数字推理题的常见类型及形式
数字推理题型的7种类型28种形式,必会基础
数字推理题型的7种类型28种形式,必会基础!第一种情形----等差数列1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键第二种情形---等比数列:5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
【数量关系】数字推理的十种类型
【数量关系】"数字推理"的十种类型按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
这种题属于比较简单的,不经练习也能在短时间内做出。
建议解这种题时,用口算。
(2)移动求和或差。
从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。
1,2,3,5,(),13A 9B 11C 8D7选C。
1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19,31,50A 12B 13C 10D11 选A0,1,1,2,4,7,13,()A 22B 23C 24D 25选C。
注意此题为前三项之和等于下一项。
一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。
5,3,2,1,1,()A-3B-2 C 0D2 选C。
2.乘除关系。
又分为等比、移动求积或商两种(1)等比。
从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。
8,12,18,27,(40.5)后项与前项之比为1.5。
6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3 (2)移动求积或商关系。
从第三项起,每一项都是前两项之积或商。
2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)后项为前两项之积+13.平方关系1,4,9,16,25,(36),4966,83,102,123,(146)8,9,10,11,12的平方后+24.立方关系1,8,27,(81),1253,10,29,(83),127立方后+20,1,2,9,(730)有难度,后项为前项的立方+15.分数数列。
一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案1/24/39/416/525/6(36/7)分子为等比,分母为等差2/31/22/51/3(2/7)将1/2化为2/4,1/3化为2/6,可知下一个为2/76.带根号的数列。
数字推理题型7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
公务员行测指导30种数字推理解题技巧
公务员行测指导:30种数字推理解题技巧一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、()A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ( )A 19/3B 8C 39D 32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、()A. 33B. 37C. 39D. 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、()A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )A.163B.134C.785D.896六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )A.10B.16C.18D.20八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
数字推理题的基本题型和规律
数字推理题的基本题型和规律归纳总结:数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案.在实际解题过程中,我们根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律.1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n 的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,考生必须掌握.但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢这就需要学员在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧.这里我们提供为刚刚接触数字推理题型的学员提供一种最基本的解题思路,学员按照这种思路来训练自己,能够逐步熟悉各种题型,掌握和运用数字推理的基本规律.当学员对题型和规律已经很熟悉后,就可以按照自己的总结的简单方法来解答问题.第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案.第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律.当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律.我们这里所介绍的是数字推理的一般规律,学员在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案的.数字推理的题目就是给你一个数列,但其中缺少一项,要求你仔细观察这个数列各数字之间的关系,找出其中的规律,然后在四个选项中选择一个最合理的一个作为答案.按照数字排列的规律,数字推理题一般可分为以下几种类型:一、奇、偶:题目中各个数都是奇数或偶数,或间隔全是奇数或偶数:1、全是奇数:例题:1537A.2B.8C.9D.12解析:答案是C,整个数列中全都是奇数,而答案中只有答案C是奇数2、全是偶数:例题:2648A.1B.3C.5D.10解析:答案是D,整个数列中全都是偶数,只有答案D是偶数.3、奇、偶相间例题:2134176A.8B.10C.19D.12解析:整个数列奇偶相间,偶数后面应该是奇数,答案是C.练习:2,1,4,3,,599年考题二、排序:题目中的间隔的数字之间有排序规律1、例题:34,21,35,20,36A.19B.18C.17D.16解析:数列中34,35,36为顺序,21,20为逆序,因此,答案为A.三、加法:题目中的数字通过相加寻找规律1、前两个数相加等于第三个数例题:4,5,,14,23,37A.6B.7C.8D.9注意:空缺项在中间,从两边找规律,这个方法可以用到任何题型;解析:4+5=95+9=149+14=2314+23=37,因此,答案为D;练习:6,9,,24,39//1,0,1,1,2,3,5,2、前两数相加再加或者减一个常数等于第三数例题:22,35,56,90,99年考题A.162B.156C.148D.145解析:22+35-1=5635+56-1=9056+90-1=145,答案为D.四、减法:题目中的数字通过相减,寻找减得的差值之间的规律1、前两个数的差等于第三个数:例题:6,3,3,,3,-3A.0B.1C.2D.3答案是A解析:6-3=33-3=03-0=30-3=-3提醒:“空缺项在中间,从两边找规律”2、等差数列:例题:5,10,15,A.16B.20C.25D.30答案是B.