高一数学集合单元练习题一
(完整版)高一数学第一章试题及答案
高中数学集合检测题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 A M B {}1,4 C {}1 D Φ2. 设全集U =R ,集合2{|1}A x x =≠,则U C A =A. 1B. -1,1C. {1}D. {1,1}-3. 已知集合U ={|0}x x >,{|02}U C A x x =<<,那么集合A = A. {|02}x x x ≤≥或 B. {|02}x x x <>或 C. {|2}x x ≥ D. {|2}x x >4. 设全集{}0,1,2,3,4I =----,集合{}0,1,2M =--,{}0,3,4N =--,则()I M N =A .{0}B .{}3,4--C .{}1,2--D .∅5.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是 A .3 B .4 C .5 D .66. 已知集合{}1,0,1-=A ,则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A7.集合}22{<<-=x x A ,}31{<≤-=x x B ,那么=⋃B AA.}32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 8.已知集合}01|{2=-=x x A ,则下列式子表示正确的有 ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为 A .-3或1 B .2 C .3或1 D .1 10. 若集合}8,7,6{=A ,则满足A B A =⋃的集合B 的个数是A. 1B. 2C. 7D. 811.已知集合M={x|x 1},N={x|x>}a ≤-,若M N ≠∅,则有 A .1a <- B .1a >- C . 1a ≤- D .1a ≥-12、已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃= A{}0,1,8,10 B {}1,2,4,6 C {}0,8,10D Φ选择题答案二、填空题:13.设U ={三角形},A ={锐角三角形},则U C A = . 14. 已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B= 。
高一数学集合练习题及答案(人教版)-百度文库
高一数学集合练习题及答案(人教版)-百度文库一、单选题1.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e -2.集合{}240x A x =->,{}lg 10B x x =-<,则A B =( ) A .()2,e B .()e,10 C .()2,10 D .()0,10 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则U A 所表示的平面区域的面积为( )A .1πBC .1D .π5.已知集合{}0,1,2,3,4A =,集合{}R 326x B x =∈<,则A B =( ) A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,36.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,57.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,58.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<9.已知集合{}1|32|22x A x x B x ⎧⎫⎪⎪⎛⎫=-<<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,,则A B =( ) A .{}|22x x -<<B .{} |12x x -<<C .{}|32x x -<<-D .{} |31x x -<<-10.已知集合{}{,}A =∅∅,下列选项中均为A 的元素的是( )(1){}∅(2){}{}∅(3)∅(4){}{},∅∅A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)11.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3-12.设集合{}{}123235M N ==,,,,,,则M N ⋃=( ) A .{2,3}B .{1,2,3,5}C .{1,2,5}D .{1,5} 13.已知集合21|01x M x x -⎧⎫=>⎨⎬+⎩⎭,集合{}2|40N x x x =-<,则集合M N =( )A .{}|0x x >B .{}|14x x <<C .{|0x x <或}1x >D .{|0x x <或}4x >14.已知集合{}{}220,1A x x x B x x =+-<=<-,则()U A B =( )A .{}11x x -<<B .{}11x x -≤<C .{}21x x -<<-D .{}12x x -≤< 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.18.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________.19.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.20.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.21.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.22.设函数()1ln 12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.23.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.24.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.25.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______. 三、解答题26.设全集U =R ,集合{}{}24,3782A x x B x x x =≤<=->-(1)求(),U A B A B ⋃⋂;(2)若集合{}20C x x a =+>,且C C =B ∪,求a 的取值范围.27.已知集合{}2,1,0,1,2A =--,{}0,1B =,{}1,2C =.(1)求B C ⋃;(2)求()A B C .28.已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ;(2)若A B A =,求实数a 的取值范围.29.已知全集{1,2,3,4,5,6,7}U =,集合{2,3,6}A =,集合{1,2,3,5}B =,(1)求A B ,U B (2)求()()U U A B A B ,30.已知集合{}250A x x x a =-+≤,B =[3,6]. (1)若a = 0,求A B ;(2)x ∈B 是 x ∈ A 的充分条件,求实数a 的取值范围.【参考答案】一、单选题1.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.2.C【解析】【分析】根据指数函数、对数函数的性质求出集合A 、B ,再根据交集的定义计算可得;【详解】解:由240x ->,即2242x >=,所以2x >,所以{}{}2402x A x x x =->=; 由lg 10x -<,即lg 1x <,解得010x <<,所以{}{}lg 10|010B x x x x =-<=<<; 所以{}|210A B x x =<<故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U M N ∴=- 故选:B. 4.D【解析】【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到U A ,即可求出所表示的平面区域的面积;【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合,所以(){}22,|1U A x y x y =+<,则U A 所表示的平面区域的面积为π;故选:D5.A【解析】【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可.