2018年山东威海市中考数学试题及答案-中考真题

合集下载

威海市中考数学试卷含答案解析

威海市中考数学试卷含答案解析

山东省威海市2018年中考数学试卷(解析版)一、选择题1.(2018年山东省威海市)﹣2的绝对值是()A.2 B.﹣C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(2018年山东省威海市)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(2018年山东省威海市)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y 的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(2018年山东省威海市)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;。

【精品】山东省威海市2018中考数学试题(含答案)

【精品】山东省威海市2018中考数学试题(含答案)

威海市2018年初中学业考试数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A.2B.12-C.12D.2-2.下列运算结果正确的是( ) A.236a a a ⋅=B.()a b a b --=-+C.2242a a a +=D.842a a a ÷=3.若点()12,y -,()21,y -,()33,y 在双曲线()0ky k x=<上,则123,,y y y 的大小关系是( ) A.123y y y <<B.321y y y <<C.213y y y <<D.312y y y <<4.下图是某圆锥的主视图和左视图,该圆锥的侧面积是( )A.25πB.24πC.20πD.15π5.已知53x =,52y =,则235x y -=( ) A.34B.1C.23D.986.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画,下列结论错误的是( )A.当小球抛出高度达到7.5m 时,小球距O 点水平距离为3mB.小球距O 点水平距离超过4米呈下降趋势C.小球落地点距O 点水平距离为7米D.斜坡的坡度为1:27.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是2-,1-,0,1,卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( ) A.14B.13C.12D.348.化简()111a a a ⎛⎫-+-⋅ ⎪⎝⎭的结果是( )A.2a -B.1C.2aD.1-9.抛物线()20y ax bx c a =++≠图象如图所示,下列结论错误的是( )A.0abc <B.a c b +<C.284b a ac +>D.20a b +>10.如图,O ☉的半径为5,AB 为弦,点C 为AB 的中点,若30ABC =∠°,则弦AB 的长为( )A.12B.5 D.11.矩形ABCD 与CEFG 如图放置,点,,B C E 共线,点,,C D G 共线,连接AF ,取AF 的中点H ,连接GH ,若2BC EF ==,1CD CE ==,则GH =( )A.1B.2312.如图,正方形ABCD 中,12AB =,点E 为BC 中点,以CD 为直径作圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是( )A.1836π+B.2418π+C.1818π+D.1218π+二、填空题(每题5分,满分20分,将答案填在答题纸上)13.分解因式:21222a a -+-=________________.14.关于x 的一元二次方程()25220m x x -++=有实根,则m 的最大整数解是___________. 15.如图,直线AB 与双曲线()0ky k x=<交于点A ,B ,点P 是直线AB 上一动点,且点P 在第二象限,连接PO 并延长交双曲线于点C ,过点P 作PD y ⊥轴,垂足为点D .过点C 作CE x ⊥轴,垂足为E .若点A 的坐标为()2,3-,点B 的坐标为(),1m ,设POD △的面积为1S ,COE △的面积为2S .当12S S >时,点P 的横坐标x 的取值范围是_____________.16.,在扇形CAB 中,CD AB ⊥,垂足为D ,E ☉是ACD △的内切圆,连接AE ,BE ,则AEB ∠的度数为_______________.17.用若干个形状,大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为____________.18.如图,在平面直角坐标系中,点1A 的坐标为()1,2,以点O 为圆心,以1OA 长为半径画弧,交直线12y x =于点1B ,过1B 点作12B A y ∥轴,交直线2y x =于点2A ,以点O 为圆心,以2OA 长为半径画弧,交直线12y x =于点2B ;过点2B 作23B A y ∥轴,交直线2y x =于点3A ,以点O 为圆心,以3OA 长为半径画板,交直线12y x =于点3B ;过3B 点作34B A y ∥轴,交直线2y x =于点4A ,以点O 为圆心,以4OA 长为半径画弧,交直线12y x =于点4B ,…按照如此规律进行下去,点2018B 的坐标为____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.解不等式组,并将解集在数轴上表示出来. ()()27311542x x x x -<-⎧⎪⎨-+≥⎪⎩①② 20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.如图,将矩形ABCD (纸片)折叠,使点B 与AD 边上的点K 重合,EG 为折痕;点C 与AD 边上的点K 重合,FH 为折痕,已知167.5=∠°,275∠=°,1EF =.求BC 的长.22.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如下图所示:大赛结束后一个月,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表:请根据调查的信息分析:(1) 活动启动之初学生“一周诗词诵背数量”的中位数为______________. (2) 估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3) 选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款,小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元,该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求该网店每月利润w (万元)与销售单价x (元)之间的函数表达式; (2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.如图①,在四边形BCDE 中,BC CD ⊥,DE CD ⊥,AB AE ⊥,垂足分别为,C D ,A ,BC AC ≠,点,,M N F 分别为,,AB AE BE 的中点,连接,,MN MF NF .(1)如图②,当4BC =,5DE =,tan 1FMN =∠时,求ACAD的值; (2)若1tan 2FMN =∠,4BC =,则可求出图中哪些线段的长?写出解答过程;(3)连接,,,CM DN CF DF ,试证明FMC △与DNF △全等; (4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()4,0A -,()2,0B ,与y 轴交于点()0,4C ,线段BC 的中垂线与对称轴l 交于点D ,与x 轴交于点F ,与BC 交于点E .对称轴l 与x 轴交于点H .(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,P☉与直线BC相切于点Q,与直线DE相切于点R,求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.威海市2018年初中学业考试数学试题参考答案一、选择题1-5:ABDCD 6-10:ABADD 11、12:CC二、填空题13.()2122a -- 14.4m = 15.62x -<<- 16.135°17.44-18.()201820172,2.三、解答题19.解:解不等式①得,4x >-. 解不等式②得,2x ≤.在同一条数轴上表示不等式①②解集因此,原不等式组的解集为42x -<≤.20.解:设升级前每小时生产x 个零件,根据题意,得24024040201606013x x -=+⎛⎫+ ⎪⎝⎭. 解这个方程,得60x =. 经检验,60x =是所列方程的解. ∴1601803⎛⎫⨯+= ⎪⎝⎭(个)答:软件升级后每小时生产80个零件.21.解:由题意,得31802145=-=∠∠°°,41802230=-=∠∠°°,BE EK =,KF FC =.过点K 作KM EF ⊥,垂足为M .设KM x =,则EM x =,MF =,∴1x =. ∴1x =.∴EK =2KF =.∴3BC BE EF FC EK EF KF =++=++=+,∴BC 的长为322.答:(1)4.5首. (2)4025201200850120++⨯=;答:大赛后该学校学生“一周诗词诵背数量”6首(含6首)以上的人数大约为850人.(3)①中位数:活动之初,“一周诗词诵背数量”的中位数为4.5首;大赛后,“一周诗词诵背数量”的中位数为6首.②平均数:活动之初,()13154455206167138115120x =⨯+⨯+⨯+⨯+⨯+⨯=. 大赛后,()13104105156407258206120x =⨯+⨯+⨯+⨯+⨯+⨯=. 综上分析,从中位数,平均数可看出,学生在大赛之后“一周诗词诵背数量”都好于活动之初,根据样本估计总体,该校大赛之后“一周诗词诵背数量”好于活动之初,说明该活动效果明显. 23.解:(1)设直线AB 的函数表达式为AB y kx b =+,代入()4,4A ,()6,2B ,得 4426k bk b =+⎧⎨=+⎩, 解,得18k b =-⎧⎨=⎩.∴直线AB 的函数表达式为8AB y x =-+.设直线BC 的函数表达式为1BC y k x b =+,代入()6,2B ,()8,1C ,得11112618k b k b =+⎧⎨=+⎩,解得11125k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为152BC y x =-+.又∵工资及其他费用为0.4513⨯+=万元.当46x ≤≤时,∴()()1483W x x =--+-,即211235W x x =-+-.当68x ≤≤时,∴()214532W x x ⎛⎫=--+- ⎪⎝⎭,即2217232W x x =-+-.(2)当46x ≤≤时,()221123561W x x x =-+-=--+,∴当6x =时,1W 取得最大值1. 当68x ≤≤时,()2221137237222W x x x =-+-=--+,∴当7x =时,2W 取得最大值1.5.∴1020261.533==,即第7个月可以还清全部贷款. 24.解:(1)∵,,M N F 分别是,,AB AE BE 的中点, ∴BM NF MA ==,MF AN NE ==. ∴四边形MANF 是平行四边形. 又∵BA AE ⊥.∴平行四边形MANF 是矩形. 又∵tan 1FMN =∠,∴1FNFM=,即FN FM =. ∴矩形MANF 为正方形. ∴AB AE =.∵1290+=∠∠°,2390+=∠∠°, ∴13=∠∠, ∵90C D ==∠∠°, ∴ABC EAD △≌△(AAS) ∴BC AD =,CA DE =. ∵4BC =,5DE =.∴54AC AD =.(2)可求线段AD 的长.由(1)知,四边形MANF 为矩形,12FN AB =,12MF AE =, ∵1tan 2FMN =∠,即12FN FM =,∴12AB AE =.∵13=∠∠,90BCA ADE ==∠∠°, ∴ABC FAD △△. ∴AB BC AE AD=. ∵4BC =,∴142AD=, ∴8AD =.(3)∵BC CD ⊥,DE CD ⊥. ∴ABC △与ADE △都是直角三角形. ∵,M N 分别是,AB AE 中点. ∴BM CM =,NA ND =. ∴421=∠∠,523=∠∠. ∵13=∠∠,∴45=∠∠.∴904FMC =+∠∠°,905FND =+∠∠°. ∴FMC FND =∠∠. ∵FM DN =,CM NF =. ∴FMC DNF △≌△(SAS).(4)BMF NFM MAN FNE △≌△≌△≌△. 25.解:(1)∵抛物线过点()4,0A -,()2,0B , ∴设抛物线表达式为()()42y a x x =+-. 又∵抛物线过点()0,4C ,将点C 坐标代入,得()()40402a =+-,解得12a =-.∴抛物线的函数表达式为()()1422y x x =-+-,即2142y x x =--+. (2)∵对称轴11122x -=-=-⎛⎫⨯- ⎪⎝⎭. ∴点D 在对称轴1x =-上.设D 点的坐标为()1,m -,过点C 作CG l ⊥,垂足为G ,连接DC ,DB . ∵DE 为BC 中垂线, ∴DC DB =.在Rt DCG △和Rt DBH △中,∴()22214DC m =+-,()22221DB m =++, ∴()()223221421m m +-=++, 解得1m =.∴D 点坐标为()1,1-.(3)∵点B 坐标为()2,0,点C 坐标为()0,4.∴BC ==. ∵EF 为BC中垂线,∴12BE BC =在Rt BEF △和Rt BOC △中,cos BE OBCBF BF BC==∠=, ∴5BF =,∴EF 3OF =.设P ☉的半径为r ,P ☉与直线BC 和EF 都相切,有两种情况: ① 当圆心1P 在直线BC 左侧时,连接11PQ ,11P R ,则11111PQ PR r ==,∴11111190PQ E PR E R EQ ===∠∠∠°,∴四边形111PQ ER 为正方形.∴1111ER PQ r ==. 在Rt FEB △和11Rt FR P △中, ∴111tan 1PRBE EF FR ==∠,=,∴1r =∴111sin 1PR BE BF FP ==∠13FP =.∴1103FP =,∴1101333OP =-=.∴1P 的坐标为1,03⎛⎫⎪⎝⎭.②当圆心2P 在直线BC 右侧时,连接22P Q ,22P R ,则四边形222P Q ER 为正方形, ∴2222ER P Q r ==.在Rt FEB △和22Rt FR P △中, ∴222tan 1P R BE EF FR ==∠=.∴2r =∴222sin 1P R BE BF FP ==∠2=. ∴210FP =,∴21037OP =-=. ∴2P 的坐标为()7,0.综上所述,符合条件的点P 的坐标是1,03⎛⎫⎪⎝⎭或()7,0.(4)存在.1471,18N ⎛⎫- ⎪⎝⎭,2831,18N ⎛⎫- ⎪⎝⎭,3471,18N ⎛⎫-- ⎪⎝⎭.。

