南京理工大学EDA1实验报告(模电部分)
eda设计实验报告 南理工
实验一单级放大电路的设计与仿真一.实验目的1.掌握放大电路静态工作点的调整和测试方法2.掌握放大电路的动态参数的测试方法3.观察静态工作点的选择对输出波形及电压放大倍数的影响。
二.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值1mV) ,负载电阻5.1kΩ,电压增益大于50。
2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测定此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益。
4.测电路的频率响应曲线和f L ,f H值。
三.实验步骤1.单级放大电路原理图:图一单级放大电路原理图满足实验要求,电压增益大于50。
2.电路失真情况分析:由于1mV下失真情况不明显,在观察时将电压源调整为20mV输入。
(1)电路饱和失真输出电压的波形图图二电路饱和失真输出电压的波形图图三电路饱和失真直流工作点分析此时静态工作点Vce=91.26844mV ,Vbe=658.01776mV,Ic=3.00218mA,Ib=129.26906uA此时发射极正偏,集电极正偏,则电路产生饱和失真。
(2)电路截止失真输出电压的波形图图四电路截止失真输出电压的波形图图五电路截止失真直流工作点分析此时静态工作点Vce=11.99643V ,Vbe=443.03357mV,Ic=902.24957nA,Ib=5.14668nA 因为Vbe<0.7V,所以发射极反偏,又集电极反偏,所以电路产生截止失真。
3.在电路输出信号最大不失真下测量输入、输出电阻和电压增益:(1)电路最大不失真波形图图六电路最大不失真波形图图七电路最大不失真直流工作点分析电路静态工作点值Vce=4.26569V ,Vbe=644.58273mV,Ic=1.99222mA,Ib=9.33965uA (2)测量输入、输出电阻和增益:三极管:β=Ic/Ib=1992.22/9.33965=213r be=r bb’+r b’e=r bb’+(1+β)26mV/I E =200+(1+213)26mV/1.99222mA=2992.86Ω①求输入电阻图八求输入电阻的电路图测量值Ri=U/I=1000/0.481=2079Ω.理论值Ri=(Rp+R4)//R3//Rbe=2282.73Ω.误差E=0.089%②求输出电阻图九求输出电阻的电路图测量值Ro=U/I=1000/0.434=2304Ω.理论值Ro=R1//Rce=24000Ω.误差E=0.04%③求电压增益图十求电压增益的电路图测量值Av=Uo/Ui=115理论值Av=— (R1//R5//Rce)/Rbe=121误差E=0.05%4.频率响应图十一幅频特性曲线和相频特性曲线图十二求f L,f H的数据中频幅度为119.2121dB,所以99*0.707=84.2956dB所以f L =1.2055kHz f H =23.9924MHz。
南京理工大学EDA设计(一)实验报告
南京理⼯⼤学EDA设计(⼀)实验报告(此⽂档为word格式,下载后您可任意编辑修改!)⽬录实验⼀单级放⼤电路的设计与仿真 (2)⼀、实验⽬的 (2)⼆、实验要求 (2)三、实验原理图 (3)四、实验过程及结果 (3)1、电路的饱和失真和截⽌失真分析 (3)2、三极管特性测试 (7)3.电路基本参数测定 (10)五、数据分析 (14)六、实验感想 (14)实验⼆差动放⼤电路的设计与仿真 (15)⼀、实验⽬的 (15)⼆、实验要求 (15)三、实验原理图 (15)四、实验过程及结果 (17)1、电路的静态分析 (17)2.电路电压增益的测量 (23)五、数据分析 (26)六、实验感想 (27)实验三反馈放⼤电路的设计与仿真 (27)⼀、实验⽬的 (27)⼆、实验要求 (27)三、实验原理图 (27)四、实验过程及结果 (28)1.负反馈接⼊前后放⼤倍数、输⼊电阻、输出电阻的测定 (28)2.负反馈对电路⾮线性失真的影响 (32)五、实验结论 (37)六、实验感想 (37)实验四阶梯波发⽣器电路的设计 (38)⼀、实验⽬的 (38)⼆、实验要求 (38)三、电路原理框图 (38)四、实验过程与仿真结果 (39)1.⽅波发⽣器 (39)2.微分电路 (40)3.限幅电路 (42)4.积分电路 (43)5.⽐较器及电⼦开关电路 (45)五、实验思考题 (46)六、实验感想 (47)写在后⾯的话对此次EDA设计的感想 (47)问题与解决 (47)收获与感受 (48)期望与要求 (48)实验⼀单级放⼤电路的设计与仿真⼀、实验⽬的1.掌握放⼤电路静态⼯作点的调整和测试⽅法2.掌握放⼤电路的动态参数的测试⽅法3.观察静态⼯作点的选择对输出波形及电压放⼤倍数的影响⼆、实验要求1.设计⼀个分压偏置的胆管电压放⼤电路,要求信号源频率10kHz(峰值1—10mV),负载电阻,电压增益⼤于80.2.调节电路静态⼯作点(调节偏置电阻),观察电路出现饱和失真和截⽌失真的输出信号波形,并测试对应的静态⼯作点值。
南京理工大学EDA设计实验报告
目录设计一单级放大电路设计 (3)一、设计要求 (3)二、实验原理图 (3)三、实验过程及测试数据 (3)1. 调节电路静态工作点,测试电路饱和失真、截止失真和不失真的输出信号波形图,以及三种状态下电路静态工作点值。
(3)2. 在正常放大状态下,测试三极管输入、输出特性曲线以及、的值。
(7)3. 在正常放大状态下,测试电路的输入电阻、输出电阻和电压增益。
.94. 在正常放大状态下,测试电路的频率响应曲线和、值。
(10)四、实验数据整理 (11)五、实验数据分析 (11)设计二差动放大电路设计 (13)一、设计要求 (13)二、实验原理图 (13)三、实验过程及测试数据 (13)1.双端输出时,测试电路每个三极管的静态工作点值和、、值。
(13)2. 测试电路双端输入直流小信号时,电路的、、、值。
173. 测试射级恒流源的动态输出电阻。
(21)四、实验数据整理 (21)五、实验数据分析 (22)设计三负反馈放大电路设计 (24)一、设计要求 (24)二、实验原理图 (24)三、实验过程及测试数据 (24)1. 测试负反馈接入前,电路的放大倍数、输入电阻、输出电阻。
(24)2. 测试负反馈接入后,电路的放大倍数、输入电阻、输出电阻并验证。
(25)3. 测试负反馈接入前,电路的频率特性和、值,以及输出开始出现失真时的输入信号幅度。
(27)4. 测试负反馈接入后,电路的频率特性和、值,以及输出开始出现失真时的输入信号幅度。