【详解】由333262log 26log 273x x <⇒<<<=,因此A B ={}0,1,2,故选:A6.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A7.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】 由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C8.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D9.B【解析】【分析】先由指数函数的性质求得集合B ,再根据集合的交集运算可求得答案.【详解】解:因为}{}1{|32,|()212x A x x B x x x ⎧⎫=-<<=<=-⎨⎬⎩⎭, 所以A B ={}|12x x -<<, 故选:B.10.B【解析】【分析】根据元素与集合的关系判断.【详解】集合A 有两个元素:{}∅和∅,故选:B11.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .12.B【解析】【分析】依据并集的定义去求M N ⋃即可解决.【详解】{}{}{}1232351235M N ⋃=⋃=,,,,,,,故选:B13.B【解析】【分析】分别化简集合M ,N 再求交集即可【详解】2101011x x x x ->⇒->⇒>+ ()2404004x x x x x -<⇒-<⇒<<则{}|1M x x =>,{}04|N x x =<<,所以{}|14M N x x ⋂=<<故选:B14.B【解析】【分析】先化简集合A ,在求集合A 与集合B 补集的交集【详解】220x x +-<()()210x x ⇒+-<21x ⇒-<<所以{}|21A x x =-<<{}|1B x x =<-{}U |1B x x ⇒=≥- 所以(){}U |11AB x x =-≤< 故选:B15.D【解析】【分析】 根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 18.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.19.[1,3]【解析】【分析】根据交集的定义求解即可.【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ ,即[]1,5B = ,[]1,3A B ∴= ;故答案为:[]1,3 .20.10,1,2⎧⎫-⎨⎬⎩⎭【解析】【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-,所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a =当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭, 因为N M ⊆,所以1M a -∈, 所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭, 故答案为:10,1,2⎧⎫-⎨⎬⎩⎭ 21.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.22.10,2⎛⎤ ⎥⎝⎦【解析】【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解.【详解】解:因为函数1()ln 12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>, 所以()()f x f x -=-,即1112lnln ln 12121mx mx x x x mx -+-=-=+-+, 所以112121mx x x mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln12x f x x +=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦. 故答案为:10,2⎛⎤ ⎥⎝⎦. 23.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤.24.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.25.2【解析】【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案.【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根,所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍; 当2m =时,{}{}224201B x x x =-+==,满足条件. 故答案为:2三、解答题26.(1){|2}A B x x ⋃=≥,(){}|4U A B x x ⋂=≥(2)6a ≥-【解析】【分析】(1)根据交集,并集和补集的定义即可得出答案;(2)根据C C =B ∪,可得B C ⊆,从而可得出答案.(1) 解:{}|24,A x x =≤<{}{}37823B x x x x x =->-=>, ∴{|2U A x x =<或4}x ≥,{|2}A B x x ∴⋃=≥,(){}|4;U A B x x ⋂=≥(2) 解:{}202a C x x a x x ⎧⎫=+>=>-⎨⎬⎩⎭, B C C =,B C ∴⊆, 所以32a -≤,解得6a ≥-. 27.(1){0,1,2}(2){2,1,0,2}--【解析】【分析】(1)利用并集的概念即可求解;(2)利用交集及补集的运算即可求解.(1){}0,1B =,{}1,2C =,{0,1,2}B C ∴=(2)∵{}0,1B =,{}1,2C =,∴{1}B C =,又{}2,1,0,1,2A =--故(){2,1,0,2}A B C =--.28.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案; (2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > ,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .29.(1){1,2,3,5,6}A B ⋃=,{4,6,7}U B = (2)(){1,5},(){1,4,5,6,7}U U A B A B ⋂=⋂=【解析】【分析】(1)根据并集和补集的概念与运算直接求得结果;(2)根据补集和交集的概念与运算先求出U A 、A B ,再求出()()U U A B A B ⋂⋂、即可. (1)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{1,2,3,5,6}A B ⋃=,{4,6,7}U B =; (2)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =,所以{}1,4,5,7U A =,{}2,3A B ⋂=,所以(){1,5}(){1,4,5,6,7}U U A B A B ⋂=⋂=,.30.(1)[3,5](2)(,6]-∞-【解析】【分析】(1)先化简集合A ,再去求A B ;(2)结合函数25y x x a =-+的图象,可以简单快捷地得到关于实数a 的不等式组,即可求得实数a 的取值范围.(1)当0a =时,{}250[0,5]A x x x =-≤=,又[3,6]B =, 故[0,5][3,6][3,5]A B ==.(2)由x B ∈是x A ∈的充分条件,得B A ⊆,即任意x B ∈,有250x x a -+≤成立函数25y x x a =-+的图象是开口向上的抛物线, 故2235306560a a ⎧-⨯+≤⎨-⨯+≤⎩,解得6a ≤-,所以a 的取值范围为(,6]-∞-.。