【2018中考真题】威海市中考数学试卷含答案解析

【2018中考真题】威海市中考数学试卷含答案解析

山东省威海市2018年中考数学试卷(解析版)一、选择题1.(2018年山东省威海市)﹣2的绝对值是()A.2 B.﹣ C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(2018年山东省威海市)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(2018年山东省威海市)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24π C.20π D.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(2018年山东省威海市)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.【点评】本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.(2018年山东省威海市)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.(2018年山东省威海市)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.9.(2018年山东省威海市)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.【点评】本题考查二次函数的综合问题,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.10.(2018年山东省威海市)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.【点评】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.11.(2018年山东省威海市)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.(2018年山东省威海市)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36π B.24+18πC.18+18πD.12+18π【分析】作FH⊥BC于H,连接FH,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S ﹣S△ABE﹣S△AEF进行计算.半圆【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.【点评】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.二、填空题(本题包括6小题,每小题3分,共18分)13.(2018年山东省威海市)分解因式:﹣ a2+2a﹣2= ﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.14.(2018年山东省威海市)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是m=4 .【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)>0,且m﹣5≠0,解得m<5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(2018年山东省威海市)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE 的面积为S2,当S1>S2时,点P的横坐标x的取值范围为﹣6<x<2 .【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.【点评】本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(2018年山东省威海市)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.【点评】本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(2018年山东省威海市)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为44﹣16.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.18.(2018年山东省威海市)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本题包括7小题,共66分)19.(2018年山东省威海市)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x >﹣4,解不等式②,得x ≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x ≤2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(2018年山东省威海市)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x 个零件,则软件升级后每小时生产(1+)x 个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x 个零件,则软件升级后每小时生产(1+)x 个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(2018年山东省威海市)如图,将矩形ABCD (纸片)折叠,使点B 与AD 边上的点K 重合,EG 为折痕;点C 与AD 边上的点K 重合,FH 为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC 的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE 、KF=FC ,作KM ⊥BC ,设KM=x ,知EM=x 、MF=x ,根据EF 的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE 、KF=FC , 如图,过点K 作KM ⊥BC 于点M ,设KM=x ,则EM=x 、MF=x ,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.(2018年山东省威海市)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【分析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根基表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.【点评】本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(2018年山东省威海市)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(2018年山东省威海市)∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(2018年山东省威海市)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2018年山东省威海市)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(2018年山东省威海市)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(2018年山东省威海市)∴==6,即最快在第7个月可还清10万元的无息贷款.(2018年山东省威海市)【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.24.(2018年山东省威海市)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.【点评】本题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.25.(2018年山东省威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现由两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形的性质,同一对角线上的两个端点到另一对角线距离相等.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P的半径为r,⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN和MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣)【点评】本题综合考查二次函数、圆和平行四边形存在性的判定等相关知识,应用了数形结合思想和分类讨论的数学思想.。

2018年山东省威海市中考数学试卷(含详细答案解析及分析)中考真题

2018年山东省威海市中考数学试卷(含详细答案解析及分析)中考真题

2018年山东省威海市中考数学试卷一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3.00分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣22.(3.00分)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a23.(3.00分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3.00分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(3.00分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.6.(3.00分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3.00分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3.00分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣19.(3.00分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(3.00分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.511.(3.00分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.12.(3.00分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3.00分)分解因式:﹣a2+2a﹣2=.14.(3.00分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3.00分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3.00分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(3.00分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3.00分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7.00分)解不等式组,并将解集在数轴上表示出来.20.(8.00分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8.00分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9.00分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10.00分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12.00分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12.00分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B (2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x 轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2018年山东省威海市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3.00分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(3.00分)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(3.00分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(3.00分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(3.00分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3.00分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.【点评】本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.(3.00分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.(3.00分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.9.(3.00分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.【点评】本题考查二次函数的综合问题,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.10.(3.00分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.【点评】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.11.(3.00分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.(3.00分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A .18+36πB .24+18πC .18+18πD .12+18π【分析】作FH ⊥BC 于H ,连接FH ,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt △ABE ≌△EHF 得∠AEF=90°,然后利用图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF 进行计算.【解答】解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt △ABE ≌△EHF ,∴∠AEB=∠EFH ,而∠EFH +∠FEH=90°,∴∠AEB +∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C .【点评】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.二、填空题(本题包括6小题,每小题3分,共18分)13.(3.00分)分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2【点评】此题考查了因式分解﹣运用公式法和提公因式法,熟练掌握因式分解的方法是解本题的关键.14.(3.00分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是m=4.【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(3.00分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为﹣6<x<﹣2.【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.【点评】本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3.00分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.【点评】本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(3.00分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为44﹣16.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.18.(3.00分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.三、填空题(本题包括7小题,共66分)19.(7.00分)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(8.00分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(8.00分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x +x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.(9.00分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【分析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根基表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.【点评】本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(10.00分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其它费用为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.24.(12.00分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM 是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.【点评】本题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.25.(12.00分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B (2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x 轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现有两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形的性质,同一对角线上的两个端点到另一对角线距离相等.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=。

2018年山东威海市中考数学试题及答案-中考

2018年山东威海市中考数学试题及答案-中考

当6
x
8 时,∴W2
=
(x

4)

1 2
x
+
5
− 3 ,即W2
=

1 2
x2
+
7x

23 .
(2)当 4 x 6 时,
21.解:由题意,得∠3 =180°− 2∠1 = 45°,∠4 =180°− 2∠2 = 30°, BE = EK , KF = FC .
过点 K 作 KM ⊥ EF ,垂足为 M . 设 KM = x ,则 EM = x , MF = 3x ,
∴ x = 3x = 3 +1. ∴ x =1. ∴ EK = 2 , KF = 2 .
大赛结束后一个月,再次调查这部分学生“一周诗词诵背数量”,绘制成统计表:
一周诗词 3 首
4首
5首
6首
7首
8首
诵背数量
人数
10
10
15
40
25
20
请根据调查的信息分析:
(1) 活动启动之初学生“一周诗词诵背数量”的中位数为______________.
(2) 估计大赛后一个月该校学生一周诗词诵背 6 首(含 6 首)以上的人数;
威海市 2018 年初中学业考试
数学
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选
项中,只有一项是符合题目要求的.
1. −2 的绝对值是( )
A.2
B. − 1
C. 1
2
2
2.下列运算结果正确的是( )
D. −2
A. a2 a3 = a6
B. −(a − b) = −a + b

2018年山东威海市中考数学试卷(含解析)