(28)四、实验数据整理 (30)五、实验数据分析 (31)设计四阶梯波发生器设计 (31)一、设计要求 (31)二、实验原理图 (32)三、实验过程及与仿真结果 (32)1.方波发生器 (33)2.方波电路+微分电路 (34)3.方波电路+微分电路+限幅电路 (35)4.方波电路+微分电路+限幅电路+积分电路 (36)5.阶梯波发生总电路 (36)四、实验结果分析 (38)五、技术改进 (38)设计一单级放大电路设计一、设计要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率20kHz,峰值5mV,负载电阻1.8kΩ,电压增益大于50。
南京理工大学EDA1实验报告(模电部分)
南京理工大学EDA课程设计(一)实验报告专业:自动化班级:姓名:学号:指导老师:2013年10月摘要在老师的悉心指导下,通过实验学习和训练,我已经掌握基了于Multisim的电路系统设计和仿真方法。
在一周的时间内,熟悉了Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。
能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。
实验一:单级放大电路的仿真及设计,设计一个分压偏置的单管电压放大电路,并进行测试与分析,主要测试最大不失真时的静态工作点以及上下限频率。
实验二:负反馈放大电路的设计与仿真,设计一个阻容耦合两级电压放大电路,给电路引入电压串联深度负反馈,,观察负反馈对电路的影响。
实验三:阶梯波发生器的设计与仿真,设计一个能产生周期性阶梯波的电路,对电路进行分段测试和调节,直至输出合适的阶梯波。
改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。
关键词:EDA设计及仿真multisim 放大电路反馈电路阶梯波发生器实验一:单级放大电路的仿真及设计一、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。
2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3、调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:(1)电路静态工作点值;(2)三极管的输入、输出特性曲线和 、r be 、r ce值;(3)电路的输入电阻、输出电阻和电压增益;(4)电路的频率响应曲线和f L、f H值。
二、实验步骤1、设计分压偏置的单级放大电路如图1-1所示:图1-1、单级放大电路原理图2、电路饱和失真输出电压波形图调节电位器的阻值,改变静态工作点,当电阻器的阻值为0%Rw,交流电压源为10mV时,显示饱和失真的波形图如图1-2所示:图1-2、电路饱和失真输出电压波形图饱和失真时的静态工作点:Ubeq=636。
南理工EDA实验一报告
南京理工大学EDA设计(Ⅰ)实验报告作者: 蒋华熔学号:1104210121 学院(系):电子工程与光电技术学院专业: 电子信息工程指导老师:吴少琴实验日期: 2013/8/26~2013/8/292013 年 9 月摘要EDA 技术的发展, 大大缩短了电子系统开发的周期, 且已成为开发技术的主流,EDA 综合实验开发, 为培养学生掌握EDA 技术的设计方法和微机控制技术在EDA 设计中的应用提供帮助,EDA 技术作为电子设计领域中的新兴技术,具有传统电子设计方法不可替代的高效、实用优势, 对于理工科, 尤其是电类相关专业学生及设计人员是必不可少的设计工具的熟练掌握这门技术尤为重要,EDA 综合实验的开发充实了专业课程的实验内容, 改进了实验方法与手段, 为学生创建了一个开放式、综合性的实验教学环境, 有利于培养学生的综合能力和创新能力关键词: EDA仿真实验开发技术元器件工作原理AbstractThe development of EDA technology, greatly shorten the cycle of electronic systems development, and has become the mainstream of development technology, EDA experiment development, and gives the implementation code, for trains the student to master the design method of EDA technology and microcomputer control technology in the application of EDA design help as emerging in the field of electronic design technology, EDA technology with traditional electronic design method is an irreplaceable efficient and practical advantages, for science and engineering, especially in electrical or related professional students and designers are essential design tool for mastering this technology is very important to the comprehensive experiment 1 EDA development enrich experiment contents of professional course, improve the experimental methods and means, for students to create an open, comprehensive experimental teaching environment, to cultivate students' comprehensive ability and innovation ability. The code of programming is given in this paper.Key words :EDA technology ; integrated experiment ;目 录实验一 单级放大电路的设计与仿真 (6)一、实验目的 (6)二、实验要求 (6)三、实验步骤 (6)1、电路的饱和失真和截止失真和最大不失真分析 (7)2、三极管特性测试 (11)3.