高一数学必修一集合练习题及单元测试(含答案及解析)
题习集合练1.设集合A={x|2 ≤x<4} ,B={x|3x -7≥8-2x} ,则A∪B 等于( )A.{x|x ≥3} B.{x|x ≥2} C .{x|2 ≤x<3} D .{x|x ≥4}2.已知集合A={1,3,5,7,9} ,B={0,3,6,9,12} ,则A∩B=( )A.{3,5} B .{3,6} C .{3,7} D .{3,9}3. 已知集合A={x|x>0} ,B={x| -1≤x≤2} ,则A∪B=( )A.{x|x ≥-1} B .{x|x ≤2 } C .{x|0<x ≤2} D .{x| -1≤x≤2} 4. 满足M?{ ,,,} ,且M∩{ ,,} ={ ,} 的集合M的个数是( ) A.1 B .2 C .3 D .45.集合A={0,2 ,a} ,B={1 ,} .若A∪B={0,1,2,4,16} ,则 a 的值为()A.0 B .1 C .2 D .46.设S={x|2x +1>0} ,T={x|3x -5<0} ,则S∩T=( )A.? B .{x|x< -1/2} C .{x|x>5/3} D .{x| -1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足{1,3} ∪A={1,3,5} 的所有集合 A 的个数是________.9.已知集合A={x|x ≤1} ,B={x|x ≥a} ,且A∪B=R,则实数 a 的取值范围是________.10. 已知集合A={ -4,2a -1,} ,B={a -5,1 -a,9} ,若A∩B={9} ,求a 的值.11.已知集合A={1,3,5} ,B={1,2 ,-1} ,若A∪B={1,2,3,5} ,求x 及A∩B. 12.已知A={x|2a ≤x≤a+3} ,B={x|x< -1 或x>5} ,若A∩B=? ,求 a 的取值范围.13.(10 分) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组人?的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少试集合测大题共10 小题,每小题 5 分,共50 分。
高一数学第一章集合单元测试题
高一数学第一章集合单元测试题(一)班级__________ 学号___________姓名_____________一、选择题1、己知A= {x | x > - 1},那么正确的是 ( )(A )0⊆A (B){0}⊆A (C)A={0} (D)Φ∈A2、设U ={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6} 则集合 {2,7,8}是 ( )(A )A B (B )A B(C )(C U A ) (C U B ) (D )(C U A ) (C U B )3、下列四个命题 :①空集没有子集 ②空集是任何一个集合的真子集 ③空集中元素个数为0 ④任一集合必有两个或两个以上的子集。
其中正确的有 ( )(A )0 (B )1 (C )2 (D )34、设A={y | y = -1 + x –2 x 2} ,若m∈A 则必有 ( ) (A )m∈{正有理数} (B )m ∈{负有理数} (C )m ∈{正实数} (D )m ∈{负实数}5、已知=>+-==M C x x x M R U U 则},044{,2( )(A ) R (B )Φ (C ) {2} (D ) {0}6、已知全集},4{},,2{,+++∈==∈===N n n x x B N n n x x A N U 则(A) B A U = (B) B A C U U =(C) )(B C A U U = (D) )()(B C A C U U U =7、已知集合N M y x y x N y x y x M 那么}4),{(},2),{(=-==+=为( )(A)1,3-==y x (B) (3,-1) (C) {3,-1} (D) {(3,-1)}8、已知集合}1{},3,2,1{==A B A 则B 的子集最多可能有( )(A) 5个 (B) 6个 (C) 7个 (D) 8个9、已知},,1{},4,3,2,1{A x x y y B A ∈-===则{0}与B 的关系是( )(A) B ∈}0{ (B) B ⊂}0{ (C) B ⊄}0{ (D) B ⊇}0{10、已知},,14{},,1{22+∈+-==∈+==N m m m x x Q N n n x x P 则P 与Q 的关系是( )(A) Q P = (B) Q P ⊂ (C) P Q ⊂ (D)以上答案都不对11、已知则},,1{},,1{22R x x y y N R x x y y M ∈+-==∈+== N M 是( )(A) {0,1} (B) {(0,1)} (C) {1} (D)C 以上答案均不对12、符合条件{a ,b ,c} ⊆ P ⊆ {a ,b ,c ,d ,e}的集合P 的个数是( )(A )2 (B )3 (C )4 (D )8二、填空题13、{(1,2),(-3,4)}的所有真子集是 ;14、设直线的32+=x y 点集为P =___________________,则点(2,7)与P 的关系为(2,7)____ P15、已知},{b a P =又P 的所有子集组成集合Q ,用列举法表示Q ,则Q =_____________________16、如图所示,阴影部分表示的集合为17、已知,.,},3),{(},12),{(B a A a x y y x B x y y x A ∈∈+==-==则______=a18、若},,34{},,42{22R b b b y y B R a a a x x A ∈+-==∈++==试确定A 与B 的关系为 __________.三、解答题19、已知B A b b B a a A ==++=若},,1{},21,1,1{2,求b a ,20、已知,}1{},62{P Q a x a x Q x x P ⊆+≤≤=≤≤=若求a 的范围21、已知集合},02{2=+-=k x x x P 若集合P 中的元素少于两个,求.k22、已知全集}4{≤=x x U 集合},33{},32{≤<-=<<-=x x B x x A 求B A C B A C B A U U )(),(,23、设A 是数集,满足A a ∈时,必有A a∈-11, (1)若A ∈2,问:①A 中至少有几个元素?并把它列举出来? ② A 中还可以有其它元素吗?(2)若A 中只能有一个元素且A ∉2,实数a 是否存在?。
高一数学第一章集合单元测试卷
高一数学集合单元测试卷(时间45分钟 满分100分) 一、选择题(每小题有且只有一个正确答案,8×4分=32分) 1.下列各项中不能组成集合的是 ( ) A .所有正三角形 B .《数学》教材中所有的习题 C .所有数学难题 D .所有无理数 2.若集合M =}{6|≤x x ,a =5,则下面结论中正确的是 ( ) A .}{M a ⊆ B .M a ⊆ C .}{M a ∈ D .M a ∉ 3.设集合S ={0,1,2,3,4},集合A ={1,2,3},集合B ={2,3},则 ( ) A .B A C S ⊆ B .A C B C S S ⊆ C .B C A C S S ⊆ D .A C S =B C S 4.已知集合A 中有10个元素,集合B 中有8个元素,集合A ∩B 中共有4个元素,则集合A ∪B 中共有( )个元素 ( ) A . 14 B . 16 C . 18 D .不确定 5.已知a ∈R ,集A =}{1|2=x x 与B =}{1|=ax x 若A B A ⋃=则实数a 所能取值为A .1B .-1C .-1或1D .-1或0或1 ( ) 6.如果集合A ={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 7. 满足{1,2,3} ⊆M ⊆{1,2,3,4,5,6}的集合M 的个数是 ( ) A .8 B .7 C .6 D .5 8.