2018年山东威海市中考数学试卷(含解析)

2018年山东山东威海初中毕业考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.在每个小题所给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选,均不得分.1.(2018山东威海,1,3分)﹣2的绝对值是()A.2 B.-1 2C.12D.-2【答案】A【解析】根据“负数的绝对值是它的相反数”得,﹣2的绝对值是-(-2)=2,故选A.【知识点】绝对值.2.(2018山东威海,2,3分)下列运算结果正确的是( )A.a2·a3=a6B.-(a-b)=-a+b C.a2+a2=2a4D.a8÷a4=a2【答案】B【解析】根据“同底数幂的乘法,底数不变,指数相加”,a2·a3=a5,选项A错误;根据去括号法则,-(a -b)=-a+b,选项B正确;根据合并同类项法则,a2+a2=2a2,选项C错误;根据“同底数幂的除法,底数不变,指数相减”,8a÷a4=a4,选项D错误.故选B.【知识点】同底数幂的乘法法则、去括号法则、合并同类项法则、同底数幂的除法法则.3.(2018山东威海,3,3分)若点(-2,y1),(-1,y2),(3,y3)在双曲线y=xk(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【答案】D【解析】如图,反比例函数y=xk(k<0)的图象位于第二、四象限;在每个象限内,y随x的增大而增大,而-2<-1<0<3,∴y3<y1<y2.故选D.【知识点】反比例函数的图象与性质4.(2018山东威海,4,3分)下图是某圆锥的主视图和左视图,该圆锥的侧面积是( )左视图3主视图8A.25πB.24πC.20πD.15π【答案】C【解析】根据圆锥的主视图、左视图知,该圆锥的轴截面是一个底边长为8,高为3的等腰三角形(如图),AB =2234+=5,底面半径=4,底面周长=8π,∴侧面积=12×8π×5=20π,故选C . 【知识点】三视图、圆锥的侧面积5.(2018山东威海,5,3分)已知5x =3,5y =2,则52x -3y =( )A .34B .1C .23D .98【答案】D 【解析】逆用幂的乘方、同底数幂的除法法则,得52x-3y=52x ÷53y =(5x )2÷(5y )3=32÷23=98.故选D .【知识点】幂的乘方法则、同底数幂的除法法则、求代数式的值 6.(2018山东威海,6,3分)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -21x 2 刻画,斜坡可以用一次函数y =21x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5时,小球距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1∶2 【答案】A【解析】根据函数图象可知,当小球抛出的高度为7.5时,二次函数y =4x -12x 2的函数值为7.5,即4x -12x 2=7.5,解得x 1=3,x 2=5,故当抛出的高度为7.5时,小球距离O 点的水平距离为3m 或5m ,A 结论错误;由y =4x -21x 2 得y =-21(x -4)2+8,则抛物线的对称轴为直线x =4,当x >4时,y 随x 值的增大而减小,B 结论正确;联立方程y =4x -12x 2与y =21x 解得⎩⎨⎧==00y x ,或⎪⎩⎪⎨⎧==277y x ;则抛物线与直线的交点坐标为(0,0)或(7,27),C 结论正确;由点(7,27)知坡度为27∶7=1∶2(也可以根据y =21x 中系数21的意义判断坡度为1∶2),D结论正确;故选A .【知识点】抛物线的函数值、二次函数与一次函数的结合,斜坡的坡度7.(2018山东威海,7,分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1,卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是( )A .14B .13C .12D .34【答案】B 【解析】列表如图,故所取两数的积为负数的概率为412=13. 两数积 -2 -1 0 1 -2 2 0 -2 -1 2 0 -1 0 0 0 0 1-2-1【知识点】求随机事件的概率8.(2018山东威海,8,3分)化简(a -1)+(a1-1)·a 的结果是( ) A .-a 2B .1C .a 2D .-1【答案】A【解析】根据分式的加减乘除法则进行运算,运算时,要注意运算顺序. 原式=(a -1)÷(a a -1).a =(a -1).aa-1.a =-a 2. 【知识点】分式的混合运算9.(2018山东威海,9,3分) 二次函数y =ax 2+bx +c 图象如图所示,下列结论错误的是( )A .abc <0B .a +c <bC .b 2+8a >4acD .2a +b >0【答案】D【解析】由函数图象的开口向下,判断a <0;由函数图象与y 轴交点在y 轴的正半轴上,判断c >0;由对称轴在y 轴的右侧,判断2ba->0,所以b <0,所以abc <0,A 结论正确;当x =-1时,函数值为负,故a -b +c <0,所以a +c <b ,B 结论正确;若C 正确,则有b 2>4ac -8a ,b 2>4a (c -2),24b a<c -2,根据图象可知,c >2,则c -2>0,故此时24b a >0不成立,则C 结论错误;2b a-<1,所以-b >2a ,即2a +b <0,故D 结论错误;故选D .【知识点】抛物线y =ax 2+bx +c 与系数a 、b 、c 的关系10.(2018山东威海,10,3分)如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC =30°,则弦AB的长为( )C BA OA.12B.5 C.532D.53【答案】D【解析】如图,连接OA、OC,OC 交AB于点M.根据垂径定理可知OC垂直平分AB,因为∠ABC=30°,故∠AOC=60°,在Rt△AOM中,sin60°=AM AM3==OA32,故AM=235,即AB=35.故选D.【知识点】垂径定理、锐角三角函数11.(2018山东威海,11,3分)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH,若BC=EF=2,CD=CE=1,则GH=( )A.1B.23C.22D.52【答案】C【思路分析】若要求GH的长,应先将其转化到三角形中,过点H作HM垂直于CG于点M,在Rt△GHM中,只要求出GM、HM,即可解决问题.【解题过程】过点H作HM垂直于CG于点M,设AF交CG于点O.OHG FEDMCBA根据题意可知△GOF∽△DOA,∴GF OG OF1===AD OD OA2,所以OF=12OA=13AF,即AF=3OF,因为点H是AF 的中点,所以OH=12AF-13AF=16AF,即AF=6OH,所以OH=12OF.根据已知条件可知△HOM∽△GOF,可以推出HM =12;同理,通过△HOM ∽△AOD ,可以推出DM =12DG ,即GM =12DG =12,在Rt △GHM 中,GH =222HM +GM =2。

2018年山东省威海市中考数学试卷含解析(完美打印版)

2018年山东省威海市中考数学试卷含解析(完美打印版)

2018年山东省威海市中考数学试卷(含解析)一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2B.﹣C.D.﹣22.(3分)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+bC.a2+a2=2a4D.a8÷a4=a23.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1C.D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1C.a2D.﹣19.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0B.a+c<b C.b2+8a>4ac D.2a+b>010.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.511.(3分)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2=.14.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB 的度数为.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD 边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12分)如图1,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图2,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C (0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2018年山东省威海市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2B.﹣C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.2.(3分)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+bC.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.3.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5m,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.7.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.9.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.10.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.(3分)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠P AH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π【分析】作FH⊥BC于H,连接FH,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF进行计算.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)214.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是m=4.【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为﹣6<x<﹣2.【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB 的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为44﹣16.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD 边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【分析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根据表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其它费用为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)24.(12分)如图1,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图2,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC ∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C (0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现有两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形的性质,同一对角线上的两个端点到另一对角线距离相等.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)代入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4;(2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P的半径为r,⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN和MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣).。

