word版)嵌套函数相关问题的研究与拓展

嵌套函数相关问题的研究与拓展【问题提出】问题1:设函数2222, 0(), 0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若(())2f f a =,则a =_______变式:设函数f (x )=22+0,0x x x x x ⎧<⎨-≥⎩,,若f (f (a ))≤2,则实数a 的取值范围是__________。

问题2:对于函数()f x ,若存在0x R ∈,使()00f x x =成立,则称0x 为()f x 的不动点.已 知函数()()()211,0f x ax b x b a =+++-≠. (1)当1,2a b ==-时,求()f x 的不动点;(2)若对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围.【探究拓展】探究1:若函数32()f x x ax bx c =+++有极值点12,x x ,且11(=f x x )则关于x 的方程0)(2))((32=++b x af x f 的不同实根个数是______ .变式1:设函数⎩⎨⎧<≤≤=0,,0,sin 2)(2x x x x x f π,则函数1)]([-=x f f y 的零点个数为_______.变式2:函数,0,00,11)(⎪⎩⎪⎨⎧≠≠-=x x xx f 方程[]0)()(2=++c x bf x f 有7个根的充要条件是 ________,变式3:设定义域为R 的函数⎪⎩⎪⎨⎧<++≥-=-0,44,0,15)(21x x x x x f x ,若关于x 的方程[]0)()12()(22=++-m x f m x f 有7个不同的实数解,则._______=m变式4:已知函数)(x f y =和)(x g y =在]2,2[-的图象如下图表示:给出下列四个命题:①方程0)]([=x g f 有且仅有6个根; ②方程0)]([=x f g 有且仅有3个根; ③方程0)]([=x f f 有且仅有5个根; ④方程0)]([=x g g 有且仅有4个根; 其中正确命题的是__________(注:把你认为是正确的序号都填上).变式5:已知函数1)(-=x x f ,关于x 的方程0)()(2=+-k x f x f ,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为__________.变式7:已知函数13)(23+-=x x x f ,⎪⎩⎪⎨⎧≤--->+=0,86,0,41)(2x x x x xx x g ,试讨论方程0)]([=-a x f g 的解的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结合图象可得 ,
故答案为 , .
变式5.已知函数 , ,则当方程 有6个解时 的取值范围是
A. B. 或 C. D.
【解析】解: 函数 , ,

令 得: ,或 ,
故当 时,函数 取极大值1,当 时,函数取极小值 ;
则 与 的交点情况为:
当 ,或 时,有一个交点;
当 ,或 时,有两个交点;
当 时,有三个交点;
令: ,则方程在 , 上一定有解


故答案为: .
变式6.设函数 .若对任意 ,均有 ,则实数 的取值范围是.
【解析】解:函数 .若对任意 ,均有 ,
即为 ,
即 ,
可得 恒成立,
由 ,
即有 ,
故答案为: .
变式7.对于函数 ,若 ,则称 为 的“不动点”,若 ,则称 为 的“稳定点”,记 , ,则下列说法错误的是
若 ,
则可判断 有解,故成立;
若 ,
则可判断 有解,故成立;
若 ,
则可判断 有解,故成立;
若 ,
则可判断 无解,故不成立;
故选: .
例11. 和 都是定义在 上的函数,且方程 有实数解,则 不可能是
A. B. C. D.
【解析】解:因为 ,所以 ,得 ,
即 ,所以 与 是等价的,
即 有解, 也有解,也就是说有解得都是有可能的,
由题意,方程①恒有两个不等实根,所以△ ,
即 恒成立,则△ ,故 .
(3)设 , , , , , ,
又 的中点在该直线上,所以 ,

而 , 应是方程①的两个根,所以 ,即 ,

当 时, .
例8.定义:若函数 对于其定义域内的某一数 ,有 ,则称 是 的一个不动点.已知函数 .
当 , 时,求函数 的不动点;
A. B. C. D.
【解析】解: 为函数 的“不动点”,则方程 ,即 有实根,故△ , ,
如果“稳定点”恰是它的“不动点”,则上述方程的根 为方程 ,即 的实根,
方程 可化为: ,即 ,利用平方差公式分解因式得,
, ,
函数 的“稳定点”恰是它的“不动点”, 方程 无实数根,
, ,
综上, ,
故选: .
(2)若关于 的方程 有4个不同的实数很,求实数 的取值范围.
【解析】解:(1)令 得, ,或 ;
当 ,或 时, ,
当 时, ;

①当 时,函数 为增函数; 时,函数 为减函数;
②当 时,令 , ,
设 ,则: , ,

时, , 为减函数,
, 时, , 为增函数;
令 ,则 ,
当 时, 为增函数, 为减函数,故 为减函数;
由此可得, 的图象与直线 有交点,且交点横坐标 , ,
根据 ,化简整理得 . , ,
即 , , ,
根据二次函数的性质得出:
即实数 的取值范围为 , .
故选: .
变式11.设函数 , 为自然对数的底数),若存在 , 使 (b) 成立,则 的取值范围
A. , B. , C. , D. ,
【解析】解:因为存在 , ,使 (b) 成立,
而 ,即 ,
反之,任取 ,则 ,
若 ,则 ,出现矛盾,
若 ,则 ,出现矛盾,
所以 ,则 ,
综上所述, ,故 正确;
对于 :对于函数 ,
由 ,得 ,
当 时, ,
所以 , ,
又 ,
所以 ,
所以 ,故 错误;
故选: .
变式8.对于函数 ,若 ,则称 为函数 的“不动点”:若 ,则称 为 的“稳定点”,如果函数 的稳定点恰是它的不动点,那么 的取值范围为
【解析】解:设 ,解 ,得 或 ,
①当 时,由 ,得 或 ,
即得 或 ;
②当 时,由 得 ,
即 或 ,即 或 ,
综合①②得:
函数 的零点为: 或 或 或 共4个;
故选: .
变式3.已知函数 ,集合 , , , ,若 为单元素集,试求 的值.
【解析】 集合 , ,
为单元集, ,