电路基本参数测定 (17)四、实验小结 (20)实验二 差动放大电路的设计与仿真 (21)一、实验目的 (21)二、实验要求 (21)三、实验步骤 (21)1、电路的原理 (21)2.电路电压增益的测量 (22)四、实验小结 (27)实验三 负反馈放大电路的设计与仿真 (28)一、实验目的 (28)二、实验要求 (28)三、实验步骤 (28)1.负反馈接入前后放大倍数f A 、输入电阻i R 、输出电阻o R 的测定 (29)2.负反馈对电路非线性失真的影响 (36)四、实验小结 (40)实验四 阶梯波发生器电路的设计 (41)一、实验目的 (41)二、实验要求 (41)三、电路步骤 (41)1.方波发生器 (42)2.微分电路 (43)3.限幅电路 (45)4.积分电路 (46)5.比较器及电子开关电路 (47)四、实验小结 (49)参考文献 (50)实验一 单级放大电路的设计与仿真一、 实验目的1.掌握放大电路静态工作点的调整和测试方法;2.掌握放大电路的动态参数的测试方法;3.观察静态工作点的选择对输出波形及电压放大倍数的影响。
[工学]南京理工大学EDA1实验报告
EDA设计(一)实验报告实验一单级放大电路的设计与仿真一.实验要求设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。
调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:1、电路静态工作点值;2、三极管的输入、输出特性曲线和 、 Rbe 、Rce值;3、电路的输入电阻、输出电阻和电压增益;4、电路的频率响应曲线和fL、fH值。
二.实验原理三极管在工作正常放大区时,可以起到放大的作用。
但三极管工作在放大区的前提是直流电源为三极管提供合适的静态工作点。
如果三极管的静态工作点不合适,则会导致放大出现饱和或截至失真,而不能正常放大。
当三极管工作在合适的静态点时,三极管有电压放大的作用。
此时表征放大电路的交流参数为输入电阻,输出电阻以及电压放大倍数。
由于电路中有电抗元件电容,另外三极管PN结也有等效电容的作用,所以,对于不同频率的交流输入信号,电路的电压放大倍数是不同的。
电压放大倍数与频率的关系定义为频率特性。
三.单级放大电路原理图四.实验步骤1.调节电路静态工作点(调节电位计Rw),用示波器观察电路出现饱和失真、截止失真和使电路输出信号不失真(并且幅度最大)时输出信号波形,并测试对应的静态工作点值。
(1)当电位计R w为0%时(即滑动变阻器取0欧姆时)电路出现饱和失真;饱和失真波形为下图:由波形图可以看出波形的下部明显被削平,波形处于失真状态,因此可得到饱和失真有削底现象。
此时,电路饱和失真时的静态工作点值为:即管压降ce V =0.1V ,be U =0.659V ,基极电流b I =0.13mA ,集电极电流c I =3mA 。
根据以上数据可分析得ce V <be U 是满足三极管饱和失真条件的,所以此时电路是处于饱和失真的。
南理工EDA1优秀实验报告(含思考题)
南京理工大学EDA设计(Ⅰ)实验报告作者: 耿乐学号:913000710013 学院(系):教育实验学院专业: 机械类指导老师:宗志园实验日期: 2015年9月摘要本报告对单级放大电路、差分放大电路、多级放大反馈电路和简单的阶梯波发生器进行了设计和分析。
文中对电路中各个参数对电路性能的影响做了详细的实验和数据分析,并和理论数据进行对比,帮助我们更深刻的理解模拟电路中理论与实验的关系,指导我们更好的学习。
关键词模拟电路设计实验分析理论对比AbstractThis report on the single-stage amplifier, differential amplifier, feedback circuit and multi-level amplification of the trapezoidal wave generator for a simple design and analysis. The article on the various circuit parameters on circuit performance in detail the experiments and data analysis, and compare data and theory to help us gain a deeper understanding of analog circuits in the relationship between theory and experiment, to guide us to better learning.Keywords Analog Circuit Design Experimental analysis Theoretical comparison目录实验一单级放大电路设计 (1)实验二差动放大电路设计 (11)实验三负反馈放大电路设计 (21)实验四阶梯波发生器设计 (27)单级放大电路设计一、实验要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率10kHz,峰值5mV,负载电阻3.9kΩ,电压增益大于60;2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值;3.在正常放大状态下测试:a.电路静态工作点值;b.三极管的输入、输出特性曲线和β、r be、r ce值;c.电路的输入电阻、输出电阻和电压增益;d.电路的频率响应曲线和f L、f H值。
南理工EDA课程设计优秀
EDA设计实验报告南京理工大学学院:电光学院实验一单级放大电路的设计与仿真一、实验目的1.掌握放大电路静态工作点的调整和测试方法2.掌握放大电路的动态参数的测试方法3.观察静态工作点的选择对输出波形及电压放大倍数的影响二、实验要求1.一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1k Ω,电压增益大于50。
2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试①电路静态工作点值②三极管的输入、输出特性曲线和 、be r、ce r的值③电路的输入电阻、输出电阻和电压增益④电路的频率响应特性曲线和L f、H f的值三、实验原理图如图1.1所示即为一个单机放大电路,电阻、和滑动变阻器组成分压偏置器,调节滑动变阻器的阻值就可以改变三极管的静态工作点。
图1.1单级放大电路原理图四、实验过程及结果1、电路的饱和失真和截止失真分析(1)饱和失真图1.2所示的是电路出现饱和失真时的波形。