2018年山东省威海市中考数学试卷-答案

2018年山东省威海市中考数学试卷-答案

山东省威海市2018年初中学业考试数学答案解析一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数可得答案.解:2-的绝对值是2,故选:A.【考点】绝对值的性质.2.【答案】B【解析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.解:A.235•a a a =,故此选项错误;B.a b a b =+-(-)-,正确;C.2222a a a +=,故此选项错误;D.844a a a ÷=,故此选项错误;故选:B.【考点】整式的运算3.【答案】D【解析】直接利用反比例函数的性质解析得出答案.解:∵点12,y (-),21,y (-),33,y ()在双曲线0k y k x=(<)上,∴12y (-,),21,y (-)分布在第二象限,33y (,)在第四象限,每个象限内,y 随x 的增大而增大,∴312y y y <<.故选:D.【考点】反比例函数的性质4.【答案】C【解析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,,∴圆锥的侧面积512820=ππ⨯⨯=,故选:C. 【考点】由三视图判断几何体以及圆锥的计算5.【答案】D【解析】首先根据幂的乘方的运算方法,求出25x 、35y 的值;然后根据同底数幂的除法的运算方法,求出235x y ﹣的值为多少即可.解:∵5352x y ==,,∴2233539528x y ====,,∴223359558x x y x ==﹣.故选:D. 【考点】同底数幂的除法法则,以及幂的乘方与积的乘方6.【答案】A【解析】求出当7.5y =时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当7.5y =时,217.542x x =-,整理得28150x x +=-,解得,13x =,25x =, ∴当小球抛出高度达到7.5 m 时,小球水平距O 点水平距离为 3 m 或5cm,A 错误,符合题意;22114(4)822y x x x =-=--+,则抛物线的对称轴为4x =, ∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=+⎪⎪⎨⎪=⎪⎩解得,1200x x =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意; ∵斜坡可以用一次函数12y x =刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A.【考点】解直角三角形的——坡度问题、二次函数的性质7.【答案】B【解析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种, 所以抽取的两张卡片上数字之积为负数的概率为41=123,故选:B. 【考点】列表法与树状图法8.【答案】A【解析】根据分式的混合运算顺序和运算法则计算可得. 解:原式11a a a a-=÷(-) (-1)(1)a a a a =-- 2a =-,故选:A.【考点】分式的混合运算9.【答案】D 【解析】根据二次函数的图象与系数的关系即可求出答案.解:A.由图象开口可知:0a <由对称轴可知:02b a->,∴0b >, ∴由抛物线与y 轴的交点可知:0c >,∴0abc <,故A 正确;B.由图象可知:1x =-,0y <,∴0y a b c =+-<,∴a c b +<,故B 正确;C.由图象可知:顶点的纵坐标大于2,∴2424ac b a->,0a <, ∴248ac b a -<,∴284b a ac +>,故C 正确;D.对称轴12b x a =-<,0a <,∴20a b +<,故D 错误;故选:D.【考点】二次函数的综合问题10.【答案】D【解析】连接OC 、OA ,利用圆周角定理得出60AOC ∠=︒,再利用垂径定理得出AB 即可.解:连接OC 、OA ,∵30ABC ∠=︒,∴60AOC ∠=︒,∵AB 为弦,点C 为AB 的中点,∴OC AB ⊥,在Rt OAE 中,AE =,∴AB =,故选:D.【考点】圆周角定理11.【答案】C【解析】延长GH 交AD 于点P ,先证APH FGH △≌△得1AP GF ==,12GH PH PG ==,再利用勾股定理求得PG =从而得出答案.解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴90ADC ADG CGF ∠=∠=∠=︒,21AD BC GF CE ====、,∴AD GF ∥,∴GFH PAH ∠=∠,又∵H 是AF 的中点,∴AH FH =,在APH △和FGH △中,∵PAH GFH AH FHAHP FHG =⎧⎪=⎨⎪=⎩∠∠∠∠, ∴APH FGH ASA △≌△(), ∴1AP GF ==,12GH PH PG ==, ∴1PD AD AP =-=,∵2CG =、1CD =,∴1DG =,则1122GH PG ==故选:C.【考点】矩形的性质12.【答案】C【解析】作FH BC ⊥于H ,连接FH ,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE =,通过R t A B E E H F △≌△得90AEF ∠=︒,然后利用图中阴影部分的面积A B E A E F A B C D S S S S =+正方形半圆﹣﹣进行计算.解:作FH BC ⊥于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴6BE CE CH FH ====,AE =易得Rt ABE EHF △≌△,∴AEB EFH ∠=∠,而90EFH FEH ∠+∠=︒,∴90AEB FEH ∠+∠=︒,∴90AEF ∠=︒,∴图中阴影部分的面积ABE AEF ABCD S S S S =+正方形半圆﹣﹣2111121261266565222=⨯+-⨯⨯-⨯π 1818π=+.故选:C.【考点】正多边形和圆二、填空题13.【答案】2122a --(). 【解析】原式提取公因式,再利用完全平方公式分解即可. 解:原式2211(44)(2)22a a a =--+=--, 故答案为:2122a --() 【考点】因式分解14.【答案】4m =【解析】若一元二次方程有实根,则根的判别式240b ac ∆=﹣≥,建立关于m 的不等式,求出m 的取值范围.还要注意二次项系数不为0.解:∵关于x 的一元二次方程25220m x x -++=()有实根,∴48(5)0m ∆=-->,且50m ≠-,解得 5.5m <,且5m ≠,则m 的最大整数解是4m =.故答案为:4m =.【考点】根的判别式15.【答案】62x -<<-【解析】利用待定系数法求出k 、m ,再利用图象法即可解决问题;解:∵23A(-,)在k y x =上, ∴6k =-.∵点,1B m ()在6y x-=上, ∴6m =-, 观察图象可知:当12S S >时,点P 在线段AB 上,∴点P 的横坐标x 的取值范围为62x -<<-.故答案为62x -<<-.【考点】反比例函数的性质、三角形的面积、待定系数法等知识16.【答案】135°【解析】如图,连接EC.首先证明135AEC ∠=︒,再证明EAC EAB △≌△即可解决问题;解:如图,连接EC .∵E 是ADC 的内心, ∴1901352AEC ADC ∠=︒+∠=︒, 在AEC △和AEB △中,AE AE EAC EAB AC AB =⎧⎪=⎨⎪=⎩∠∠,∴EAC EAB △≌△,∴135AEB AEC ∠=∠=︒,故答案为135°. 【考点】三角形的内心、全等三角形的判定和性质17.【答案】44-,图②中,a ,宽为b ,依据等量关系即可得到方程组,进而得出a ,b 的值,即可得到图③中,阴影部分的面积.解:由图可得,,图②中,设小矩形的长为a ,宽为b ,依题意得2a b a b ⎧=+⎪⎨=+⎪⎩解得a b ⎧=⎪⎨=⎪⎩, ∴图③中,阴影部分的面积为22344a b ==-(-)(故答案为:44-【考点】二元一次方程组的应用以及二次根式的化简18.【答案】2018201722(,)【解析】根据题意可以求得点1B 的坐标,点2A 的坐标,点2B 的坐标,然后即可发现坐标变化的规律,从而可以求得点2018B 的坐标.解:由题意可得,点1A 的坐标为12(,), 设点1B 的坐标为1(,)2a a ,解得,2a =, ∴点1B 的坐标为2,1(), 同理可得,点2A 的坐标为2,4(),点2B 的坐标为4,2(), 点3A 的坐标为4,8(),点3B 的坐标为8,4(), ……∴点2018B 的坐标为2018201722(,), 故答案为:2018201722(,). 【考点】一次函数图象上点的坐标特征、点的坐标三、解答题19.【答案】解:解不等式①,得4x >-,解不等式②,得2x ≤,把不等式①②的解集在数轴上表示如图,原不等式组的解集为42x -<≤.【解析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【考点】了解一元一次不等式组20.【答案】解:设软件升级前每小时生产x 个零件,则软件升级后每小时生产11+3x ()个零件, 根据题意得:240240402016060(1)3x x -=++, 解得:60x =,经检验,60x =是原方程的解,且符合题意, ∴1(1)803x +=. 答:软件升级后每小时生产80个零件.【解析】设软件升级前每小时生产x 个零件,则软件升级后每小时生产11+3x ()个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x 的分式方程,解之经检验后即可得出结论.【考点】分式方程的应用21.【解答】解:由题意,得:31802145∠=︒∠=︒-,41802230∠=︒∠=︒-,BE KE =、KF FC =, 如图,过点K 作KM BC ⊥于点M ,设EM x =,则EM x =、MF =,∴1x =,解得:1x =,∴EK =2KF =,∴3BC BE EF FC EK EF KF =++=++=,∴BC 的长为3【解析】由题意知31802145∠=︒∠=︒-、41802230∠=︒∠=︒-、BE KE =、KF FC =,作KM BC ⊥,设KM x =,知EM x =、MF =,根据EF 的长求得1x =,再进一步求解可得.【考点】翻折变换22.【答案】解:(1)本次调查的学生有:6020=120360︒÷︒(名), 背诵4首的有:120152016131145-----=(人),∵154560+=,∴这组数据的中位数是:452 4.5+÷=()(首),故答案为:4.5首; (2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:40+25+201200=850120⨯(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.【解析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根基表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【考点】扇形统计图、条形统计图、用样本估计总体、统计量的选择23.【答案】解:(1)设直线AB 的解析式为:y kx b =+,代入4,4A (),62B (,)得:4462k b k b +=⎧⎨+=⎩, 解得:18k b =-⎧⎨=⎩, ∴直线AB 的解析式为:8y x =-+,同理代入6,2B (),81C (,)可得直线BC 的解析式为:152y x =-+, ∵工资及其他费作为:0.4513⨯+=万元,∴当46x ≤≤时,21(4)(-8)-3-12-35w x x x x =-+=+,当68x ≤≤时,2211(4)(5)372322w x x x x =--+-=-+-; (2)当46x ≤≤时,2211235(6)1w x x x =-+-=--+,∴当6x =时,1w 取最大值是1,当68x ≤≤时,222113723(7)222w x x x =-+-=--+, 当7x =时,2w 取最大值是1.5, ∴1020261.533==, 即最快在第7个月可还清10万元的无息贷款.【解析】(1)y(万件)与销售单价x 是分段函数,根据待定系数法分别求直线AB 和BC 的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【考点】利用待定系数法求解一次函数关系式24.【答案】解:(1)∵点M,N,F 分别为AB,AE,BE 的中点,∴MF,NF 都是ABE 的中位线,∴12MF AE AN ==,12NF AB AM ==, ∴四边形ANFM 是平行四边形,又∵AB AE ⊥,∴四边形ANFM 是矩形,又∵1tan FMN ∠=,∴FN FM =,∴矩形ANFM 是正方形,AB AE =,又∵1290∠+∠=︒,2390∠+∠=︒,∴13∠=∠,∵90C D ∠=∠=︒,∴ABC EAD AAS △≌△(),∴4BC AD ==,5CA DE ==, ∴54AC AD =; (2)可求线段AD 的长.由(1)可得,四边形MANF 为矩形,12MF AE =,12NF AB =, ∵12tan FMN ∠=,即12FN FM =, ∴12AB AE =, ∵13∠=∠,90C D ∠=∠=︒,∴ABC EAD ∽, ∴12AB BC AE AD ==, ∵4BC =,∴8AD =;(3)∵BC CD ⊥,DE CD ⊥,∴ABC △和ADE △都是直角三角形,∵M ,N 分别是AB ,AE 的中点,∴BM CM =,NA ND =,∴421∠=∠,523∠=∠,∵13∠=∠,∴45∠=∠,∵904FMC ∠=︒+∠,905FND ∠=︒+∠, ∴FMC FND ∠=∠,∵FM DN =,CM NF =,∴FMC DNF SAS △≌△(); (4)在(3)的条件下,FMC DNF SAS ≌(),BM AM FN ==,MF AN NE ==, 90FMB MFN MAN ENF =∠=∠=∠=︒∠,∴图中有:BMF NFM MAN FNE △≌△≌△≌△.【解析】(1)根据四边形ANFM 是平行四边形,AB AE ⊥,即可得到四边形ANFM 是矩形,再根据FN FM =,即可得出矩形ANFM 是正方形,AB AE =,结合1390C D ∠=∠∠=∠=︒,,即可得到ABC EAD △≌△,进而得到BC AD =,CA DE =,即可得出54AC AD =; (2)依据四边形MANF 为矩形,12MF AE =,12NF AB =,1tan 2FMN ∠=,即可得到12AB AE =,依据A B C E A D ∽,即可得到12AB BC AE AD ==,即可得到AD 的长; (3)根据ABC 和ADE 都是直角三角形,M,N 分别是AB,AE 的中点,即可得到BM CM =,NA ND =,进而得出421∠=∠,523∠=∠,根据45∠=∠,即可得到FMC FND∠=∠,再根据FM DN =,CM NF =,可得FMC DNF△≌△; (4)由FMC DNF SAS △≌△(),BM AM FN ==,MF AN NE ==, 90FMB MFN MAN ENF =∠=∠=∠=︒∠,即可得到:BMF NFM MAN FNE △≌△≌△≌△.【考点】全等三角形的判定与性质,相似三角形的判定与性质、三角形的性质以及矩形的判定与性质的综合运用25. 【解答】解:(1)∵抛物线过点40A (-,),20B (,)∴设抛物线表达式为:(4)(2)y a x x =+-把04C (,)带入得 4(04)(02)a =+-∴12a =-∴抛物线表达式为:211(4)2422y x x x x =-+-=--+() (2)由(1)抛物线对称轴为直线12bx a =-=-.∵线段BC 的中垂线与对称轴l 交于点D∴点D 在对称轴上设点D 坐标为1m (-,)过点C 做CG l ⊥于G,连DC,DB∴DC DB =在Rt DCG △和Rt DBH △中∵22214DC m =+(-),22221DB m =++()∴22212421m m +-=++()()解得:1m =∴点D 坐标为11(-,)(3)∵点B 坐标为2,0(),C 点坐标为()0,4∴BC =∵EF 为BC 中垂线∴BE =在Rt BEF △和Rt BOC △中,cos BEOBCBF BF BC ∠==∴5BF =,EF ,3OF =设⊙P 的半径为r ,⊙P 与直线BC 和EF 都相切如图:①当圆心1P 在直线BC 左侧时,连11PQ ,11PR ,则11111PQPR r == ∴11111190PQ E PR E R EQ ∠=∠=∠=︒∴四边形111PQ ER 是正方形∴1111ER PQ r ==在Rt BEF △和11Rt FR P △中111tan 1PR BF BF FP ∠==∴1r = ∵111sin 1PR BE BF FP ∠== ∴1103FP =,113OP = ∴点1P 坐标为1(,0)3 ②同理,当圆心2P 在直线BC 右侧时,可求2r =27OP =∴2P 坐标为70(,) ∴点P 坐标为1(,0)3或(7,0) (4)存在当点P 坐标为1(,0)3时, ①若DN 和MP 为平行四边形对边,则有DN MP = 当13x =时,211165()423318y =--+= ∴6518DN MP == ∴点N 坐标为83(-1)18, ②若MN 、DP 为平行四边形对边时,M 、P 点到ND 距离相等则点M 横坐标为73- 则M 纵坐标为213765()422318-⨯-++= 由平行四边形中心对称性可知,点M 到N 的垂直距离等于点P 到点D 的垂直距离当点N 在D 点上方时,点N 纵坐标为654711818-= 此时点N 坐标为47(1,)18- 当点N 在x 轴下方时,点N 坐标为471,)18-(- 当点P 坐标为70(,)时,所求N 点不存在. 故答案为:831,)18(-、471,)18(-、471,)18-(- 【解析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现由两种可能性,确定方案后利用锐角三角函数定义构造方程,求出半径及点P 坐标;(4)通过分类讨论画出可能图形,注意利用平行四边形的性质,同一对角线上的两个端点到另一对角线距离相等.【考点】本二次函数、圆和平行四边形存在性的判定。