解析:通过相减发现:相邻的数之间的差都是5,典型等差数列;3、二级等差:相减的差值之间是等差数列例题:115,110,106,103,A.102B.101C.100D.99答案是B解析:邻数之间的差值为5、4、3、2,等差数列,差值为1103-2=1014、二级等比:相减的差是等比数列例题:0,3,9,21,45,相邻的数的差为3,6,12,24,48,答案为93例题:-2,-1,1,5,,29---99年考题解析:-1--2=1,1--1=2,5-1=4,13-5=8,29-13=16后一个数减前一个数的差值为:1,2,4,8,16,所以答案是135、相减的差为完全平方或开方或其他规律例题:1,5,14,30,55,相邻的数的差为4,9,16,25,则答案为55+36=916、相隔数相减呈上述规律:例题:53,48,50,45,47A.38B.42C.46D.51解析:53-50=350-47=348-45=345-3=42答案为B注意:“相隔”可以在任何题型中出现五、乘法:1、前两个数的乘积等于第三个数例题:1,2,2,4,8,32,前两个数的乘积等于第三个数,答案是2562、前一个数乘以一个数加一个常数等于第二个数,n1×m+a=n2例题:6,14,30,62,A.85B.92C.126D.250解析:6×2+2=1414×2+2=3030×2+2=6262×2+2=126,答案为C 练习:28,54,106,210,3、两数相乘的积呈现规律:等差,等比,平方,...例题:3/2,2/3,3/4,1/3,3/899年海关考题A.1/6B.2/9C.4/3D.4/9解析:3/2×2/3=12/3×3/4=1/23/4×1/3=1/41/3×3/8=1/83/8×=1/16答案是A六、除法:1、两数相除等于第三数2、两数相除的商呈现规律:顺序,等差,等比,平方,...七、平方:1、完全平方数列:正序:4,9,16,25逆序:100,81,64,49,36间序:1,1,2,4,3,9,4,162、前一个数的平方是第二个数.1直接得出:2,4,16,解析:前一个数的平方等于第三个数,答案为256.2前一个数的平方加减一个数等于第二个数:1,2,5,26,677前一个数的平方减1等于第三个数,答案为6773、隐含完全平方数列:1通过加减化归成完全平方数列:0,3,8,15,24,前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案为6的平方36. 2通过乘除化归成完全平方数列:3,12,27,48,3,12,27,48同除以3,得1,4,9,16,显然,答案为753间隔加减,得到一个平方数列:例:65,35,17,,1A.15B.13C.9D.3解析:不难感觉到隐含一个平方数列.进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,所以下一个数应该是2的平方减1等于3,答案是D.练习1:65,35,17,3,1A.15B.13C.9D.3练习2:0,2,8,18,24A.24B.32C.36D.5299考题八、开方:技巧:把不包括根号的数有理数,根号外的数,都变成根号内的数,寻找根号内的数之间的规律:是存在序列规律,还是存在前后生成的规律.九、立方:1、立方数列:例题:1,8,27,64,解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125.2、立方加减乘除得到的数列:例题:0,7,26,63,解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124.十、特殊规律的数列:1、前一个数的组成部分生成第二个数的组成部分:例题:1,1/2,2/3,3/5,5/8,8/13,答案是:13/21,分母等于前一个数的分子与分母的和,分子等于前一个数的分母.2、数字升高或其它排序,幂数降低或其它规律.例题:1,8,9,4,,1/6A.3B.2C.1D.1/3解析:1,8,9,4,,1/6依次为1的4次方,2的三次方,3的2次方平方,4的一次方, ,6的负一次方.存在1,2,3,4,,6和4,3,2,1,,-1两个序列.答案应该是5的0次方,1.例题:1、4,5,7,11,19A、27B、31C35D41解题思路:1、首先此题不是隔项数列.两个数相加不等于第三数.两个数相减的差为1,2,4,8,分别是2的0次方,1次方,2次方,3次方,因此,答案应为19加上2的4次方,即35,答案为C.例题2:343635353437A36,33B33,36C37,34D34,37解题思路:首先观察数列,看是否为隔项数列.此数列,隔项分别为343537和363534两个数列,答案为A.。
数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
【数量关系】数字推理的十种类型
【数量关系】"数字推理"的十种类型按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
这种题属于比较简单的,不经练习也能在短时间内做出。
建议解这种题时,用口算。
(2)移动求和或差。
从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多了也就简单了。
1,2,3,5,(),13A 9B 11C 8D7选C。
1+2=3,2+3=5,3+5=8,5+8=132,5,7,(),19,31,50A 12B 13C 10D11 选A0,1,1,2,4,7,13,()A 22B 23C 24D 25选C。
注意此题为前三项之和等于下一项。
一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。
5,3,2,1,1,()A-3B-2 C 0D2 选C。
2.乘除关系。
又分为等比、移动求积或商两种(1)等比。
从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。
8,12,18,27,(40.5)后项与前项之比为1.5。
6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3 (2)移动求积或商关系。
从第三项起,每一项都是前两项之积或商。
2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216)此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)后项为前两项之积+13.平方关系1,4,9,16,25,(36),4966,83,102,123,(146)8,9,10,11,12的平方后+24.立方关系1,8,27,(81),1253,10,29,(83),127立方后+20,1,2,9,(730)有难度,后项为前项的立方+15.分数数列。
一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案1/24/39/416/525/6(36/7)分子为等比,分母为等差2/31/22/51/3(2/7)将1/2化为2/4,1/3化为2/6,可知下一个为2/76.带根号的数列。
数字推理之谜
数字推理之谜数字推理是一种通过观察、分析和推断数字之间的规律来解答问题的方法。
在这个数字推理之谜的文章中,我们将探讨一些常见的数字逻辑和推理题目,帮助读者提升数字推理能力。
1. 数列推理数列推理是数字推理中最常见的一种形式。