图1.3是所对应的静态工作点值,结合图1.1可以计算出静态工作点的各个参数:V U U U BEQ 66941.031=-=,V U U U CEQ 0885.034=-=,A I b μ5898.126=,mAI C 00544.3=图1.2饱和失真波形图1.3饱和失真时的静态工作点值(2)截止失真如图1.4所示的是电路出现截止失真时的输出波形,虽然从波形上并未看出明显的失真。
但是注意到输出波形的幅值变小,即此时电路不但没有放大输入信号,反而起到了缩小的作用,亦可以说明此时电路出现了截止失真。
图1.5所示的是电路处在截止失真状态下的静态工作点的值。
结合图1.1中的电路,可以计算出:mV U U U BEQ 83.54631=-=,V U U U CEQ 60.1134=-=,nA I b 46.728-=,A I C μ73.100=。
南京理工大学EDA(Ⅰ) 优秀报告
实验报告目录设计一—单级放大电路设计 (1)一、设计要求 (1)二、实验原理图 (1)三、仿真测试图及数据 (2)四、数据整理 (13)五、数据分析 (15)设计二—差动放大电路设计 (16)一、设计要求 (16)二、实验原理图 (16)三、仿真测试图及数据 (17)四、数据整理 (25)五、数据分析 (27)设计三—负反馈放大电路设计 (29)一、设计要求 (29)二、实验原理图 (29)三、仿真测试图及数据 (30)四、数据整理 (39)设计四—阶梯波发生器设计 (40)一、设计要求 (40)二、实验原理图 (40)三、电路的工作原理及分段波形 (42)四、阶梯波波形参数 (47)五、思考题 (48)六、改进与创新 (49)设计一—单级放大电路设计一、设计要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率20kHz,峰值5mV ,负载电阻1.8kΩ,电压增益大于50。
2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.在正常放大状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
二、实验原理图上图即为一个阻容耦合分压偏置的单管电压放大电路,主要由三极管Q1,偏置电阻R3、R4,射极电阻、反馈电阻R3,耦合电容C1、C3,旁路电容C2,负载电阻R6构成。
偏置电阻R3、R4将VCC分压后加到三极管基极,通过改变偏置电阻阻值即可改变静态工作点。
下文称此图为基本电路图。
三、仿真测试图及数据1、在要求信号源频率20kHz,峰值5mV ,负载电阻1.8kΩ时电压增益通过测量输入、输出电压即可求得电压增益,如下:由上图数据可求得电压增益:A u=u ou i=192.105mV3.535mV=54.34符合题目要求。
2、输入、输出电阻测量输入电阻:由上图数据可得:R i=u ii i=3.535mV968.136nA=3651Ω输出电阻:由上图数据可得:R o=u oi o=3.535mV743.943nA=4752Ω正常放大波形图:正常放大时静态工作点值:由此可以得到:β=I CQI BQ=1.0964mA5.21593μA=210在静态工作点过高时,输入信号的正半波超过了三极管的放大能力,进入饱和状态,造成饱和失真,对应的输出波形就是输出波形底部失真。
EDA设计 南京理工大学
南京理工大学EDA设计(Ⅰ)实验报告作者: 崔冀鹏学号:912114070412学院(系):自动化学院专业: 智能电网信息工程指导老师:吴少琴实验日期:2014.10.272014年10月摘要本次EDA实验主要在上学期模拟电子线路的基础上利用Multisim 12.0软件进行仿真与设计,通过连接单级放大电路,调试差动放大电路,设计负反馈放大电路、仿真阶梯波发生器等等,在巩固复习上学期模拟电路基础上,增加了新的认识,了解更多电子元器件的实际作用以及对波形有了深入认识,而且可以熟练运用Multisim自行进行设计其他电路了。
关键词EDA Multisim 仿真设计AbstractThis experiment mainly based on EDA in the last semester of analog electronic circuit by using Multisim 12 software for simulation and design, through the connection of single stage amplifier circuit, debugging of differential amplifier circuit, design of negative feedback amplifier circuit, the simulation step wave generator and so on, in the consolidation of review last term analog circuit based on the increased awareness of the new, practical effect of more electronic elements and have a deep understanding of the waveform, and can skillfully use Multisim to design other circuit.Keywords EDA Multisim Simulation design目次实验一单级放大电路的设计与仿真 (3)实验二差动放大电路的设计与仿真 (16)实验三负反馈放大电路的设计与仿真 (25)实验四阶梯波发生器电路的设计 (32)实验一单级放大电路的设计与仿真一、实验目的1.掌握放大电路静态工作点的调整和测试方法。
南理工EDA1实验报告-模电仿真