2018年山东威海市中考数学试题及答案

2018年山东威海市中考数学试题及答案

2 1
= 6k1 = 8k1
+ b1 + b1
,解得
k1 b1
= =
− 5
1 2

∴直线 BC 的函数表达式为
yBC
=
−1 2
x + 5.
又∵工资及其他费用为 0.4 5 +1 = 3 万元.
当 4 x 6 时,∴W1 = ( x − 4)(−x + 8) − 3 ,即W1 = −x2 +12x − 35 .
交直线
y
=
1 2
x
于点
B1
,过
B1
点作
B1 A2

y
轴,交直线
y
=
2x
于点
A2
,以点
O
为圆心,以
OA2
长为半径画弧,交直线
y
=
1 2
x
于点
B2
;过点
B2

B2
A3

y
轴,交直线
y
=
2x
于点
A3
,以

O
为圆心,以
OA3
长为半径画板,交直线
y
=
1 2
x
于点
B3
;过
B3
点作
B3
A4

y
轴,交直线
y
=
2x
于点
5

1 2
(
x
+
4)
x

20.某自动化车间计划生产 480 个零件,当生产任务完成一半时,停止生产进行自动化程序
软件升级,用时 20 分钟,恢复生产后工作效率比原来提高了 1 ,结果完成任务时比原计划 3