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为 ( ) A .A =B B .A ⊆B C .A =B D .A ≠B 二.填空题(5×4分=20分) 9.集合{}23*<-∈x N x 用列举法表示应是 ; 10.设集合{}12|)(-==x y y x A ,,{}3|)(+==x y y x B ,,则A ∩B = . 11.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.12.已知全集{}{}=∈>-=≤≤-=A C U x x x A x x U U ,则,,31281________.姓名________________班级______________得分__________________ ———————————————————————————————————————————————————三.解答题(4⨯13分=52分)13.设集合A ={2,4,6,8,10},=A C U {1,3,5,7,9},=B C U {1,4,7,9},求集合B .14.若集合{}{}{}213113A x B x A B x ==⋃=,,,,,,,,求满足上述条件的实数x .15.设U ={1,2,3,4,5},若A ∩B ={2},(C U A )∩B ={4},(C U A )∩(C U B )={1,5},求A ,B .16.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},A ∩B =B ,求实数a 的值.。
高一数学集合练习题及答案
高一数学集合练习题及答案一、单选题1.集合{}22A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}1,1,2-B .{}2,1,0,1--C .{}1,0,1-D .{}2,1,0,1,2-- 2.已知集合(){}2{|14,},1,0,1M x x x R N =-<∈=-则M N =( )A .{}0,12,B .{}0,1C .{}1,0,2,3-D .{}0,123,, 3.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( )A .M P =B .M P ⊆C .P M ⊆D .M P ⋂=∅4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 5.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤ 6.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,87.已知集合{}21A x x =<,{}02B x x =<<,则A B =( ) A .1,2 B .0,1 C .()0,2 D .1,28.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-9.下列命题说法错误的是( ) A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-11.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( )A .{01234},,,,B .{123},,C .[0,4]D .[1,3]12.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞ 13.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( )A .10B .9C .7D .4 14.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .515.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.18.全集U =R ,集合{}3A x x =≤-,则 U A =______.19.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.20.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________. 21.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ;(3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.24.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.25.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____.三、解答题26.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ,A C ,A D .27.已知函数()()4log 526f x x x =-+-()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .28.已知命题“{}11x x x ∃∈-≤≤,使等式220x x m --=成立”是真命题.(1)求实数m 的取值集合A ;(2)设关于x 的不等式()2242360x a x a a -+++<的解集为B ,若B A ,求实数a 的取值范围.29.设M 为100个连续正整数的集合,已知其中2的倍数有50个,3的倍数有33个,6的倍数有16个,如何利用这些数据求出M 中不能被3整除的奇数的个数?30.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.【参考答案】一、单选题1.C【解析】【分析】利用交集的定义,直接计算即可.【详解】根据题意,A B ={}1,0,1-.故选:C .2.B【解析】【分析】先化简集合M ,再利用集合的交集运算求解.【详解】解:因为已知集合(){}{}2|14,|13M x x x R x x =-<∈=-<<,{}1,0,1N =-,所以MN ={}0,1,故选:B3.C【解析】【分析】用列举法表示集合M 、P ,即可判断两集合的关系;解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭, 所以P M ⊆,故选:C4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】 直接根据集合交集运算求解即可.【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤,所以{|11}Q x x P -≤≤=.故选:D6.C 【解析】【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=. 故选:C7.B【解析】【分析】解一元二次不等号求集合A ,再由集合的交运算求A B .【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<<所以{|01}A B x x =<<.故选:B8.D【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.9.C【解析】【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C.10.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C11.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .12.A【解析】【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算.【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}U N x x =-<<,Venn 图中阴影部分为(){|12}U MN x x =<<. 故选:A .13.C【解析】【分析】利用交集的运算求解.