通过观察一组数字,我们需要找出其中的规律,以确定下一个数字是什么。
下面是一个例子:2, 4, 6, 8, ?观察这组数字,我们可以发现每个数字都比前一个数字大2。
所以下一个数字应该是10。
通过这种方法,我们可以轻松解答数列推理题目。
2. 数字替换数字替换是另一种常见的数字推理形式。
在这种类型的问题中,我们需要根据一定的规律将数字替换为其他数字。
下面是一个例子:18 - 3 = 22根据这个等式,我们需要在“-”号和“=”号之间填上正确的数字,使等式成立。
观察等式左边的数字,我们可以发现它们的和是等式右边的数字。
所以正确的答案是 21。
3. 数字排列数字排列是数字推理中更复杂的形式之一。
在这种类型的题目中,我们需要根据一定的规律对数字进行排列,使其符合某种条件。
下面是一个例子:根据以下的数字规律,将数字重新排列,使其成为一个正确的方程式:1 2 3 4 5 6 7 8 9 = 100观察这个题目,我们可以发现方程式中的数字是按照一定的顺序排列的。
我们可以将数字重新排列如下:12 + 34 + 5 + 67 + 89 = 100通过这种方法,我们可以符合题目所给的条件。
4. 数字图形数字图形是数字推理中更复杂和有趣的形式之一。
在这种类型的题目中,我们需要观察数字的图形模式或排列形式,以确定规律并填写缺失的数字。
下面是一个例子:请根据以下的数字图形,填写缺失的数字:1 2 34 5 67 ? 9观察这个图形,我们可以发现每一列数字的和都是相同的。
所以缺失的数字应该是 8。
通过以上的例子,我们可以看到数字推理在解决问题时的应用场景和方法。
在数字推理中,观察和分析是关键。
通过不断练习和思考,我们可以提升自己的数字推理能力,更好地解决问题。
数字推理(可直接打印)
数字推理(可直接打印)
数字推理
数字推理是一种基于对数字模式和规律的分析和推导的方法。
通过观察数列、图形、表格等数字序列,我们可以发现其中的规律,并预测下一个数字或者填充缺失的数字。
数字推理可以帮助我们锻炼逻辑推理和数学思维能力,培养我
们的观察力和分析能力。
在许多领域,如数学、科学、工程和计算
机科学中,数字推理都有着重要的应用。
数字推理可以分为以下几种类型:
1. 数列推理:观察数列中数字的变化规律,推测下一个数字或
填充缺失的数字。
常见的数列推理包括等差数列、等比数列和斐波
那契数列等。
2. 图形推理:观察图形的形状、图案或线条的变化规律,推断下一个图形的形状或填充缺失的部分。
图形推理可以锻炼我们的几何思维和空间想象力。
3. 表格推理:观察表格中数据的关系和变化规律,推断下一个数据或填充缺失的数据。
表格推理可以帮助我们培养数据分析和统计能力。
在进行数字推理时,我们应该注意以下几点:
1. 注意细节:仔细观察数字模式或图形的变化细节,寻找规律和共同特征。
2. 多角度思考:从不同的角度和思维方式来分析和推理,寻找可能的解决方案。
3. 实践和训练:通过解决各种类型的数字推理问题,不断练和提高我们的推理能力。
数字推理是一个锻炼思维和逻辑能力的过程,通过不断的实践和训练,我们可以提高我们的数字推理能力,应用到各种领域中。
数字推理题的各种规律
数字推理题的各种规律一.题型:●等差数列及其变式【例题 1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前 3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数.题中第二个数字为 5,第一个数字为 2,两者的差为 3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即 8+3=11,第四项应该是 11,即答案为 B.【例题 2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为 C.这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目.顺次将数列的后项与前项相减,得到的差构成等差数列 1,2,3,4,5,…….显然,括号内的数字应填13.在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式.●等比数列及其变式【例题 3】3,9,27,81()A 243B 342C 433D 135【解答】答案为 A.这也是一种最基本的排列方式,等比数列.其特点为相邻两个数字之间的商是一个常数.该题中后项与前项相除得数均为 3,故括号内的数字应填 243.【例题 4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为 C.该题难度较大,可以视为等比数列的一个变形.题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为 60×3=180.这种规律对于没有类似实践经验的应试者往往很难想到.我们在这里作为例题专门加以强调.该题是 1997 年中央国家机关录用大学毕业生考试的原题.【例题 5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B.这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的 2 倍减 2 之后得到后一项.故括号内的数字应为 50×2-2=98.●等差与等比混合式【例题 6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题.其中奇数项是以 5 为首项、等差为 5 的等差数列,偶数项是以 4 为首项、等比为 2 的等比数列.这样一来答案就可以容易得知是 C.这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型.●求和相加式与求差相减式【例题 7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C.观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为 173.在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律.【例题 8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项 5 与第二项 3 的差等于第三项 2,第四项又是第二项和第三项之差……所以,第四项和第五项之差就是未知项,即 1-1=0,故答案为 C.●求积相乘式与求商相除式【例题 9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项 10 等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为 D.【例题 10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是 2/25,即选 C.●求平方数及其变式【例题 11】1,4,9,(),25,36A 10B 14C 20D 16【解答】答案为 D.这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1 的平方,第二个数字是 2 的平方,第三个数字是 3 的平方,第五和第六个数字分别是 5、6 的平方,所以第四个数字必定是 4 的平方.对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的.