EDA设计(Ⅰ)实验报告院系:电子工程与光电技术学院专业:电子信息工程学号:914104姓名:指导老师:宗志园目录实验一单级放大电路的设计与仿真 (2)一、实验目的 (2)二、实验要求 (2)三、实验原理图 (3)四、三极管参数测试 (3)五、电路静态工作点测试 (6)六、电路动态参数测试 (8)七、频率响应测试 (10)八、数据表格 (10)九、理论分析 (11)十、实验分析 (11)实验二差动放大电路的设计与仿真 (12)一、实验目的 (12)二、实验要求 (12)三、实验原理图 (12)四、三极管参数测试 (13)五、电路工作测试 (18)六、电路增益测试 (18)七、数据表格 (21)八、理论分析 (22)九、实验分析 (22)实验三负反馈放大电路的设计与仿真 (23)一、实验目的 (23)二、实验要求 (23)三、实验原理图 (24)四、电路指标分析 (25)五、电路幅频特性和相频特性 (30)六、电路的最大不失真电压 (31)七、数据表格 (32)八、误差分析 (33)九、实验分析 (33)实验四阶梯波发生器电路的设计 (34)一、实验目的 (34)二、实验要求 (34)三、实验原理图 (35)四、实验原理简介 (35)五、电路分级调试步骤 (36)六、误差分析 (40)七、电路调整方法 (40)八、实验分析 (40)实验一单级放大电路的设计与仿真一、实验目的(1)设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz,峰值5mV ,负载电阻5.1kΩ,电压增益大于70.(2)调节电路静态工作点,观察电路出现饱和失真、截止失真和正常放大的输出信号波形,并测试对应的静态工作点值.(3)在正常放大状态下测试:1.三极管的输入、输出特性曲线和β、r be、r ce值;2.电路的输入电阻、输出电阻和电压增益;3.电路的频率响应曲线和f L、f H值.二、实验要求(1)给出单级放大电路原理图.(2)实验过程中各个参数的电路仿真结果:1.给出测试三极管输入、输出特性曲线和β、r be、r ce值的仿真图;2.给出电路饱和失真、截止失真和不失真的输出信号波形图;3.给出测量输入电阻、输出电阻和电压增益的仿真图;4.给出电路的幅频和相频特性曲线(所有测试图中要有相关仪表或标尺数据).(3)给出相关仿真测试结果.(4)理论计算电路的输入电阻、输出电阻和电压增益,并和测试值做比较,分析误差来源.三、实验原理图图1-1 实验原理图四、三极管参数测试图1-2 电路静态工作点(1)输入特性图1-3 测量输入特性曲线电路图图1-4 输入特性曲线(2)输出特性图1-5 测量输出特性曲线电路图图1-6输出特性曲线(3)根据图1-4及公式i V rb be be ∆∆= , 可计算出r be = . (4)根据图1-6及公式V r c CE ce ∆∆= ,可计算出r ce = . (5)根据图1-2.五、电路静态工作点测试(1)饱和失真图1-7饱和失真波形图1-8饱和失真数据(2)截止失真图1-9截止失真波形及其数据(3)正常放大黄色曲线为输入波形,蓝色曲线为输出波形.图1-10正常放大波形六、电路动态参数测试(1)Av图1-11 Av测量电路计算,得到.(2)Ri图1-12 Ri测量电路计算,得到.(3)Ro图1-13 Ro测量电路计算,得到. 七、频率响应测试图1-14 频率响应测试八、数据表格表1-1 静态工作点调试数据表1-2 电路正常工作数据九、理论分析(1)Ri理论值:.误差:.(2)Ro理论值:.误差:.(2)Av理论值:.误差:.十、实验分析本实验是EDA的第一项实验,在老师的指导下我初步了解了电路仿真的基础知识和Multisim软件的使用方法,并完成了第一个电路:单机放大电路的设计与参数测量。
南京理工大学EDA设计(1) 优秀
南京理工大学EDA设计(Ⅰ)实验报告作者: 学号:学院(系):专业:实验日期: 10.27 - 10.302014 年 11 月摘要本次EDA实验主要由四个实验组成,分别是单级放大电路的设计与仿真、差动放大电路的设计与仿真、负反馈放大电路的设计与仿真、阶梯波发生器电路的设计。
通过电路的设计和仿真过程,进一步强化对模拟电子线路知识的理解和应用,增强实践能力和对仿真软件的运用能力。
关键词 EDA 设计仿真目录实验一单级放大电路的设计与仿真 (1)实验二差动放大电路的设计与仿真 (11)实验三负反馈放大电路的设计与仿真 (18)实验四阶梯波发生器电路的设计 (29)总结 (42)参考文献 (42)实验一单级放大电路的设计与仿真一、实验目的1、掌握放大电路静态工作点的调试方法。
2、掌握方法电路在不失真状态下电路参数的计算方法。
3、掌握放大电路饱和失真和截止失真时的波形状态并了解其形成原因。
4、观察静态工作点的选择对输出波形及电压放大倍数的影响。
二、实验要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率10kHz(峰值5mV) ,负载电阻8kΩ,直流供电电源为12V。
要求设计指标为电压增益50至100倍之间,带宽大于1MHz。
2.调节电路静态工作点(调节偏置电阻),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点(调节偏置电阻),使电路输出信号不失真,并且幅度最大。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
三、实验步骤(一)单级放大电路原理图图1.1 单级放大电路原理图(二)电路工作在失真状态(1)饱和失真调节偏置电阻得到电路饱和失真状态下的输出波形如下:图1.2 饱和失真输出波形因为工作点设置不合理,没有在放大区而处在饱和区中,下边波形被削波,导致饱和失真。
朱志键EDA设计(一)实验报告
南京理工大学EDA设计(Ⅰ)实验报告作者: 朱志键学号:0908190266学院: 自动化学院专业: 电气工程及其自动化实验日期: 10月12—10月16实验一单级放大电路的设计与仿真一、实验目的1.熟悉Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。
2.能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。
3.熟练掌握有关单级放大电路和晶体管特性等有关知识,并应用相关知识来分析电路,求解相应的数据,做到理论实际相结合,加深对知识的理解。
二、实验要求1.设计一个分压偏置的单管电压放大电路,要求信号源频率5KHz(幅度为1mV),负载电阻5.1KΩ,电压增益大于50。
2.调节电路静态工作点(调节如下图所示的滑动变阻器),观察电路出现饱和失真和截至失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点(调节如下图所示的滑动变阻器),使电路输出信号不失真,并且幅度最大。
在此状态下测试:(1)电路静态工作点值;(2)电路的输入电阻、输出电阻和电压增益;(3)电路的幅频和相频曲线和FL 、FH值。