【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=,所以a =2,b =5,所以a b +=7,故选:C14.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.4a >【分析】结合数轴图与集合包含关系,观察即可得到参数的范围.【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.[1-,6)【解析】【分析】直接利用并集运算得答案.【详解】[2A =,6),[1B =-,4),[2A B ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).18.{}3x x >-【解析】【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A ={}3x x >-, 故答案为:{}3x x >-19.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.20.1【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:121. ⊆ = ⊇ ⊆【解析】【分析】根据集合子集的定义及集合相等的概念求解.【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆22.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃23.{}1,5,8【解析】【分析】 分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解.【详解】 由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=. 故答案为:{}1,5,8.24.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤.故答案为:2a ≤.25.(],1-∞-【解析】【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可.【详解】根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-.三、解答题26.2,2,3k k k πππ⎛⎫+∈ ⎪⎝⎭Z ;2,2,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ;7557,,,333333ππππππ⎛⎫⎛⎫⎛⎫--⋃-⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【解析】【分析】根据任意角的弧度表示及交集的概念即可计算.【详解】22,22,22,2,3333A B k k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂+=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 2,2,2,2,336263A C k k k k k k k ππππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂++=++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 分别令k =-1,0,1,即可得:[]75572,210,10,,,33333333A D k k ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⋂=-+⋂-=--⋃-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 27.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】 (1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式;(2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 28.(1){}13A m m =-≤≤ (2)113a -≤≤ 【解析】【分析】(1)分析可得()211m x =--,求出当11x -≤≤时,()211x --的取值范围,即可得解; (2)对3a 与2a +的大小进行分类讨论,求出集合B ,根据B A 可得出关于实数a 的不等式(组),综合可求得实数a 的取值范围.(1)解:由220x x m --=可得()22211m x x x =-=--,当11x -≤≤时,则210x -≤-≤,所以,()[]2111,3m x =--∈-,故{}13A m m =-≤≤. (2)解:()()()2242360320x a x a a x a x a -+++<⇔---<.当32a a >+,即1a >时,{}23B x a x a =+<<,因为B A ,则21331a a a +≥-⎧⎪≤⎨⎪>⎩,此时a 不存在; 当32a a =+,即1a =时,B =∅,满足题设条件;当32a a <+,即1a <时,{}32B x a x a =<<+,因为B A ,则31131a a a ≥-⎧⎪+≤⎨⎪<⎩,解得113a -≤<.综上可得,实数a 的取值范围为113a -≤≤. 29.33【解析】【分析】分析集合之间的关系,由()()()()card A B card A card B card A B ⋃=+-⋂可得.【详解】记{|2,,}A x x n x M n N ==∈∈,{|3,,}B x x n x M n N ==∈∈,则{|21,,}M A x x n x M n N ==-∈∈,{|3,,}M B x x n x M n N =≠∈∈, {|A B x x ⋂=是能被3整除的偶数,}x M ∈, ()(){|M M A B x x =是不能被3整除的奇数,}x M ∈由题知()50,()33,()16card A card B card A B ===,因为()()()M M M A B A B =,()()()()50331667card A B card A card B card A B =+-=+-=所以M 中不能被3整除的奇数有100-67=33个.30.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A ,C A ,D A ; 又正方形是特殊的矩形、特殊的菱形,所以C B ,C D ;。
高一数学集合练习题及答案(5篇)
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学集合习题
高一数学集合习题
题目一:集合的基本概念
1.设集合A包含元素1、2、3,集合B包含元素2、3、4,请问A和B的交集是什么?
2.设集合C包含元素1、3、5、7,集合D包含元素2、4、6、8,请问C和D的并集是什么?
3.对于任意集合E和集合F,如果E是F的子集,那么E和F的关系是什么?
题目二:集合的运算
1.若集合G包含元素1、2、3,集合H包含元素3、4、5,请问G和H的差集是什么?
2.若集合I包含元素1、2、3,集合J包含元素2、3、4,请问I和J的对称差集是什么?
3.设集合K包含元素1、2、3,集合L包含元素3、
4、5,则K和L的笛卡尔积是什么?
题目三:集合的性质与定理
1.证明:空集是任意集合的子集。
2.证明:集合的并运算满足交换律。
3.证明:集合的交运算满足结合律。
题目四:应用题
1.小明参加了一个比赛,共有50人参与。
已知30人会打篮球,40人会踢足球,请问至少会打篮球或踢足球的人数有多少?
2.在一家餐厅,菜单上有30道菜品,其中15道是川菜,20道是湘菜,请问既不属于川菜也不属于湘菜的菜品有多少道?
3.设集合M表示所有在数学和物理两门课中都获得优秀成绩的学生,集合N表示所有在数学课中获得优秀成绩的学生,集合P表示所有在物理课中获得优秀成绩的学生。
已知集合N中有50名学生,集合P中有60名学生,而
集合M中有40名学生,请问至少有多少名学生既在数学课中获得优秀成绩,又在物理课中获得优秀成绩?