【例题 12】66,83,102,123,()A 144B 145C 146D 147【解答】答案为 C.这是一道平方型数列的变式,其规律是 8,9,10,11,的平方后再加 2,故括号内的数字应为 12 的平方再加 2,得 146.这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了.●求立方数及其变式【例题 13】1,8,27,()A 36B 64C 72 D81【解答】答案为 B.各项分别是 1,2,3,4 的立方,故括号内应填的数字是 64.【例题 14】0,6,24,60,120,()A 186B 210C 220D 226【解答】答案为 B.这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是 1 的立方减 1,第二个数是 2 的立方减2,第三个数是 3的立方减 3,第四个数是 4 的立方减 4,依此类推,空格处应为 6 的立方减 6,即210.●双重数列【例题 15】257,178,259,173,261,168,263,()A 275B 279C 164D 163【解答】答案为 D.通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,…….也就是说,奇数项的都是大数,而偶数项的都是小数.可以判断,这是两项数列交替排列在一起而形成的一种排列方式.在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找.我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式.而偶数项是 178,173,168,(),也是一个等差数列,所以括号中的数应为 168-5=163.顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化.两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式.只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经 80%了.●简单有理化式二、解题技巧数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助.1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止.2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算.3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导.4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证.常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减.(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为 2(即相邻数之间的比值为 2)的等比数列,空缺项应为 128.(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5.(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为 1、2、4、8、16,空缺项应为 63.(6)加法规律:前两个数之和等于第三个数,如例题 23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1.(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为 50.(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列.如:1 2 6 15 31()相邻数之间的差是完全平方序列,依次为 1、4、9、16,空缺项应为 31+25=56.公务员考试数字推理题汇总1、15,18,54,(),210A 106B 107C 123D 1122、1988 的 1989 次方+1989 的 1988 的次方……个位数是多少呢?3、1/2,1/3,2/3,6/3,( ),54/36A 9/12,B 18/3 ,C 18/6 ,D 18/364、4,3,2,0,1,-3,( )A -6 ,B -2 ,C 1/2 ,D 05、16,718,9110,()A 10110,B 11112,C 11102,D 101116、3/2,9/4,25/8,( )A 65/16,B 41/8,C 49/16,D 57/87、5,( ),39,60,105.A.10B.14C.25D.308、8754896×48933=()A.428303315966B.428403225876C.428430329557D.4284033259689、今天是星期二,55×50 天之后().A.星期一B.星期二C.星期三D.星期四10、一段布料,正好做 12 套儿童服装或 9 套成人服装,已知做 3 套成人服装比做 2 套儿童服装多用布 6 米,这段布有多长?A 24B 36 C54 D 4811、有一桶水第一次倒出其中的 6 分之一,第二次倒出 3 分之一,最后倒出 4 分之一,此时连水带桶有20 千克,桶重为 5 千克,,问桶中最初有多少千克水?A 50B 80C 100D 3612、甲数比乙数大 25%,则乙数比甲数小()A 20%B 30%C 25%D 33%13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的 3 倍,每个隔 10 分钟有一辆公交车超过一个行人.每个隔 20 分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10B 8C 6 D414、某校转来 6 名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法?A 18B 24C 36D 4615、某人把 60000 元投资于股票和债券,其中股票的年回报率为 6%,债券的年回报率为 10%.如果这个人一年的总投资收益为 4200 元,那么他用了多少钱买债券?A. 45000B. 15000C. 6000D. 480016、一粮站原有粮食 272 吨,上午存粮增加 25%,下午存粮减少 20%,则此时的存粮为( ) 吨.A. 340B. 292C. 272D. 26817、3 2 5\3 3\2 ( )A.7/5 B.5/6 C.3/5 D.3/418、1\7 1\26 1\63 1\124 ( )19、-2 ,-1, 1, 5 () 29(2000 年题)A.17B.15C.13D.1120、5 9 15 17 ( )A 21B 24C 32D 3421、81301512() {江苏的真题}A10B8 C13D1422、3,2,53,32,( ) A 75 B 5 6 C 35 D 3423、2,3,28,65,( )A 214B 83C 414D 31424、0 ,1, 3 ,8 ,21, ( ) ,14425、2,15,7,40,77,( )A96 ,B126, C138,, D15626、4,4,6,12,(),9027、56,79,129,202 ()A、331B、269C、304D、33328、2,3,6,9,17,()A 19B 27C 33D 4529、5,6,6,9,(),90A 12,B 15,C 18,D 2130、16 17 18 20 ()A21B22C23D2431、9、12、21、48、()32、172、84、40、18、()答案1、答案是 A 能被 3 整除嘛2、答:应该也是找规律的吧,1988 的 4 次个位就是 6,六的任何次数都是六,所以,1988 的 1999 次数个位和 1988的一次相等,也就是 8后面那个相同的方法个位是 1忘说一句了,6 乘 8 个位也是 83、C (1/3)/(1/2)=2/3 以此类推4、c 两个数列 4,2,1-〉1/2(依次除以 2);3,0,-35、答案是 11112分成三部分:从左往右数第一位数分别是:5、7、9、11 从左往右数第二位数都是:1 从左往右数第三位数分别是:6、8、10、126、思路:原数列可化为 1 又 1/2, 2 又 1/4, 3 又 1/8.