2018年山东省威海市中考数学试题及参考答案案

2018年山东省威海市中考数学试题及参考答案案

威海市2018年初中学业考试数学一、选择题(本大题共12小题,每小题3分,共36分.)1.(2018山东威海中考,1,3分,★☆☆)-2的绝对值是()A.2 B.-12C.12D.-22.(2018山东威海中考,2,3分,★☆☆)下列运算结果正确的是()A.a2•a3=a6B.-(a-b)=-a+bC.a2+a2=2a4D.a8÷a4=a23.(2018山东威海中考,3,3分,★☆☆)若点(-2,y1),(-1,y2),(3,y3)在双曲线y=kx(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3 D.y3<y1<y24.(2018山东威海中考,4,3分,★☆☆)下图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(2018山东威海中考,5,3分,★★☆)已知5x=3,5y=2,则52x-3y=()A.34B.1 C.23D.986.(2018山东威海中考,6,3分,★★☆)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1∶27.(2018山东威海中考,7,3分,★★☆)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.348.(2018山东威海中考,8,3分,★★☆)化简(a-1)÷(1a-1)•a的结果是()A.-a2B.1 C.a2D.-19.(2018山东威海中考,9,3分,★★☆)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(2018山东威海中考,10,3分,★★☆)如图,⊙O的半径为5,AB为弦,点C为AB 的中点,若∠ABC=30°,则弦AB的长为()A.12B.5 C.532D.5311.(2018山东威海中考,11,3分,★★☆)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D.5212.(2018山东威海中考,12,3分,★★☆)如图,在正方形ABCD中,AB=12,点E 为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本大题共6小题,每小题3分,共18分.)13.(2018山东威海中考,13,3分,★☆☆)分解因式:-12a2+2a-2=.14.(2018山东威海中考,14,3分,★★☆)关于x的一元二次方程(m-5)x2+2x+2=0有实根,则m的最大整数解是.15.(2018山东威海中考,15,3分,★★☆)如图,直线AB与双曲线y=kx(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(-2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2.当S1>S2时,点P的横坐标x的取值范围为.16.(2018山东威海中考,16,3分,★★☆)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(2018山东威海中考,17,3分,★★☆)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(2018山东威海中考,18,3分,★★★)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=12x于点B1.过B1点作B 1A 2∥y 轴,交直线y =2x 于点A 2,以O 为圆心,以OA 2长为半径画弧,交直线y =12x 于点B 2;过点B 2作B 2A 3∥y 轴,交直线y =2x 于点A 3,以点O 为圆心,以OA 3长为半径画弧,交直线y =12x 于点B 3;过B 3点作B 3A 4∥y 轴,交直线y =2x 于点A 4,以点O 为圆心,以OA 4长为半径画弧,交直线y =12x 于点B 4,…按照如此规律进行下去,点B 2018的坐标为 .三、解答题(本大题共7小题,共66分.)19.(2018山东威海中考,19,7分,★★☆)解不等式组,并将解集在数轴上表示出来. ()()27311542<,①.②x x x x --⎧⎪⎨-+≥⎪⎩20.(2018山东威海中考,20,8分,★★☆)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟.求软件升级后每小时生产多少个零件?21.(2018山东威海中考,21,8分,★★☆)如图,将矩形ABCD(纸片)折叠,使点B 与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=3+1,求BC的长.22.(2018山东威海中考,22,9分,★★☆)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”.根据调查结果绘制成的统计图(部分)如下图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表:一周诗词诵背数量3首4首4首6首7首8首人数10 10 15 40 25 20 请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(2018山东威海中考,23,10分,★★☆)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(2018山东威海中考,24,12分,★★★)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC.点M,N,F分别为AB,AE,BE的中点,连接MN ,MF ,NF .(1)如图②,当BC =4,DE =5,tan ∠FMN =1时,求ACAD的值; (2)若tan ∠FMN =12,BC =4,则可求出图中哪些线段的长?写出解答过程; (3)连接CM ,DN ,CF ,DF .试证明△FMC 与△DNF 全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(2018山东威海中考,25,12分,★★★)如图,抛物线y =ax 2+bx +c (a ≠0)与x轴交于点A (-4,0),B (2,0),与y 轴交于点C (0,4).线段BC 的中垂线与对称轴l 交于点D ,与x 轴交于点F ,与BC 交于点E .对称轴l 与x 轴交于点H . (1)求抛物线的函数表达式; (2)求点D 的坐标;(3)点P 为x 轴上一点,⊙P 与直线BC 相切于点Q ,与直线DE 相切于点R .求点P 的坐标;(4)点M 为x 轴上方抛物线上的点,在对称轴l 上是否存在一点N ,使得以点D ,P ,M ,N 为顶点的四边形是平行四边形?若存在,则直接写出N 点坐标;若不存在,请说明理由.图②图①备用图威海市2018年初中学业水平考试数学试题答案全解全析1.答案:A解析:-2的绝对值是2.考查内容:绝对值命题意图:本题主要考查对实数的概念的理解,难度较低.2.答案:B解析:A项,a2•a3=a5,此选项错误;B项,-(a-b)=-a+b,此选项正确;C项,a2+a2=2a2,此选项错误;D项,a8÷a4=a4,此选项错误;故选B.考查内容:合并同类项;同底数幂的乘除运算;去括号法则.命题意图:本题主要考查对整式运算的基础知识的掌握情况,难度较低. 3.答案:D解析:∵点(-2,y1),(-1,y2),(3,y3)在双曲线y=kx(k<0)上,∴(-2,y1),(-1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选D.考查内容:反比例函数的性质.命题意图:本题主要考查对反比例函数的图象与性质的掌握情况,数形结合思想,难度较低. 4.答案:C解析:由题可得,圆锥的底面直径为8,高为3,=5.∴圆锥的侧面积=12×8π×5=20π. 故选C.考查内容:由三视图判断几何体以及圆锥的有关计算命题意图:本题主要考查对三视图的相关运算的能力,数形结合思想,难度较低. 5.答案:D解析:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x-3y=2355xy=98.故选D.考查内容:幂的运算性质.命题意图:本题主要考查对幂的运算性质的灵活应用能力,难度中等. 6.答案:A解析:A项,当y=7.5时,7.5=4x-12x2,整理得x2-8x+15=0,解得x1=3,x2=5.∴当小球抛出高度达到7.5m时,小球距O点水平距离为3m或5m,A错误.B项,y=4x-12x2=-12(x-4)2+8,则抛物线的对称轴为x=4.∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确.C项,联立两函数解析式,得21421.2y x xy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得110,0,xy=⎧⎨=⎩227,7.2xy=⎧⎪⎨=⎪⎩则小球落地点距O点水平距离为7米,C正确.∵斜坡可以用一次函数y=12x刻画,∴斜坡的坡度为1∶2,D正确.综上,A项错误,故选A.考查内容:二次函数、一次函数的图象与性质;坡度.命题意图:本题主要考查二次函数与一次函数的综合应用,从图象中获取信息的能力,难度中等. 7.答案:B解析:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种, 所以抽取的两张卡片上数字之积为负数的概率为412=13,故选B . 考查内容:用画树状图法或列表法求概率.命题意图:本题主要考查概率的计算能力,难度中等.归纳总结:随机事件要经过两步步骤完成或涉及两个因素,一般画树状图或列表格列举出所有等可能性结果,再利用公式计算概率. 其中结果的总数较多时,列表格较为便捷. 随机事件要经过三步及以上步骤完成或涉及三个及以上因素,只能画树状图列举出所有等可能结果数. 8.答案:A 解析:(a -1)÷(1a -1)•a =(a -1)÷1a a-•a =(a -1)•()1aa --•a =-a 2. 故选A .考查内容:分式的混合运算.命题意图:本题主要考查分式混合运算的能力,难度中等. 9.答案:D解析:A 项,由图象开口向下知a <0,由对称轴在y 轴右侧知2ba->0,∴b >0. 由抛物线与y 轴的交点可知c >0,∴abc <0,此选项正确. B 项,由图象可知:x =-1,y <0,∴y =a -b +c <0. ∴a +c <b ,此选项正确.C 项,由图象可知:顶点的纵坐标大于2, ∴244ac b a->2,又a <0,∴4ac -b 2<8a ,∴b 2+8a >4ac ,此选项正确.D 项,对称轴x =2ba-<1,a <0, ∴2a +b <0,此选项错误. 故选D .考查内容:二次函数的图象与系数之间的关系命题意图:本题主要考查对二次函数的图象与性质的掌握与应用,数形结合思想,难度中等. 10.答案:D解析:如图,连接OA ,OC , OC 交AB 于点E .∵∠ABC =30°,∴∠AOC =60°.∵AB 为弦,点C 为A B 的中点,∴OC ⊥AB . 在Rt △OAE 中,AE =OA ·sinO =352⨯=532. ∴AB =2AE =53. 考查内容:圆周角定理;垂径定理.命题意图:本题主要考查对的圆的性质的掌握与应用,难度中等. 11.答案:C解析:如图,延长GH 交AD 于点P .∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC =∠ADG =∠CGF =90°,AD =BC =2,GF =CE =1. ∴AD ∥GF ,∴∠GFH =∠PAH . 又∵H 是AF 的中点,∴AH =FH . 在△APH 和△FGH 中,∵PAH GFHAH FHAHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△APH≌△FGH(ASA).∴AP=GF=1,GH=PH=12 PG.∴PD=AD-AP=1.∵CG=2,CD=1,∴DG=1.则GH=12PG=12×22PD DG+=22.故选C.考查内容:矩形的性质;勾股定理等知识.命题意图:本题主要考查有关特殊平行四边形等基础几何图形的性质掌握与应用,推理证明能力,难度中等.12.答案:C解析:如图,取CD的中点M,连接DF,CF,MF.S半圆CFD=12πr2=12π×62=18π,S△CDF=12×12×6=36.∵点F是半圆的中点,M是CD的中点,∴MF⊥CD.又四边形ABCD是正方形,∴AD∥MF.∵S△ADF=12×12×6=36,S△CEF=12×6×6=18,∴S阴影部分=S△ADF+S△CEF+S半圆CFD-S△CDF=36+18+18π﹣36=18π+18.考查内容:扇形面积;正方形的性质.命题意图:本题主要考查扇形面积的相关计算能力,转化思想,难度中等.13.答案:-12(a-2)2解析:原式=-12(a2-4a+4)=-12(a-2)2.考查内容:因式分解.命题意图:本题主要考查因式分解的能力,难度较低.M14.