以上是关于高一数学集合的习题,包括集合的基本概念、集合的运算、集合的性质与定理以及一些应用题。
希望通过这些习题的练习,能够加深对集合概念的理解,并掌握集合的运算方法和性质。
高一数学必修一集合练习题及单元测试(含答案及解析)
高一数学必修一集合练习题及单元测试(含答案及解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A。
{x|x≥3} B。
{x|x≥2} C。
{x|2≤x<3} D。
{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A。
{3,5} B。
{3,6} C。
{3,7} D。
{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A。
{x|x≥-1} B。
{x|x≤2} C。
{x|0<x≤2} D。
{x|-1≤x≤2}4.满足M⊆{1,2,3,4},且M∩{2,3}={3}的集合M的个数是()A。
1 B。
2 C。
3 D。
45.集合A={0,2,a},B={1,4},若A∪B={0,1,2,4,16},则a 的值为()A。
1 B。
4 C。
2 D。
166.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A。
Ø B。
{x|x5/3} D。
{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为15.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是2.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是(-∞,1]。
10.已知集合A={-4,2a-1},B={a-5,1-a,9},若A∩B={9},则a的值为7.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},则x=2,A∩B={1}。
12.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B=Ø,则a的取值范围为(-∞,-1)∪(5,∞)。
13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组。
高一数学必修一集合练习题含答案
高一数学必修一集合练习题含答案进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习巩固集合内容,下面是店铺给大家带来的高一数学必修一集合练习题,希望对你有帮助。
高一数学必修一集合练习题一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.高一数学必修一集合知识点集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
高中数学高一集合元素单元练习题(附有答案)
高中数学高一集合元素单元练习题学校:_____姓名:_____班级:_____考号:______一.单选题1.若A={1,4,x},B={1,x2}且B⊆A,则x=()A.2B.2或-2C.0或2D.0,2或-22.设集合A={(x,y)|-=1},B={(x,y)|y=},则A∩B的子集的个数是()A.8B.4C.2D.13.设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B≠∅的集合S的个数是()A.57B.56C.49D.84.设x∈M={1,2},y∈{y|y=2x,x∈M},则()A.{x}∩{y}⊇{1,2}B.{x}∩{y}⊇{2,4}C.{x}∪{y}⊆{0,2,4}D.{x}∪{y}⊆{0,1,2,4}5.已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=()A.2B.1C.0D.-1二.填空题6.若[-1,1]⊆{x||x2-tx+t|≤1},则t的取值范围______.7.设集合A={y|y=x2+ax+1,x∈R},B={x|x<0},若A∩B=∅,A∪B=R,则实数a的取值集合是______.8.已知含有3个元素的集合{a,,1}={a2,a+b,0},则a2015+b2015=______.三.简答题(共__小题)9.记关于x的不等式<0(a>0)的解集为S,不等式|x-1|<1的解集为T.(1)若a=1,求S∪T和S∩T;(2)若S⊆T,求a的取值范围.10.已知集合M={a,a+d,a+2d},P={a,aq,aq2},其中a≠0,a,d,q∈R,且M=P,求实数q的值.11.已知集合M={x|x2+2x-a=0}.(1)若∅⊊M,求实数a的取值范围;(2)若N={x|x2+x=0},且M⊆N,求实数a的取值范围.12.已知集合A={x|1<x<3},B={x|21-x+a≤0},C={x|x2-2(a+7)x+5≤0},如果A⊆B∩C,求实数a的取值范围.13.已知集合A={x|0<x-a≤5},B={x|<x≤6}(1)若A⊆B,求a的取值范围.(2)若B⊆A,求实数a的取值范围.(3)集合A与B能否相等?若能,求出a的值,若不能,请说明理由.14.已知A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0},(a≥0)(Ⅰ)若A⊆B,求实数a的取值范围;(Ⅱ)若A∩B=∅,求实数a的取值范围.15.已知集合A={1,3,a},B={1,a2-a+1},且A⊇B,求a的值.16.已知A={1,1+a,1+2a},B={1,b,b2},若A=B,求a,b.17.