三、实验步骤1.实验所用的电路图如图1所示:图:12.测试电路出现饱和失真和截止失真时其所对应的三极管的静态工作点①饱和失真调节图1所示的电路中的滑动变阻器R5,改变滑动变阻器接入电路的中的有效值,当接入值为总值大小的29%时,电路出现饱和失真,这时输出波形如图2所示:图:2此时的静态工作点如下图所示:图:3由上图可得三极管在饱和失真时候的静态工作点是:c I =974.37893uA , b I =28.87728uA , BE U =V (2)—V (3)=2.64502—2.00652=0.63368U=V (5)—V (3)=2.10726—2.00652=0.10074V ;(2)截止失真调节图1所示的电路中的滑动变阻器R5,改变滑动变阻器接入电路的中的有效值,当接入值为总值大小的80%时,电路出现截止失真,这时输出波形如图2所示:由图:4由上图可知:在截至失真的情况下三极管的静态工作点为:c I =384.24472uA , b I =3.02132uABE U =V (2)—V (3)=1.37407—0.77426501=0.599805V CE U =V (5)—V (3)=6.88869—0.77426501=6.11442493V(3)最大不失真状态调节图1所示的电路中的滑动变阻器R5,改变滑动变阻器接入电路的中的有效值,当接入值为总值大小的39%时,电路出现最大不失真状态。
南京理工大学eda设计单级放大电路的设计与仿真
南京理工大学eda设计单级放大电路的设计与仿真南京理工大学eda设计单级放大电路的设计与仿真实验一单级放大电路的设计与仿真实验报告一.实验目的1. 掌握放大电路的静态工作点的调整和测试方法。
2. 掌握放大电路的动态参数的测试方法。
3. 观察静态工作点的选择对输出波形及电压放大倍数的影响。
二.实验原理当三极管工作在放大区时具有电流放大作用,只有给放大电路中的三极管提供合适的静态工作点才能保证三极管工作在放大区,如果静态工作点不合适,输出的波形会产生非线性失真。
当静态工作点设置在合适的位置时,三极管具有放大特性。
通过合适的外接电路可实现电压放大。
表征放大电路放大特性的交流参数有电压放大倍数,输入电阻,输出电阻。
由于电路中存在电抗电容元件,因此,对于不同频率的输入信号,电路的电压放大倍数不同。
电压的放大倍数与皮率的关系定义为频率特性。
三.实验步骤1. 绘制电路饱和失真、截止失真和不失真时的输出信号波形图,测量三种状态下电路静态工作点值。
实验原理图测静态工作点图(1)饱和失真当R6=0Ohm,时三极管工作在饱和区,输出波形产生非线性失真。
饱和失真输出波形图此时,电路的静态参数为Ic=3.894mA, Ib=239.808uA Uce=78.893mV. (2)不失真输出当R6=12.5kOhm,时三极管工作在放大区,输出波形为正弦波。
不失真输出波形图此时,电路的静态参数为Ic=2.926mA, Ib=14.211uA, Uce=3.209V. (3)截止失真输出当R6=45kOhm时三极管工作在截止区,输出波形产生非线性失真。
截止失真输出波形图此时,电路的静态参数为Ic1=.165mA, Ib=5.329uA, Uce=8.505V. 2.测电路的输入电阻、输出电阻和电压增益;加入信号源频率5kHz(幅度1mV) ,R6=12.5kOhm.调节电路使输出不失真。
(1)按下图输入电阻根据万用表的读数,可得Ui=999.41uV,Ii=626.495nA. 则,根据Ri=Ui/Ii,可得(测量值)Ri=1.595kOhm. 又由rbe=rbb’+(1+β)26/Ie Ri=rbe//R2//(R1+R6) 静态时Ie=2.39Ma. 则rbe=2.154 kOhm (理论值)Ri=1.643 kOhm 误差E=2.9% (2)按照下图测输出电阻根据万用表的读数,可得Uo=10mV,Io=5.245uA. 则,根据Ro=Uo/Io, 可得(测量值)Ro=1.91Ohm. 根据分压偏置放大电路中(理论值)Ro=R3=2kOhm. 则误差为E=(2-1.91)/2=4.6% (3)按下图测试交流输入电压与交流输出电压。
Multisim仿真软件介绍,南京理工大学紫金学院eda实验报告
EDA(一)模拟部分
电子线路仿真实验报告
实验名称: Multisim仿真软件介绍
姓名:
学号:
班级:通信
时间: 2013.4
南京理工大学紫金学院电光系
一.实验目的
1、了解Multisim的界面操作
2、了解元件库的原件和使用方法
3、电路的连接与测试
4、用示波器观察波形图
5、学会软件的使用,利用软件搭电路
二、实验原理
运用Multisim仿真软件画出电路图,运用仪表工具测量所需值三.实验内容
利用Multisim软件建立电路,利用万用表测量输出电压,利用示波器观察输出电压波形。
1 电路图
输出电压,输出电压波形
四.小结与体会
在此次Muitisim仿真软件介绍的实验中,我首次接触了Muitisim仿真软件,学习到里面的实际元件库和虚拟元件库,以及仪器工具表中的Multimeter数字万用表、函数信号发生器、示波器、波特图仪的使用,最后学习了电路的连接与
测试。
南理工EDA1实验报告
南京理工大学EDA设计(Ⅰ)实验报告作者:学号:学院(系):电子工程与光电技术学院专业:电子信息工程实验日期: 2013年8.26 —8.30摘要本报告主要概述了有关模电方面的4个实验:单级放大电路的设计以及电路各参数的计算和分析差动放大电路的设计以及电路各参数的计算和分析多级放大电路的设计以及引入负反馈对电路各参数的影响阶梯波发生器电路的设计文中对电路中各个参数对电路性能的影响做了详细的实验和数据分析,并和理论数据进行对比,帮助我们更深刻的理解模拟电路中理论与实验的关系,指导我们更好的学习。
关键词模拟电路设计实验分析理论对比AbstractThis report mainly describes 4 experiments of analog electronic circuit:C alculation and analysis of single stage amplifier circuit design and circuitparametersC alculation and analysis of the differential amplifier circuit design and circuitparametersD esign of multistage amplifier circuit and negative feedback effects onvarious parameters of the circuit.T he design of wave generator circuit ladderThe article on the various circuit parameters on circuit performance in detail the experiments and data analysis, and compare data and theory to help us gain a deeper understanding of analog circuits in the relationship between theory and experiment, to guide us to better learning.Keywords Analog Circuit Design Experimental analysis Theoretical comparison目录实验一 (1)实验二 (14)实验三 (21)实验四 (29)实验一 单级放大电路的设计与仿真一、实验目的1、掌握放大电路静态工作点的调整与测试方法。