故答案为 4 又 1/16 = 65/167、答案 B. 5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+58、答直接末尾相乘,几得 8,选 D.9 、解题思路:从 55 是 7 的倍数减 1,50 是 7 的倍数加 1,快速推出少 1 天.如果用 55×50÷7=396 余 6,也可推出答案,但较费时10、思路:设儿童为 x,成人为 y,则列出等式 12X=9Y 2X=3Y-6 得出,x=3,则布为3*12=36,选 B11、答 5/6*2/3*3/4X=15 得出,x=36 答案为 D12、已 X,甲 1.25X ,结果就是 0.25/1.25=20% 答案为 A13、B14、无答案公布 sorry 大家来给些答案吧15、0.06x+0.1y=4200 , x+y=60000, 即可解出.答案为 B16、272*1.25*0.8=272 答案为 C17、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/518、依次为 2^3-1,3^3-1,……,得出 6^3-119、依次为 2^3-1,3^3-1,……,得出 6^3-120、思路:5 和 15 差 10,9 和 17 差 8,那 15 和( ?)差 65+10=15 9+8=17 15+6=2121、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为 132222、思路:小公的讲解2,3,5,7,11,13,17.....变成 2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由 2 和 3 组成的),53,32(这是第二段,由 2、3、5 组成的)75,53,32(这是第三段,由 2、3、5、7 组成的),117,75,53,32()这是由 2、3、5、7、11 组成的)不是,首先看题目,有 2,3,5,然后看选项,最适合的是 75(出现了 7,有了 7 就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而 A 符合这两个规律,所以才选 A 2,3,5,后面接什么?按题干的规律,只有接 7 才是成为一个常见的数列:质数列,如果看 BCD 接 4 和 6 的话,组成的分别是 2,3,5,6(规律不简单)和 2,3,5,4(4 怎么会在 5 的后面?也不对)质数列就是由质数组成的从 2 开始递增的数列23、无思路!暂定思路为:2*65+3*28=214,24、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3.得出?=55.25、这题有点变态,不讲了,看了没有好处26、答案 30.4/4=1,6/12=1/2,?/90=1/327、不知道思路,经过讨论:79-56=23 129-79=50 202-129=73 因为 23+50=73,所以下一项和差必定为 50+73=123 ?-202=123,得出?=325,无此选项!28、三个相加成数列,3 个相加为 11,18,32,7 的级差,则此处级差应该是 21,则相加为 53,则 53-17-9=27答案,分别是 27.29、答案为 C思路: 5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=1830、思路:22、23 结果未定,等待大家答复!31、答案为 1299+3=12 ,12+3 平方=21 ,21+3 立方=4832、答案为 7172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7。
行测解答数字推理的四种思维方式
行测解答数字推理的四种思维方式数字推理是行政职业能力测验(简称行测)中常见的题型之一,它主要考察考生对于数字关系的分析和推理能力。
在数字推理题中,做题者需要根据给定的数字关系、规律或模式,找出其中的规律并应用于后续的题目。
为了帮助考生更好地解答数字推理题,本文将介绍四种常见的思维方式。
1. 递增递减法递增递减法是最常见也是最基础的数字推理思维方式。
通过观察数字序列的增减规律,可以推断出后续数字的变化规律。
常见的递增递减法包括等差数列、等比数列等。
例如,给定一个数字序列1,3,5,7,问下一个数字是多少?通过观察可知,该数字序列是一个等差数列,公差为2,因此下一个数字是9。
2. 交替排列法交替排列法是指数字序列中数字的交替排列规律。
交替排列可以按照顺序进行,也可以按照特定的排列顺序进行。
例如,给定一个数字序列2,4,1,3,6,问下一个数字是多少?观察可知,该数字序列是按照奇偶递增排列的,因此下一个数字应是5。
3. 分组对比法分组对比法主要通过将数字序列进行分组,观察每组数字之间的关系,从而找出规律。
例如,给定一个数字序列1,2,4;3,6,12;4,8,16;问下一个数字是多少?通过观察可知,数字序列每组数字第一个数字是后续数字的一半,第二个数字是后续数字的相同倍数,因此下一个数字应该是8,16。
4. 乘积和差法乘积和差法是通过数字序列中数字间的乘积和差的规律来推断后续数字的变化规律。
例如,给定一个数字序列2,6,18,54,问下一个数字是多少?通过观察可知,该数字序列的每个数字都是前一个数字乘以3得到的,因此下一个数字应该是162。
以上是数字推理题常见的四种思维方式,通过掌握这些思维方式,考生可以更好地解答数字推理题。
在实际解题过程中,考生还应注意对题目进行综合分析,灵活运用多种思维方式,并进行逻辑。
行测数字推理题
数字推理题主要考察考生的逻辑思维能力和数学运算能力。
这类题目通常给出一系列数字,要求考生根据这些数字之间的关系推断出下一个数字。
以下是一些常见的数字推理题型:
1. 等差数列:给出一个等差数列的前几项,要求找出下一个数字。
例如:2, 5, 8, 11, (),其中公差为3,所以下一个数字是14。
2. 等比数列:给出一个等比数列的前几项,要求找出下一个数字。
例如:3, 6, 12, 24, (),其中公比为2,所以下一个数字是48。
3. 平方数列:给出一个平方数列的前几项,要求找出下一个数字。
例如:1, 4, 9, 16, (),其中每个数字都是某个整数的平方,所以下一个数字是25。
4. 质数数列:给出一个质数数列的前几项,要求找出下一个数字。
例如:2, 3, 5, 7, (),其中每个数字都是质数,所以下一个数字是11。
5. 混合数列:给出一个包含不同类型数字的数列,要求找出下一个数字。
例如:2, 4, 8, 16, (),其中每个数字都是2的整数次幂,所以下一个数字是32。
6. 递推数列:给出一个递推关系式,要求找出满足该关系的下一个数字。