已知集合A={x|x2+4x+p<0},B={x|x2-x-2>0},且A⊆B,求实数p的范围.18.已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},(1)求A∩B,(∁U A)∪(∁U B);(2)若集合M={x|2a≤x≤2a+1}是集合A的子集,求实数a的取值范围.19.集合A={x|≥1},函数f(x)=log的定义域为集合B;(1)求集合A和B;(2)若A⊂B,求实数a的取值范围.20.已知集合A={1,2},B={x|x2-ax+a-1=0},C={x|x+=m},若B∩C⊊A,求a,m的值.参考答案一.单选题1.若A={1,4,x},B={1,x2}且B⊆A,则x=()A.2B.2或-2C.0或2D.0,2或-2答案:D解析:解:根据已知条件,x2=4,或x2=x;∴x=2,-2,0,或1;x=1时不满足集合元素的互异性,应舍去;∴x=0,2,或-2.故选D.2.设集合A={(x,y)|-=1},B={(x,y)|y=},则A∩B的子集的个数是()A.8B.4C.2D.1答案:A解析:解:结合双曲线=1的图形及指数函数y=的图象可知,有3个交点,故A∩B子集的个数为23=8.故选A.3.设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B≠∅的集合S的个数是()A.57B.56C.49D.8答案:B解析:解:S⊆A,且S∩B≠∅,说明S是A的子集,且S与B有公共元素;∴A的构成情况为:①含一个元素:从4,5,6中选一个元素,个数为C31=3;②含两个元素:从4,5,6选两个元素,或从1,2,3选一个,从4,5,6选一个,个数为:C32+C31C31=12;③含三个元素:从4,5,6选三个,或从4,5,6选两个,从1,2,3选一个,或从4,5,6选一个,从1,2,3选两个,个数为:C33+C32C31+C31C32=19;④含四个元素:从4,5,6选三个,从1,2,3选一个,或从4,5,6选两个,从1,2,3选两个,或从4,5,6选一个,从1,2,3选三个,个数为:C33C31+C32C32+C31C33=15;⑤含五个元素:从4,5,6选三个,从1,2,3选两个,或从4,5,6选两个,从1,2,3选三个,个数为:C33C32+C32C33=6;含6个元素:从4,5,6选三个,从1,2,3选三个,个数为C33C33=1;∴集合S的个数为:3+12+19+15+6+1=56.故选:B.4.设x∈M={1,2},y∈{y|y=2x,x∈M},则()A.{x}∩{y}⊇{1,2}B.{x}∩{y}⊇{2,4}C.{x}∪{y}⊆{0,2,4}D.{x}∪{y}⊆{0,1,2,4}答案:D解析:解:由题意,∵x∈M={1,2},y∈{y|y=2x,x∈M},∴y∈{2,4},∴{x}∪{y}={1,2}或{1,4}或{2,4}或{2}∴{x}∪{y}⊆{0,1,2,4}故选D.5.已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=()A.2B.1C.0D.-1答案:D解析:解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.由②得,若b=a2,a=b2,则两式相减得a2-b2=b-a,即(a-b)(a+b)=-(a-b),∵互异的复数a,b,∴a-b≠0,即a+b=-1,故选:D.二.填空题(共__小题)6.若[-1,1]⊆{x||x2-tx+t|≤1},则t的取值范围______.答案:[2-2,0]解析:解:①当-2<t<2时,-1<<1;[-1,1]⊆{x||x2-tx+t|≤1}可化为,解得,-2+2≤t≤0;②当t≥2或t≤-2时,[-1,1]⊆{x||x2-tx+t|≤1}可化为,无解;故答案为:[2-2,0].7.设集合A={y|y=x2+ax+1,x∈R},B={x|x<0},若A∩B=∅,A∪B=R,则实数a的取值集合是______.答案:{-2,2}解析:解:由题意,A={y|y=x2+ax+1,x∈R}={y|y≥0},∴△=a2-4=0,∴a=±2,∴实数a的取值集合是{-2,2}.故答案为:{-2,2}.8.已知含有3个元素的集合{a,,1}={a2,a+b,0},则a2015+b2015=______.答案:-1解析:解:∵集合A={a,,1},B={a2,a+b,0},且A=B,∴a≠0,则必有=0,即b=0,此时两集合为A={a,0,1},集合Q={a2,a,0},∴a2=1,∴a=-1或1,当a=1时,集合为P={1,0,1},集合Q={1,1,0},不满足集合元素的互异性.当a=-1时,P={-1,0,1},集合Q={1,-1,0},满足条件,故a=-1,b=0.∴a2015+b2015=-1,故答案为:-1.三.简答题(共__小题)9.记关于x的不等式<0(a>0)的解集为S,不等式|x-1|<1的解集为T.(1)若a=1,求S∪T和S∩T;(2)若S⊆T,求a的取值范围.答案:解:S=(0,a),T=(0,2);(1)a=1时,S=(0,1),所以:S∪T=(0,2),S∩T=(0,1);(2)若S⊆T,则:则0<a≤2;∴a的取值范围为(0,2].10.已知集合M={a,a+d,a+2d},P={a,aq,aq2},其中a≠0,a,d,q∈R,且M=P,求实数q的值.答案:解:由M={a,a+d,a+2d},P={a,aq,aq2},其中a≠0,则d≠0,q≠0,±1.∵M=P,∴①或②,解得①q=1,舍去;解得②:q=或-1,其中q=-1舍去.∴q=,综上可得:q=.11.已知集合M={x|x2+2x-a=0}.(1)若∅⊊M,求实数a的取值范围;(2)若N={x|x2+x=0},且M⊆N,求实数a的取值范围.