南京理工大学eda设计(1)报告(优秀)
EDA设计(I)实验报告院系:专业:班级:学号:姓名:指导老师:实验一 单级放大电路的设计与仿真一.实验目的1. 掌握放大电路静态工作点的调整和测试方法。
2. 观察静态工作点的选择对输出波形的影响。
3. 掌握电路输入电阻、输出电阻的测试方法。
4. 观察电路的频率响应曲线以及掌握电路上、下限频率的测试方法。
二.实验原理当三极管工作在放大区时具有电流放大作用,只有给放大电路中的三极管提供合适的静态工作点才能保证三极管工作在放大区,如果静态工作点不合适,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。
当静态工作点设置在合适的位置时,即保证三极管在交流信号的整个周期均工作在放大区时,三极管有电流放大特性。
通过适当的外接电路,可实现电压放大。
表征放大电路放大特性的交流参数有电压放大倍数、输入电阻、输出电阻。
由于电路中有电抗组件电容,另外三极管中的PN 结有等效电容存在,因此,对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。
三.实验要求1)设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1k Ω,电压增益大于50。
2)调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3)加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益; 4)测电路的频率响应曲线和L f 、H f 值。
四.实验内容与步骤1.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。
单级放大的设计原理图如下:若把调节电位器的大小,从而使电路具有不同的静态工作点,则从与节点4相连的示波器上可以观察到饱和失真、截止失真、不失真三种不同的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京理工大学EDA课程设计(一)实验报告专业:自动化班级:姓名:学号:指导老师:2013年10月摘要在老师的悉心指导下,通过实验学习和训练,我已经掌握基了于Multisim的电路系统设计和仿真方法。
在一周的时间内,熟悉了Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。
能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。
实验一:单级放大电路的仿真及设计,设计一个分压偏置的单管电压放大电路,并进行测试与分析,主要测试最大不失真时的静态工作点以及上下限频率。
实验二:负反馈放大电路的设计与仿真,设计一个阻容耦合两级电压放大电路,给电路引入电压串联深度负反馈,,观察负反馈对电路的影响。
实验三:阶梯波发生器的设计与仿真,设计一个能产生周期性阶梯波的电路,对电路进行分段测试和调节,直至输出合适的阶梯波。
改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。
关键词:EDA设计及仿真multisim 放大电路反馈电路阶梯波发生器实验一:单级放大电路的仿真及设计一、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。
2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3、调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:(1)电路静态工作点值;(2)三极管的输入、输出特性曲线和 、r be 、r ce值;(3)电路的输入电阻、输出电阻和电压增益;(4)电路的频率响应曲线和f L、f H值。
二、实验步骤1、设计分压偏置的单级放大电路如图1-1所示:图1-1、单级放大电路原理图2、电路饱和失真输出电压波形图调节电位器的阻值,改变静态工作点,当电阻器的阻值为0%Rw,交流电压源为10mV时,显示饱和失真的波形图如图1-2所示:图1-2、电路饱和失真输出电压波形图饱和失真时的静态工作点:Ubeq=636。
63mv,Uceq=443.586mv,Ib=635.82uA, Ic=31.48uA3、截止失真输出电压波形图调节电位的阻值,改变静态工作点,当电阻器的阻值为100%Rw,交流电压源为20mV时,显示截止失真的波形图如图1-3所示:图1-3、截止失真输出电压波形图截止失真时的静态工作点:Ib=2.822uA, Ic=367.621uA.4、最大不失真输出电压波形图调节滑动变阻器和信号源的幅值,并不断观察输出端示波器上的波形,在滑动变阻器划片位于43%的位置并且信号源为12mV时可以得到最大不失真波形,如图1-4所示:图1-4、最大不失真输出电压波形图最大不失真时的静态工作点:Ib=5.113uA, Ic=568.666uA.β=Ic/Ib=111.225. 动态分析5.1 测试输入特性测试放大电路输入特性的电路如图:所以:式r be=uBE/IB=1.8553m/595.8599n=3.11 kohms5.2测试三极管输出特性曲线的实验图拉杆数据:r ce=uCE/IC=29.6296m/1.343u=22.1 kohms6.测试最大不失真时电压增益用开路短路法测量输出电阻,并在原电路图上节点3处加一探针,测量输入电阻。
开路短路法如图1—5.1—5开路短路法测输出电阻输出电阻万用表数值:算得输出电阻为6.973kΩ, Ro(理)=R5//rce=10//22=6.875kΩ相对误差E=1.43%原电路图1-1,节点3处的探针:经计算得到输入电阻为2.044kΩ,Ri(理)=R2//(R1+R3)//r(be)=1.8951kΩ相对误差E=7.28%以上误差皆在百分之10以内,可以接受。