答案:m=4解析:∵关于x的一元二次方程(m-5)x2+2x+2=0有实根,∴△=4-8(m-5)≥0,且m-5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.考查内容:根的判别式;一元二次方程的定义.命题意图:本题主要考查对一元二次方程根的判别式的应用能力,不等式思想,难度中等. 易错警示:注意不要忽略二次项系数不为0的条件.15.答案:-6<x<-2解析:∵A(-2,3)在y=kx上,∴k=-6.∵点B(m,1)在y=6x上,∴m=-6.观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为-6<x<-2.考查内容:反比例函数系数k的几何意义;反比例函数与一次函数的综合应用命题意图:本题主要考查反比例函数与一次函数的综合应用能力,反比例函数系数k的几何意义的灵活应用,数形结合思想,难度中等偏上.16.答案:135°解析:如图,连接EC.∵∠ADC=90°,∴∠DAC+∠DCA=90°.∵⊙E内切于△ADC,∴∠EAC+∠ECA=45°,∴∠AEC=135°.∵AC=AB,∠CAE=∠BAE,AE=AE,∴△AEC≌△AEB.∴∠AEB=∠AEC=135°.考查内容:三角形的内切圆与内心.命题意图:本题主要考查三角形内切圆的相关知识的掌握与应用,转化思想,难度中等.17.答案:44-166解析:图①中阴影部分的边长为12=23, 图②中,阴影部分的边长为8=22. 所以矩形的宽为2322322-=-. 所以图③中,阴影部分的面积为[(22-2(32-)]2=44-166. 考查内容:矩形、正方形的性质,二次根式的运算.命题意图:本题主要考查对矩形、正方形性质的理解,动手操作能力,难度中等. 18.答案:(22018,22017)解析:点A 1的坐标为(1,2),设点B 1的坐标为(a ,12a ), 则22221()122a a +=+,解得a =2.∴点B 1的坐标为(2,1).同理点A 2的坐标为(2,4),点B 2的坐标为(4,2), 点A 3的坐标为(4,8),点B 3的坐标为(8,4), …点B 2018的坐标为(22018,22017).考查内容:规律探索,圆的性质,一次函数命题意图:本题主要考查平面直角坐标系内的规律探索能力,数形结合思想,难度较大. 19.解析:解不等式①,得x >-4. ……………………………………2分 解不等式②,得x ≤2. …………………………………………………4分 把不等式①②的解集在数轴上表示如图,…………………6分原不等式组的解集为-4<x ≤2.…………………………………………………7分 考查内容:一元一次不等式组的解法.命题意图:本题主要考查解一元一次不等式的能力,难度中等.20.解析:设软件升级前每小时生产x 个零件,则软件升级后每小时生产(1+13)x 个零件,根据题意,得…………………………………………………………………2分240x -240113x ⎛⎫+ ⎪⎝⎭=4060+2060.………………………………………………………4分 解得x =60. ………………………………………………………………………5分 经检验x =60是所列方程的解,且符合题意. …………………………………6分(1+13)x =80.答:软件升级后每小时生产80个零件.……………………………………8分 考查内容:分式方程的应用命题意图:本题主要考查分式方程的应用能力,难度中等.21.解析:由题意,得∠3=180°-2∠1=45°,∠4=180°-2∠2=30°,BE =KE ,KF =FC . ………………………………………………………………………………………2分 如图,过点K 作KM ⊥BC 于点M . …………………………………………………………3分设KM =x ,则EM =x ,MF 3.…………………………………………………………4分 ∴x 33 1. …………………………………………………………………………5分 解得x =1. ……………………………………………………………………………………6分 ∴EK 2KF =2. …………………………………………………………………………7分 ∴BC =BE +EF +FC =EK +EF +KF =323∴BC 的长为3238分 考查内容:矩形的性质;翻折变换;解直角三角形.命题意图:本题主要考查对矩形性质,轴对称性质的掌握与应用,解直角三角形的能力,动手操作能力,难度中等.22.解析:(1)4.5首.………………………………………………………………………2分解法提示:本次调查的学生有:20÷60360︒︒=120(名),背诵4首的有:120-15-20-16-13-11=45(人), ∵15+45=60,∴这组数据的中位数是:452+=4.5(首). (2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有: 1200×402520120++=850(人). ………………………………………………………3分答:大赛后一个月该校学生“一周诗词诵背数量”6首(含6首)以上的人数大约有850人. ………………………………………………………………………………………4分 (3)①中位数:活动之初,“一周诗词诵背数量”的中位数为4.5首;大赛后,“一周诗词诵背数量”的中位数为6首. ②平均数:活动之初,()13154455206167138115120x =⨯+⨯+⨯+⨯+⨯+⨯=. 大赛后,()13104105156407258206120x =⨯+⨯+⨯+⨯+⨯+⨯=. 综上分析,从中位数,平均数可看出,学生在大赛之后“一周诗词诵背数量”都好于活动之初,根据样本估计总体,该校大赛之后“一周诗词诵背数量”好于活动之初,说明该活动效果明显. …………………………………………………………………………………………………9分 考查内容:扇形统计图;条形统计图;用样本估计总体;统计量的意义与计算. 命题意图:本题主要考查对统计知识的掌握情况,统计分析能力,难度中等. 23.解析:(1)设直线AB 的函数表达式为:y =kx +b ,代入A (4,4),B (6,2),得44,6 2.k b k b +=⎧⎨+=⎩……………………………………1分解得1,8.k b =-⎧⎨=⎩∴直线AB 的函数表达式为:y =-x +8. ……………………………………2分 同理代入B (6,2),C (8,1)可得直线BC 的函数表达式为:y =-12x +5. …3分 ∵工资及其它费用为:0.4×5+1=3万元,∴当4≤x ≤6时,w 1=(x -4)(-x +8)-3=-x 2+12x -35. …………………5分 当6≤x ≤8时,w 2=(x -4)(-12x +5)-3=-12x 2+7x -23. …………………6分 (2)当4≤x ≤6时,w 1=-x 2+12x -35=-(x -6)2+1,∴当x=6时,w1取最大值是1. ……………………………………………………8分当6≤x≤8时,w2=-12x2+7x-23=-12(x-7)2+32,当x=7时,w2取最大值是1.5. …………………………………………………………9分∴101.5=203=623,即最快在第7个月可以还清10万元的无息贷款.……………………………………10分考查内容:一次函数与二次函数的综合应用命题意图:本题主要考查函数的实际应用能力,数形结合思想,难度中等偏上. 24.解析:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线.∴MF=12AE=AN,NF=12AB=AM.∴四边形ANFM是平行四边形.又∵AB⊥AE,∴四边形ANFM是矩形.又∵tan∠FMN=1,∴FN=FM.∴矩形ANFM是正方形.∴AB=AE. …………………………………………………………………………………1分又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠C=∠D=90°,∴△ABC≌△EAD(AAS). ………………………………………………………………2分∴BC=AD=4,CA=DE=5,∴ACAD=54.……………………………………………………………………………………3分(2)可求线段AD的长.……………………………………………………………………4分由(1)可得,四边形MANF为矩形,MF=12AE,NF=12AB.∵tan∠FMN=12,即FNFM=12,∴ABAE=12.∵∠1=∠3,∠BCA=∠ADE=90°,∴△ABC∽△EAD. …………………………………………………………………………5分∴ABAE=BCAD=12.∵BC=4,∴AD=8. …………………………………………………………………………………6分(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形.∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND. ………………………………………………………………7分∴∠4=2∠1,∠5=2∠3.∵∠1=∠3,∴∠4=∠5.∵∠FMC=90°+∠4,∠FND=90°+∠5.∴∠FMC=∠FND. ………………………………………………………………8分∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS).……………………………………………………9分(4)在(3)的条件下,BM =AM =FN ,MF =AN =NE ,∠FMB =∠MFN =∠MAN =∠ENF =90°,∴图中有:△BMF ≌△NFM ≌△MAN ≌△FNE .…………………………12分考查内容:全等三角形的判定与性质;相似三角形的判定与性质;直角三角形的性质以及矩形的判定与性质的综合运用.命题意图:本题主要考查三角形、四边形、相似的有关知识的综合运用能力,推理证明能力, 难度较大.25.解析:(1)∵抛物线过点A (-4,0),B (2,0), ∴设抛物线的函数表达式为:y =a (x +4)(x -2). 把C (0,4)代入得4=a (0+4)(0-2) ∴a =-12.………………………………………………………………………………1分 ∴抛物线的函数表达式为:y =-12(x +4)(x -2)=-12x 2-x +4. ……………2分 (2)由(1)抛物线对称轴为直线x =-2ba=-1,………………………………3分 ∵线段BC 的中垂线与对称轴l 交于点D , ∴点D 在对称轴x =-1上. 设点D 坐标为(-1,m ),过点C 作CG ⊥l 于点G ,连接DC ,DB ,∴DC =DB . ………………………………………………………………………………4分在Rt △DCG 和Rt △DBH 中,∵DC 2=12+(4-m )2,DB 2=m 2+(2+1)2,∴12+(4-m )2=m 2+(2+1)2.解得:m =1.∴点D 坐标为(-1,1). ………………………………………………………………5分(3)∵点B 坐标为(2,0),点C 坐标为(0,4),∴BC =∵EF 为BC 中垂线,∴BE =12BC .在Rt △BEF 和Rt △BOC 中,cos ∠CBF =BE OBBF BC ==.∴BF =5. ∴EF OF =3.设⊙P 的半径为r ,⊙P 与直线BC 和EF 都相切,有两种情况:如图:①当圆心P 1在直线BC 左侧时,连接P 1Q 1,P 1R 1,则P 1Q 1=P 1R 1=r 1.∴∠P 1Q 1E =∠P 1R 1E =∠R 1EQ 1=90°.∴四边形P 1Q 1ER 1是正方形.∴ER 1=P 1Q 1=r 1.在Rt △BEF 和Rt △FR 1P 1中,tan ∠1=111PR BE EF FR =.=∴r 1.………………………………………………………………………………6分 ∵sin ∠1=111PR BE BF FP =13FP =. ∴FP 1=103,OP 1=13. ∴点P 1坐标为(13,0). ……………………………………………………………7分 ②同理,当圆心P 2在直线BC 右侧时,可求r 2=OP 2=7.………………………………………………………………8分∴P 2坐标为(7,0).∴点P 坐标为(13,0)或(7,0). ………………………………………………9分 (4)存在.N 1(-1,1847),N 2(-1,1883),N 3(-1,-1847).………………12分 解法提示:如图,当点P 坐标为(13,0)时, ①若DN 和MP 为平行四边形的对边,则有DN =MP .当x =13时,y =-211165()423318-+=. ∴DN =MP =6518.∴点N坐标为(-1,8318),或(-1,4718).②若MN和DP为平行四边形对边时,M,P点到ND距离相等.则点M的坐标为(-73,6518).此时点N坐标为(-1,4718).当点P坐标为(7,0)时,所求N点不存在.故答案为:(-1,8318),(-1,4718),(-1,-4718).考查内容:二次函数压轴题;待定系数法求二次函数解析式;勾股定理;锐角三角函数的定义;正方形的判定;切线的性质;存在型问题.命题意图:本题主要考查解决二次函数与几何图形综合题的能力,方程思想,数形结合思想,分类讨论思想等,难度较大.。