, ,
当 时, 不符题意,故 ,
且交点的横坐标 , ,
的图象与 的图象关于直线 对称,
的图象与函数 的图象的交点必定在直线 上,
由此可得, 的图象与直线 有交点,且交点横坐标 , ,
根据 ,化简整理得 .
记 , ,
由 , ,
可得 , ,即 .
即实数 的取值范围为 , .
故选: .
变式13.设函数 .若方程 有解,则 的取值范围为
A. B. C. D. ,
【解析】解:设 , ,则方程 等价为 ,
即 ,

即 ,
在 时有解,
即 ,
在 时成立,
设 ,
当 时, 取得最大值 ,

即 ,
故选: .
题型四:复合函数 的零点问题
例10.设 , 都是定义在 上的函数,若函数 有零点,则函数 不可能是
A. B. C. D.
【解析】解: 函数 有零点,
方程 有解,

有解,
(1)当 , 时,求函数 的不动点;
(2)若对任意的实数 ,函数 恒有两个不动点,求 的取值范围;
(3)在(2)的条件下,若 图象上两个点 、 的横坐标是函数 的不动点,且 、 的中点 在函数 的图象上,求 的最小值.
【解析】解:(1) ,由 ,解得 或 ,所以所求 ,



,方程无解,不符 为单元集,故 .
方程 有2个不相等的实数解: ,
当 时有 ,解得: 或 (舍去).
同理当 时有: 或 (舍去).
综上, .
题型二:“ ”型问题
例4.已知函数 ,
(1)求 (1) 的值;
(2)若方程 有4个实数根.求实数 的取值范围.
【解析】解:(1) (1) ,
当 时, 为增函数, 为增函数,故 为增函数;
当 时, 为减函数, 为增函数,故 为减函数;
当 时, 为减函数, 为减函数,故 为增函数;
综上所述,函数 的单调递增区间为 , , , , , ;
(2)由(1)可得,当 或 时, ;
时, 取得极大值 ; 时, 取得极小值1;
时, 取得极小值1.
由方程 有4个不同的实数很,
所以存在 , ,使 (b) (b),
即函数 与其反函数在 , 上有交点,
因为函数 在 , 上为单调递增函数,
所以函数 与其反函数在 , 的交点在直线 上,
即函数 与其反函数的交点即为 与 的交点,
令 ,即 在 , 上有解,
所以 在 , 上有解,
因为 在 , 上单调递增,
所以 ,
则 的取值范围为 , .
所以 ,
所以 的取值范围为 .
例9.设函数 , , 为自然对数的底数),若存在 , 使 (b) 成立,则 的取值范围是.
【解析】解: 存在 , ,使 (b) 成立
存在 , ,使 (b) (b)
即函数 与其反函数 在 , 上有交点
在 , 上为增函数
函数 与其反函数 在 , 的交点在直线 上,
即函数 与其反函数 的交点就是 与 的交点
当 时,

作函数 的图象如下:
解 ,得到 或 ,
又 是函数 的所有零点中的最大值,
所以 ,且 (2) , (3) ,
因为 , ,
所以 ,
故答案为:2.
例2.设函数 ,则当 时,函数 的最大值等于,若 是函数 的所有零点中的最大值,且 , ,则 .
【解析】解:当 时,

作函数 的图象如下,
解 得,
或 ;
又 是函数 的所有零点中的最大值,

且 (2) , (3) ;
故 .
故答案为:1,2.
例3.已知函数 ,则函数 的零点个数为
A.3B.4C.5D.6
【解析】解:令 ,可得 或 或 ,
函数 的图象如图所示,
由图象可知,当 时,有1个解;
当 时,有3个解;
当 时,有1个解.
综上所述,函数 的零点个数为5个.
(Ⅱ)若对任意的实数 ,函数 恒有两个不动点,求 的取值范围.
【解析】解:(Ⅰ)当 , 时, ,
因为 为 的不动点,
所以 ,
即 解得 , ,
所以 和3是 的不动点.
(Ⅱ)因为 恒有两个相异的不动点,
即方程 恒有两个不同的解,
即 有两个不相等的实数根,
所以 恒成立,
即对任意 , 恒成立,
所以 ,
所以 ,
(1) ,
即 (1) .
(2)令 ,则原方程化为 ,
易知方程 在 内有2个不同的解,
则原方程有4个解等价于函数 与 的图象有2个不同的交点,作出函数 的图象,如图;
(1) , ,
由图象可知,当 时,函数 , 与 有2个不同的交点,
即所求 的取值范囿是 , .
例5.设函数 , , .
(1)求函数 的单调递增区间.
微专题22函数嵌套问题
【题型归纳目录】
题型一:“ ”型问题
题型二:“ ”型问题
题型三:复合函数 的零点问题
题型四:复合函数 的零点问题
题型五:含参二次函数复合型零点问题
题型六:零点求和问题
题型七:其他型
【典型例题】
题型一:“ ”型问题
例1.设函数 , 是函数 的所有零点中的最大值,若 , ,则 .
【解析】解: 函数 ,
即为 的图象与直线 有4个交点.
则 的取值范围是 , .
例6.设函数 , , ,求函数 的单调递增区间.
【解析】解:令 得, ,或 ;
当 ,或 时, ,
当 时, ;
相关文档
最新文档