例如:2, 4, 8, 16, (),其中每个数字都是前一个数字的两倍,所以下一个数字是32。
7. 分组数列:给出一个分组数列,要求找出满足该关系的下一个数字。
例如:2, 4, 8, 16, (),其中每组有两个相邻的数字,且第一个数字是第二个数字的一半,所以下一个数字是32。
8. 其他特殊数列:还有一些特殊的数列类型,如斐波那契数列、阶乘数列、杨辉三角等,需要根据具体的题目进行分析和解答。
行测:数字推理题型的7种类型28种形式
数字推理题型的7种类型28种形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13 [解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
数字推理十大题型秒杀技巧
数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。
7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。
行测数字推理题技巧
行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。
数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。
本文将从四个方面为大家介绍数字推理题的技巧和方法。
一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。
数字序列题考察的是考生的数学能力和逻辑推理能力。
下面介绍一些数字序列题的常见规律和解题方法。
1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。
在等差数列中,每一项与前一项之差都相等,这个差值称为公差。
在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。
2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。
在等比数列中,每一项与前一项之比都相等,这个比值称为公比。
在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。
3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。
在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。
在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是根据递推关系推断出下一项或者缺失的项。
二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。
数字关系题考察的是考生的逻辑推理能力和数学能力。
下面介绍一些数字关系题的常见关系和解题方法。
1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。
在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。
行测数字推理方法总结
行测数字推理方法总结数字推理是行政职业能力测验(简称行测)中的重要一部分,对于备考者来说,掌握数字推理方法是提高得分的关键。
本文将系统总结数字推理方法,以帮助读者更好地应对此类题型。
一、分类思维法分类思维法是数字推理中常用的方法之一。
这种方法通过将一组数字按照一定的规则进行分类,然后再寻找一个规则与之不符的数字,以此来得出正确答案。
例如,给定一组数字序列:2、4、6、8、10,第一个分类可能是偶数,但是最后一个数字10是一个偶数,与之前的分类规则不符,因此正确答案是另外一种分类规则,即数字逐渐增加2。
二、数列规律法数列规律法是数字推理中常见的方法之一,尤其适用于给定一组数字序列,要求推理下一个数字。
首先观察数字间的间隔关系,即找出相邻数字之间的规律,例如1、3、5、7,可以看出每个数字都比前一个数字大2。
其次,观察数字的增长规律,即数字序列整体的增长关系,例如2、4、8、16,可以看出每个数字都是前一个数字乘以2。
通过观察数字间的间隔关系和数字的增长规律,可以推理出下一个数字是什么。
三、替换法替换法是处理数字推理题目时常用的方法之一。
它通过观察数字序列中的某个数字是否可以通过替换来得到下一个数字。
例如,给定一组数字序列:3、6、9、12,观察可以发现每个数字都是前一个数字加上3得到的,因此,可以推断下一个数字是15。
四、逻辑推理法逻辑推理法是数字推理中较为复杂的方法之一,它要求考生根据已知条件,通过逻辑思维找出数字序列的规律。
这种方法需要考生具备较强的思辨能力和逻辑分析能力。
例如,给定一组数字序列:1、4、9、16,观察可以发现每个数字都是前一个数字的平方,因此,可以推断下一个数字是25。
五、倒推法倒推法是数字推理中常用的方法之一。
它通过观察数字序列的规律,从已知的最后一个数字开始,一步一步地往前推理,最终找到第一个数字是什么。
例如,给定一组数字序列:36、25、16、9,观察可以发现每个数字都是前一个数字的平方,因此,可以推断第一个数字是6。
行测答题技巧简单学系列——数字推理全集
行测答题技巧简单学系列——数字推理全集行测答题技巧系列:行测知识简单学——数字推理全集行政职业能力测试,简称“行测”,是事业单位考试当中重要的组成部分。
其中,数字推理作为其组成部分之一,需要考生具备较强的数字敏感性和一定的数字运算能力。
当然,解答相关题目的前提是了解数字推理中各种数列的形式和特点。
本文就将对相关内容进行介绍。
一、等差数列1.概念:如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列。
常考题型:二级等差数列,三级等差数列。
例:35,29,24,20,17,( )(逐项作差后得公差为1的等差数列,为二级等差数列。
三级等差数列为二级数列再作差所得。
)2.等差数列的变式作差或持续作差后,得到其他数列或其变式,这是最常考查的等差数列规律。
例:39,62,91,126,149,178,( )(作差后得到“23,29,35”的循环数列)3.等差数列及其变式特征归纳(1)数列中出现个别质数的,一般都是等差数列或其变式,因为指数不具备进行拆分寻求规律的可能性。
(2)含有0的数列很有可能是等差数列,因为0不易做递推变化,多在等差数列或多次方数列中出现,宜首先从作差方向寻求规律。
(3)单调递增或增减交替有可能是等差数列变式。
二、等比数列1.概念:如果一个数列从第二项起,每一项与它前面一项的比等于同一个非零常数,那么该数列就叫做等比数列。
与等差数列类似,二级等比数列,三级等比数列(较少)也是常考点。
2.等比数列变式(1)二级等比数列;(2)作商后得到等差/质数/常数列。
例:4,4,16,144,( )相邻各项的商依次为12,22,32,(42)。
144*16=(2304)。
3.等比数列及其变式特征归纳(1)数项具有良好的整除性;(2)递增/递减趋势明显,会出现先增后减的情况;(3)具有递推关系的等比数列变式可通过估算相邻项间大致倍数反推规律。
三、和数列1.基本形式(1)两项和数列:数列从第三项开始,没意向等于它前两项之和。
数字推理方法汇总
数字推理方法汇总一、题型分类(一)简单数列例如等差数列、等比数列、质数数列、合数数列,简单递推数列、周期数列。