2018年山东威海市中考数学试卷(带答案解析)

2018年山东威海市中考数学试卷(带答案解析)

第 7页(共 21页)
二、填空题(本题包括 6 小题,每小题 3 分,共 18 分) 13.(3 分)分解因式:﹣ a2+2a﹣2= ﹣ (a﹣2)2 . 【解答】解:原式=﹣ (a2﹣4a+4)=﹣ (a﹣2)2, 故答案为:﹣ (a﹣2)2
14.(3 分)关于 x 的一元二次方程(m﹣5)x2+2x+2=0 有实根,则 m 的最大整 数解是 m=4 . 【解答】解:∵关于 x 的一元二次方程(m﹣5)x2+2x+2=0 有实根, ∴△=4﹣8(m﹣5)≥0,且 m﹣5≠0, 解得 m≤5.5,且 m≠5, 则 m 的最大整数解是 m=4. 故答案为:m=4.
【解答】解:由题意可得, 点 A1 的坐标为(1,2), 设点 B1 的坐标为(a, a),
쳌쳌
,解得,a=2,
∴点 B1 的坐标为(2,1), 同理可得,点 A2 的坐标为(2,4),点 B2 的坐标为(4,2), 点 A3 的坐标为(4,8),点 B3 的坐标为(8,4), …… ∴点 B2018 的坐标为(22018,22017), 故答案为:(22018,22017).
∴AB= ,
第 5页(共 21页)
故选:D.
11.(3 分)矩形 ABCD 与 CEFG 如图放置,点 B,C,E 共线,点 C,D,G 共线, 连接 AF,取 AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
A.1 B. C. D. 【解答】解:如图,延长 GH 交 AD 于点 P,
4.(3 分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是( )
第 1页(共 21页)
A.25π B.24π C.20π D.15π 【解答】解:由题可得,圆锥的底面直径为 8,高为 3, ∴圆锥的底面周长为 8π,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)如图②,当 BC = 4 , DE = 5 , tan∠FMN =1时,求 AC 的值; AD
(2)若 tan∠FMN = 1 , BC = 4 ,则可求出图中哪些线段的长?写出解答过程; 2
(3)连接 CM , DN,CF, DF ,试证明 △FMC 与 △DNF 全等; (4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
∴ BC = BE + EF + FC = EK + EF + KF = 3 + 2 + 3 ,
∴ BC 的长为 3 + 2 + 3 .
22.答:(1) 4.5 首. (2)1200 40 + 25 + 20 = 850 ;
120 答:大赛后该学校学生“一周诗词诵背数量”6 首(含 6 首)以上的人数大约为 850 人. (3)①中位数:活动之初,“一周诗词诵背数量”的中位数为 4.5 首;大赛后,“一周诗词 诵背数量”的中位数为 6 首.
威海市 2018 年初中学业考试
数学试题参考答案
一、选择题
1-5:ABDCD
二、填空题
13. − 1 (a − 2)2
2 17. 44 −16 6
6-10:ABADD
11、12:CC
14. m = 4
( ) 18. 22018 , 22017 .
15. −6 x −2
三、解答题
19.解:解不等式①得, x −4 . 解不等式②得, x 2 . 在同一条数轴上表示不等式①②解集
CE ⊥ x 轴,垂足为 E .若点 A 的坐标为 (−2,3) ,点 B 的坐标为 (m,1) ,设△POD 的面积为 S1 ,
△COE 的面积为 S2 .当 S1 S2 时,点 P 的横坐标 x 的取值范围是_____________.
16.,在扇形 CAB 中,CD ⊥ AB ,垂足为 D ,☉E 是 △ACD 的内切圆,连接 AE , BE ,则 ∠AEB 的度数为_______________.
A. 25
B. 5y = 2 ,则 52x−3y = ( )
A. 3
B.1
C. 2
D. 9
4
3
8
6.如图,将一个小球从斜坡的点 O 处抛出,小球的抛出路线可以用二次函数 y = 4x − 1 x2 刻 2
画,斜坡可以用一次函数 y = 1 x 刻画,下列结论错误的是( ) 2
A.当小球抛出高度达到 7.5m 时,小球距 O 点水平距离为 3m B.小球距 O 点水平距离超过 4 米呈下降趋势
C.小球落地点距 O 点水平距离为 7 米
D.斜坡的坡度为1: 2
7.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是 −2 , −1, 0 , 1,卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为
A. 1
B.5
2
C. 5 3 2
D. 5 3
11.矩形 ABCD 与 CEFG 如图放置,点 B,C, E 共线,点 C, D,G 共线,连接 AF ,取 AF 的中
点 H ,连接 GH ,若 BC = EF = 2 , CD = CE =1 ,则 GH = ( )
A.1
B. 2
C. 2
D. 5
3
当6
x
8 时,∴W2
=
(x

4)

1 2
x
+
5
− 3 ,即W2
=

1 2
x2
+
7x

23 .
(2)当 4 x 6 时,
16.135°
因此,原不等式组的解集为 −4 x 2 .
20.解:设升级前每小时生产 x 个零件,根据题意,得
240 − 240 = 40 + 20 .
x
1
+
1 3
x
60
60
解这个方程,得 x = 60 .
经检验, x = 60 是所列方程的解.

60
1
+
1 3
=
80
(个)
答:软件升级后每小时生产 80 个零件.
②平均数:活动之初, x = 1 (315 + 4 45 + 5 20 + 6 16 + 7 13 + 8 11) = 5 .
120
大赛后, x = 1 (310 + 4 10 + 5 15 + 6 40 + 7 25 + 8 20) = 6 .
120 综上分析,从中位数,平均数可看出,学生在大赛之后“一周诗词诵背数量”都好于活动之 初,根据样本估计总体,该校大赛之后“一周诗词诵背数量”好于活动之初,说明该活动效 果明显.
A4
,以点
O
为圆心,以
OA4
长为半径画弧,交直线
y
=
1 2
x
于点
B4
,…按照如此
规律进行下去,点 B2018 的坐标为____________.
三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演
算步骤.)
19.解不等式组,并将解集在数轴上表示出来.
2x − 7 3( x −1) ①
17.用若干个形状,大小完全相同的矩形纸片围成正方形,4 个矩形纸片围成如图①所示的 正方形,其阴影部分的面积为 12;8 个矩形纸片围成如图②所示的正方形,其阴影部分的面 积为 8;12 个矩形纸片围成如图③所示的正方形,其阴影部分的面积为____________.
18.如图,在平面直角坐标系中,点 A1 的坐标为 (1, 2) ,以点 O 为圆心,以 OA1 长为半径画弧,
2
2
12.如图,正方形 ABCD 中, AB =12 ,点 E 为 BC 中点,以 CD 为直径作圆 CFD ,点 F 为
半圆的中点,连接 AF , EF ,图中阴影部分的面积是( )
A.18 + 36 B. 24 +18 C.18 +18 D.12 +18 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) 13.分解因式: − 1 a2 + 2a − 2 = ________________.
21.解:由题意,得∠3 =180°− 2∠1 = 45°,∠4 =180°− 2∠2 = 30°, BE = EK , KF = FC .
过点 K 作 KM ⊥ EF ,垂足为 M . 设 KM = x ,则 EM = x , MF = 3x ,
∴ x = 3x = 3 +1. ∴ x =1. ∴ EK = 2 , KF = 2 .
边上的点 K 重合, FH 为折痕,已知∠1 = 67.5°,∠2=75°, EF = 3 +1.求 BC 的长.
22.为积极响应“弘扬传统文化”的号召,某学校倡导全校 1200 名学生进行经典诗词诵背活 动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启 动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部 分)如下图所示:
威海市 2018 年初中学业考试
数学
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选
项中,只有一项是符合题目要求的.
1. −2 的绝对值是( )
A.2
B. − 1
C. 1
2
2
2.下列运算结果正确的是( )
D. −2
A. a2 a3 = a6
B. −(a − b) = −a + b
23.解:(1)设直线 AB 的函数表达式为 yAB = kx + b ,代入 A(4, 4) , B (6, 2) ,得
4 2
= =
4k 6k
+ +
b b

解,得
k b
= =
−1 8
.
∴直线 AB 的函数表达式为 yAB = −x + 8 .
设直线 BC 的函数表达式为 yBC = k1x + b ,代入 B (6, 2) , C (8,1) ,得
(3) 选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵
背系列活动的效果.
23.为了支持大学生创业,某市政府出台了一项优惠政策:提供 10 万元的无息创业贷款,小
王利用这笔贷款,注册了一家淘宝网店,招收 5 名员工,销售一种火爆的电子产品,并约定
用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件 4 元,员工每人每
5

1 2
(
x
+
4)
x

20.某自动化车间计划生产 480 个零件,当生产任务完成一半时,停止生产进行自动化程序
软件升级,用时 20 分钟,恢复生产后工作效率比原来提高了 1 ,结果完成任务时比原计划 3
提前了 40 分钟,求软件升级后每小时生产多少个零件?
21.如图,将矩形 ABCD (纸片)折叠,使点 B 与 AD 边上的点 K 重合,EG 为折痕;点 C 与 AD
交直线
y
=
1 2
x
于点
B1
,过
B1
点作
B1 A2

y
轴,交直线
y
=
2x
于点
A2
,以点
O
为圆心,以
OA2
长为半径画弧,交直线
y
=
1 2
x
于点
B2
;过点
B2

B2
A3
相关文档
最新文档