由于在仿真的过程中,我选用的并不是理想元件,而是有误差的模拟实际元件,所以也会对实验结果的精确性造成一定的影响。
6、频率特性仿真对电路中的5节点进行交流分析,可以得到电路的幅频特性曲线和相频特性曲线,如图1-6所示:图1-8、幅频和相频特性曲线从特性图上可以看出Af的最大值,即max y为68.9,用max y的值乘以0.707即得到上下限频率所对应的幅值,约为48.72。
由此可得,下限频率fL=336.1343Hz,上限频率fH=8.0501MHz。
四、实验总结此次试验,复习巩固了射级放大器的工作原理,使我熟悉了Multisim仿真软件的大致用法,掌握了三种电路分析方法,分别是直流工作点分析、直流扫描分析、交流分析。
可以运用Multisim软件对模拟电路进行设计和性能分析,掌握了EDA设计的基本方法和步骤。
不过实验结果不是很理想,数据的误差较大,连接电路时采用了大量的虚拟元件,导致模拟时最终结果失准,希望在以后的实验中能有所改进。
实验二:负反馈放大电路的仿真及设计一、实验目的1、设计一个阻容耦合两级电压放大电路,要求信号源频率10kHz(峰值1mv) ,负载电阻1kΩ,电压增益大于100,了解阻容耦合电路。
2、给电路引入电压串联负反馈,并分别测试负反馈接入前后电路放大倍数、输入、输出电阻和频率特性。
改变输入信号幅度,观察负反馈对电路非线性失真的影响。
二、实验要求1.给出引入电压串联负反馈电路的实验接线图。
2.给出两级放大电路的电路原理图。
3.给出负反馈接入前后电路的放大倍数、输入电阻、输出电阻,并验证AF1/F。
4.给出负反馈接入前后电路的频率特性和fL、fH值,以及输出开始出现失真时的输入信号幅度。
5.分析实验结果三、实验步骤设计阻容耦合两级电压放大电路如图2-1所示图2-1、阻容耦合两级放大电路引入电压串联负反馈后电路图如图2-2所示:图2-2、接入电压串联负反馈后电压放大电路2、频率特性仿真对阻容耦合两级电压放大电路中的13节点进行交流分析,可以得到接入负反馈前电路的幅频特性曲线和相频特性曲线,如图2-3所示:图2-3、接入负反馈前幅频和相频特性曲线特性图上可以看出Af的最大值,即max y为26.58,用max y的值乘以0.707即得到上下限频率所对应的幅值,约为18.8。
由此可得,下限频率fL=102.7833Hz,上限频率fH=648.9639kHz。
对接入负反馈后的电路中的8节点进行交流分析,可以得到接入负反馈后电路的幅频特性曲线和相频特性曲线,如图2-4所示:从特性图上可以看出Af的最大值,即max y为10.8,用max y 的值乘以0.707即得到上下限频率所对应的幅值,约为7.6。
由此可得,下限频率fL=49.9985Hz,上限频率fH=1.8168MHz。
3、出现失真时的输入信号幅度接入负反馈前输出开始出现失真时的输入信号幅度如图2-5所示,约为3mV:接入负反馈后输出开始出现失真时的输入信号幅度如图2-6所示,约为28mV总结:可见加入负反馈后,电路的动态范围增大,即电路可不失真放大的最大信号幅度增大。
负反馈可以减缓失真。
4、测量输入电阻按图2-7,图2-8所示连接电路,分别测出输入电压Ui、输入电流Ii,输入电阻即为Ri=Ui/Ii,从而可分别算出引入负反馈前后的输入电阻。
a)未引入负反馈的输入电阻如图2-7所示,测得输入电压Ui=1V,输入电流Ii=235nA,则Ri=Ui/Ii=4.3KΩ。
图2-7、测量无负反馈时的输入电阻的探针显示值b)引入负反馈后的输入电阻如图2-8所示,测得输入电压Ui=1mV,输入电流Ii=173nA,则Ri=Ui/Ii=5.8KΩ。
图2-8、测量有负反馈时的输入电阻的探针显示图总结:电压串联负反馈的引入,使得输入电阻增大。
5、测量输出电阻按图2-9,图2-10所示连接电路,将电压源电压设置为零,在输出端加上一个电压源,分别测出输出电压Uo、输出电流Io,输出电阻即为Ro= Uo/Io,从而可分别算出引入负反馈前后的输出电阻。
a)未引入负反馈的输出电阻如图2-9所示,测得输出电压Uo=505.73mV,输出电流Io=167.7672uA,则Ro= Uo/Io=3.01K 。
图2-9、开路短路法测量无负反馈时的输出电阻的万用表数值b)引入负反馈后的输出电阻如图2-10所示,测得输出电压Uo=15.782mV,输出电流Io=38.654uA,则Ro= Uo/Io=408。
图2-10、开路短路法测量有负反馈时的输出电阻的万用表数值总结:电压串联负反馈的引入,使得输出电阻减小。
6、测量放大倍数分别测出输入电压Ui、输出电压Uo,放大倍数即为Au=Uo/Ui,从而可分别算出引入负反馈前后的电压放大倍数。
a)未引入负反馈的放大倍数如图2-11所示,测得输入电压Ui=1mV,输出电压Uo=131.596mV,则Au= Uo/Ui=131.6。
图2-11、测量无负反馈时的电压放大倍数的电路图b)引入负反馈后的放大倍数如图2-12所示,测得输入电压Ui=1mV,输出电压Uo=11.279mV,则Au= Uo/Ui=11.3。
图2-12、测量有负反馈时的电压放大倍数的电路图总结:电压串联负反馈的引入,使得电压放大倍数明显减小。
7、AF ≈1/F的验证由于电压串联负反馈电路的AF=Auuf =Uo/Ui、F=Fuu =Uƒ/Uo,因此,需要测量输出电压Uo、输入电压Ui、反馈电压Uƒ。
测得Ui=1mV,Uo=11.279mV,Uƒ=953.458u F,则AF=Auuf =Uo/Ui=11.279,1/F=Uo/Uf=11.83,误差E=5%,AF ≈1/F成立。
四、实验小结本实验通过对二级阻容耦合放大电路引入电压串联负反馈前后进行电路仿真,由实验结果可以得出这样的结论:引入电压串联负反馈,会减小电路的电压放大倍数,并增大电路可不失真放大的最大信号幅度,减小非线性失真;引入电压串联负反馈,会展宽了通频带,增大输入电阻,减小输出电阻。
最后通过测量计算验证了AF 1/F 的结果。
负反馈放大电路的设计与仿真实验比较简单,实验中并没有太多复杂的计算与推到。
但是我从这次的实验中提升了概括能力,由表及里,抓住现象看本质,我想这才是我们做实验最终的目的吧!实验三:阶梯波的仿真及设计一、实验目的1、设计一个能产生周期性阶梯波的电路,要求阶梯波周期在20ms左右,输出电压范围10V,阶梯个数5个。
(注意:电路中均采用模拟、真实器件,不可以选用计数器、555定时器、D/A转换器等数字器件,也不可选用虚拟器件。
)2、对电路进行分段测试和调节,直至输出合适的阶梯波。
3、改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。
二、实验要求1给出阶梯波发生器实验原理图,图中器件均要有型号和参数值标注。