方法;等差等比数列一眼就可以看出来;质数(要求掌握100以内的质数);合数(10以内即可,4、6、8、9、10);简单递推数列(例如1、1、2、3、5、8、11,每两项相加等于第三项);周期数列(1、3、5、1、3、5不断循环)(二)特征数列(1)多重数列数列特征:数字及括号七项以上、或者两个括号需要填方法:①奇数项和偶数项分开看,分别找规律②两两分组(7项)/三三分组(8项),加减乘除运算(2)机械划分数列数列特征:①每一项都有小数点/+,且数字项数相同,都是两位数或者三位数②大数字(三位数/四位数)方法:①特殊符号(小数点和加号)前后拆开,分别找规律②大数字,把各数字拆开,分别求和(3)分数数列数列特征及方法1.分子和变化趋势相同(递增,递减)①分子分母单独找规律;②分子分母组合找规律,例如分子分母相加为下一项的分子/分母。
2.某一项不符合递增/递减规律,考虑对分子分母进行约分(缩小)/反约分(扩大),使之与数列保持一致。
特殊分数1=11,0=0,−1=1(N为任意非0正整数)(4)除法数列数列特征:①相邻两项据有明显的倍数关系,例如:(6倍、5倍、4倍数)②都是整数,突然出现一个分数(除法才会有分数)③可能不是整倍数,例如3倍,2.5倍,2倍方法:直接除(5)幂次数列数列特征及方法:①数字本身是幂次数,记住常见的幂次数②接近幂次数,方法:a n±N(N为任意正整数)常用方法:①1=0②观察最大的两项或三项,是否为幂次数③a n±N的常见形式2+2,(+1)2+2,(+2)2+2(2为随意编的数字)2+1,(+1)2-1,(+2)2+1,(+3)2-1(+前面为平方数递增,后面1和-1循环)易考点:幂次数的拆分方法9=23+1=3026=52+1=33−165=82+1=43+1附:常用幂级数表(最好能背,或者尽量熟悉)(6)图形数阵1.圆形或三角形数阵方法:有中心数,凑中心数(找周围数字与中间数字的关系);没有中心数,优先找对角线数字的关系。
数字推理
数字推理一、数字推理类型:1、四个数字+()2、五个数字+()3、六或七个数字+()二、技法:1、四个数:(1)转化(记住特殊数字)、分解(2)关系(主要为两项关系)2、五个数:(1)做差(适用于幅度较小的递增递减数列)、转化(2)关系(有三项关系也有两项关系,三项关系为主)做题时,先考虑做差转化,再考虑关系。
三、四个数+()型:A、转化模块1、逆向思维(熟练掌握数字推理基础知识,要会熟练运算)2、转化的下手处:(1)从大数入手:以1~20平方数、立方数为基准。
(2)从小数入手,注意要改变形式,借助0、-1、1(可乘可加可减)。
借助的形式一般作为客体。
(3)记住一些重要数字的转化:如80、343、143、243、343等。
3、转化时要把握主体、客体。
主体保持不变,客体随之而变。
主体形式不一定是:1、2、3、4、5……,也有可能为:1、3、5、7、9……等。
客体的主要形式有: 1 ,1 ,1 ,1 (或其倍数)-1 ,-1 ,-1 ,-1 (或其倍数)1 ,-1 ,1 ,-1 (或其倍数)0 ,1 ,2 ,32 ,3 ,5 ,8-1 ,2 ,-3 ,4 ,-5等形式很多,要注意灵活运用。
例1: 2 12 36 80 ()解题:1*2 2*6 3*12 4*20注:1、2、3、4为主体,2、6、12、20为客体。
做题时,先确定主体,再确定客体,再看客体规律(比如客体做差)。
此题也可用另一种形式解题:80=42+43;36=32+33;12=22+23;2=12+13这种做法的突破点在于题干有80。
80=2*40=92-1=34-1=42+43 (这种形式考查的概率更高)答案为:100例2:0 2 10 30 ()分析:解法一:从10入手。
10=2*5 ,把2当主体,推出其他主体。
如2=1*2 ,0=0*1 ,30=3*10 。
最后为:0*1 1*2 2*5 3*10 4*17解法二:从30入手。
30=5*6=3*10=33+3,10=23+2 ,2=13+1 ,即——03+013+123+233+343+4答案为:68例3:-2 -8 0 64 ()解题:13*(-2)23*(-1)33*043*1 53*2 从-8入手答案:250例4: 2 11 14 27 ()分析:22-2 32+2 42-2 52+2 62-2这里引进了数字+2 ,-2作为客体(为1 ,-1 ,1 ,-1 形式)。
行测数量关系技巧:数字推理常考考点总结
行测数量关系技巧:数字推理常考考点总结1500字数量关系是行测考试中的一大常考考点,主要内容包括数字推理和数量关系推理。
在数字推理部分,常考的题型包括数字组合、数字运算、数字排列等。
下面是关于数字推理的一些常考考点总结:一、数字组合:1. 数字组合:给定一组数字,按照一定规律组合后求出结果。
常见的规律有数字之和、数字之差、数字之积等。
2. 数字替换:给定一组数字,将其中某几个数字替换为其他数字,求替换后的结果。
常见的规律有数字之和、数字之差、数字之积等。
二、数字运算:1. 加减乘除:根据给定的加减乘除法则,求解表达式的结果。
2. 数字计算:根据给定的数字以及计算规则,计算最终结果。
常见的规则有数字之和、数字之差、数字之积等。
三、数字排列:1. 数字排序:根据给定的排列规则,求出待排序数字的顺序。
常见的规则有从小到大排列、从大到小排列等。
2. 数字替换:将给定数字按照一定规则进行排列后,将某几个数字替换为其他数字,求替换后的结果。
在数量关系推理部分,常考的题型包括数量比较、数量关系、数量推理等。
下面是关于数量关系推理的一些常考考点总结:一、数量比较:1. 大小比较:根据给定的数值大小进行比较,求出最大值或最小值。
常见的比较方法有大小排列、数值相加、数值相减等。
2. 数量关系:根据给定的数值关系进行推理,求出符合要求的数值。
常见的关系有倍数关系、百分比关系、比例关系等。
二、数量关系:1. 数量变化:根据给定的数量变化规律,推断出下一个数值。
常见的变化规律有线性关系、指数关系、循环关系等。
2. 数量比例:根据给定的数量比例,求出未知的数量。
常见的比例关系有百分比、比例尺、三角函数等。
三、数量推理:1. 数列推理:根据给定的数列规律,推断出下一个数列。
常见的规律有等差数列、等比数列、斐波那契数列等。
2. 数字推理:根据给定的数字规则,推断出满足规则的数字。
常见的规则有数字之和、数字之差、数字之积等。
以上是关于数量关系推理的一些常考考点总结,希望对大家的行测备考有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理题的常见类型及形式数字推理由题干和选项两部分组成,题干是一个有某种规律的数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的一个,使之符合数列的排列规律。
其不同于其他形式的推理,题目中全部是数字,没有文字可供应试者理解题意,真实地考查了应试者的抽象思维能力。
第一种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
提示:熟练掌握基本题型及其简单变化是保证数字推理题不丢分的关键。
第二种情形---等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
故选D。
6、二级等比数列。
是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。
[例6] 4,6,10,18,34,() A、50 B、64 C、66 D、68 [解析] 此数列表面上看没有规律,但它们后一项与前一项的差分别为2,4,6,8,16,是一个公比为2的等比数列,故括号内的值应为34+16Ⅹ2=66 故选C。
7、等比数列的特殊变式。
[例7] 8,12,24,60,() A、90 B、120 C、180 D、240[解析] 该题有一定的难度。
题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的:3/2,4/2,5/2,因此,括号内数字应为60Ⅹ6/2=180。
故选C。
此题值得再分析一下,相邻两项的差分别为4,12,36,后一个值是前一个值的3倍,括号内的数减去60应为36的3倍,即108,括号数为168,如果选项中没有180只有168的话,就应选168了。
同时出现的话就值得争论了,这题只是一个特例。
第三种情形—混合数列式:是指一组数列中,存在两种以上的数列规律。
8、双重数列式。
即等差与等比数列混合,特点是相隔两项之间的差值或比值相等。
[例8] 26,11,31,6,36,1,41,() A、0 B、-3 C、-4 D、46[解析] 此题是一道典型的双重数列题。
其中奇数项是公差为5的等差递增数列,偶数项是公差为5的等差递减数列。
故选C。
9、混合数列。
是两个数列交替排列在一列数中,有时是两个相同的数列(等差或等比),有时两个数列是按不同规律排列的,一个是等差数列,另一个是等比数列。
[例9] 5,3,10,6,15,12,(),()A、20 18B、18 20C、20 24D、18 32[解析] 此题是一道典型的等差、等比数列混合题。
其中奇数项是以5为首项、公差为5的等差数列,偶数项是以3为首项、公比为2的等比数列。
故选C。
第四种情形—四则混合运算:是指前两(或几)个数经过某种四则运算等到于下一个数,如前两个数之和、之差、之积、之商等于第三个数。
10、加法规律。
之一:前两个或几个数相加等于第三个数,相加的项数是固定的。
[例11] 2,4,6,10,16,()A、26 B、32 C、35 D、20[解析] 首先分析相邻两数间数量关系进行两两比较,第一个数2与第二个数4之和是第三个数,而第二个数4与第三个数6之和是10。
依此类推,括号内的数应该是第四个数与第五个数的和26。
故选A。
之二:前面所有的数相加等到于最后一项,相加的项数为前面所有项。
[例12] 1,3,4, 8,16,() A、22 B、24 C、28 D、32[解析] 这道题从表面上看认为是题目出错了,第二位数应是2,以为是等比数列。
其实不难看出,第三项等于前两项之和,第四项与等于前三项之和,括号内的数应为前五项之和为32。
故选D。
11、减法规律。
是指前一项减去第二项的差等于第三项。
[例13] 25,16,9,7,(),5 A、8 B、2 C、3 D、6[解析] 此题是典型的减法规律题,前两项之差等于第三项。
故选B。
12、加减混合:是指一组数中需要用加法规律的同时还要使用减法,才能得出所要的项。
[例14] 1,2,2,3,4,6,() A、7 B、8 C、9 D、10 [解析] 即前两项之和减去1等于第三项。
故选C。
13、乘法规律。
之一:普通常规式:前两项之积等于第三项。
[例15] 3,4,12,48,() A、96 B、36 C、192 D、576[解析] 这是一道典型的乘法规律题,仔细观察,前两项之积等于第三项。
故选D。
之二:乘法规律的变式:[例16] 2,4,12,48,() A、96 B、120 C、240 D、480 [解析] 每个数都是相邻的前面的数乘以自已所排列的位数,所以第5位数应是5×48=240。
故选D。
14、除法规律。
[例17] 60,30,2,15,() A、5 B、1 C、1/5 D、2/15[解析] 本题中的数是具有典型的除法规律,前两项之商等于第三项,故第五项应是第三项与第四项的商。
故选D。
15、除法规律与等差数列混合式。
[例18] 3,3,6,18,() A、36 B、54 C、72 D、108[解析] 数列中后个数字与前一个数字之间的商形成一个等差数列,以此类推,第5个数与第4个数之间的商应该是4,所以18×4=72。
故选C。
思路引导:快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数。
如果假设被否定,立刻换一种假设,这样可以极大地提高解题速度。
第五种情形—平方规律:是指数列中包含一个完全平方数列,有的明显,有的隐含。
16、平方规律的常规式。
[例19] 49,64,91,(),121 A、98 B、100 C、108 D、116[解析] 这组数列可变形为72,82,92,(),112,不难看出这是一组具有平方规律的数列,所以括号内的数应是102。
故选B。
17、平方规律的变式。
[例20] 0,3,8,15,24,() A、28 B、32 C、35 D、40[解析] 这个数列没有直接规律,经过变形后就可以看出规律。
由于所给数列各项分别加1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62-1=35,其实就是n2-n。
故选C。
之二、n2+n[例21] 2,5,10,17,26,() A、43 B、34 C、35 D、37[解析]这个数是一个二级等差数列,相邻两项的差是一个公差为2的等差数列,括号内的数是26=11=37。
如将所给的数列分别减1,可得1,4,9,16,25,即12,22,32,42,52,故括号内的数应为62+1=37,,其实就是n2+n。
故选D。
之三、每项自身的平方减去前一项的差等于下一项。
[例22] 1,2,3,7,46,() A、2109 B、1289 C、322 D、147 [解析] 本数列规律为第项自身的平方减去前一项的差等于下一项,即12-0,22-1=3,32-2=7,72-3=46,462-7=2109,故选A。
第六种情形—立方规律:是指数列中包含一个立方数列,有的明显,有的隐含。
18、立方规律的常规式:[例23] 1/343,1/216,1/125,() A、1/36 B、1/49 C、1/64 D、1/27[解析] 仔细观察可以看出,上面的数列分别是1/73,1/63,1/53的变形,因此,括号内应该是1/43,即1/64。
故选C。
19、立方规律的变式:[例24] 0,6,24,60,120,() A、280 B、320 C、729 D、336 [解析] 数列中各项可以变形为13-1,23-2,33-3,43-4,53-5,63-6,故后面的项应为73-7=336,其排列规律可概括为n3-n。
故选D。
之二、n3+n[例25] 2,10,30,68,() A、70 B、90 C、130 D、225[解析] 数列可变形为13+1,23+1,33+1,43+1,故第5项为53+=130,其排列规律可概括为n3+n。
故选C。
之三、从第二项起后项是相邻前一项的立方加1。
[例26] -1,0,1,2,9,() A、11 B、82 C、729 D、730[解析] 从第二项起后项分别是相邻前一项的立方加1,故括号内应为93+1=730。
故选D。
思路引导:做立方型变式这类题时应从前面几种排列中跳出来,想到这种新的排列思路,再通过分析比较尝试寻找,才能找到正确答案。
第七种情形—特殊类型:20、需经变形后方可看出规律的题型:[例27] 1,1/16,(),1/256,1/625 A、1/27 B、1/81 C、1/100 D、1/121[解析] 此题数列可变形为1/12,1/42,(),1/162,1/252,可以看出分母各项分别为1,4,(),16,25的平方,而1,4,16,25,分别是1,2,4,5的平方,由此可以判断这个数列是1,2,3,4,5的平方的平方,由此可以判断括号内所缺项应为1/(32)2=1/81。