答案:解:(1)∵∅⊈M,∴M={x|x2+2x-a=0}≠∅,∴△=4+4a≥0,∴a≥-1;(2)N={x|x2+x=0}={0,-1},∵M⊆N,∴M=∅,{0},{-1},{0,-1},M=∅,则△=4+4a<0,∴a<-1;M是单元素集合,△=4+4a=0,∴a=-1,此时M={-1},符合题意;M={0,-1},0-1=-1≠-2,不符合.综上,a≤-1.12.已知集合A={x|1<x<3},B={x|21-x+a≤0},C={x|x2-2(a+7)x+5≤0},如果A⊆B∩C,求实数a的取值范围.答案:解:∵A⊆B∩C,∴集合A中的元素必是集合B∩C中的元素,即当x∈(1,3)时,不等式21-x+a≤0且x2-2(a+7)x+5≤0恒成立,由21-x+a≤0,x∈(1,3)得a≤-21-1=-1;由x2-2(a+7)x+5≤0,x∈(1,3)得,解之得a≥-4,综上,得实数a的取值范围是[-4,-1].13.已知集合A={x|0<x-a≤5},B={x|<x≤6}(1)若A⊆B,求a的取值范围.(2)若B⊆A,求实数a的取值范围.(3)集合A与B能否相等?若能,求出a的值,若不能,请说明理由.答案:解:因为A={x|a<x≤a+5},B={x|-<x≤6},(1)由于A⊆B,所以a+5≤6,且-≤a,解得0≤a≤1;(2)因B⊆A所以a+5≥6,且a≤-,解得a∈∅;(3)A=B时,a+5=6,-=a,解得a∈Φ故不能.14.已知A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0},(a≥0)(Ⅰ)若A⊆B,求实数a的取值范围;(Ⅱ)若A∩B=∅,求实数a的取值范围.答案:解:A={x|2<x<4};当a=0时B=φ;当a>0时,B={x|a<x<3a};∴(Ⅰ)A⊆B时,,∴;即实数a的取值范围为[,2];(Ⅱ)①a=0时,显然满足A∩B=∅;②a>0时,要使A∩B=∅,则a≥4,或0<3a≤2;即a≥4,或;∴综上得实数a的取值范围为[0,]∪[4,+∞).15.已知集合A={1,3,a},B={1,a2-a+1},且A⊇B,求a的值.答案:解:∵A⊇B,∴a2-a+1=3或a2-a+1=a.①由a2-a+1=3得a2-a-2=0解得a=-1或a=2.当a=-1时,A={1,3,-1},B={1,3},满足A⊇B,当a=2时,A={1,3,2},B={1,3},满足A⊇B.②由a2-a+1=a得a2-2a+1=0,解得a=1,当a=1时,A={1,3,1}不满足集合元素的互异性,综上,若B⊆A,则a=-1或a=2.16.已知A={1,1+a,1+2a},B={1,b,b2},若A=B,求a,b.答案:解:∵A=B,∴1+a≠1+2a,b≠b2,解得a≠0,b≠0,1.∴,或,解得(舍去),或.∴,b=-.17.已知集合A={x|x2+4x+p<0},B={x|x2-x-2>0},且A⊆B,求实数p的范围.答案:解:由题意A={x|x2+4x+p<0},B={x|x2-x-2>0}={x|x<-1或x>2},又A⊆B①若A是空集,显然符合题意,此时有△=42-4p≤0,解得p≥4;②若A不是空集,即△=42-4p>0,解得p<4,此时x2+4x+p<0解集为{x|-2-,2+},要使A⊆B,只要-2+≤-1或者-2-≥2,解得3≤p<4或者∅综上知p≥3.18.已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},(1)求A∩B,(∁U A)∪(∁U B);(2)若集合M={x|2a≤x≤2a+1}是集合A的子集,求实数a的取值范围.答案:解:(1)∵全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2}={x|-2≤x≤3},∴A∩B={x|1<x≤3},(∁U A)∪(∁U B)={x|x≤1,或x>3};(2)由题意:2a+1<-4或2a>1…(10分)解得:.…(12分)19.集合A={x|≥1},函数f(x)=log的定义域为集合B;(1)求集合A和B;(2)若A⊂B,求实数a的取值范围.答案:解:(1)由≥1,可得A=[-,2);由>0,可得B=(-∞,a)∪(a2+1,+∞);(2)∵A⊂B,∴a>2.20.已知集合A={1,2},B={x|x2-ax+a-1=0},C={x|x+=m},若B∩C⊊A,求a,m的值.答案:解:∵B∩C⊆A,集合A={1,2},C={x|x+=m},B={x|x2-ax+a-1=0}={x|(x-1)(x+1-a)=0},∴当a≠2时,B={1,a-1};当a=2时,B={1};∵B∩C⊊A,∴①若B∩C={1},则1+2=m,∴m=3;②若B∩C={a-1},则a-1=2,解得a=3,此时m=2+1=3,这种情况下,B={1,2},C={1,2},B∩C={1,2},与B∩C={a-1}={2}矛盾,故不可以;③若B∩C=A={1,2},可得a=3,m=3.综上所述,a=2或3,m=3.。
高一数学必修一集合练习题及答案
8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1, },B={a-5,1-a,9},若A∩B={9},求a的值.
试题一(集合解析及答案)
1.【解析】B={x|x≥3}.画数轴(如下图所示)可知选B【答案】B2.【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】D3.【解析】 集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】A4.【解析】 集合M必须含有元素 , ,并且不能含有元素 ,故M={ , }或M={ , , }.故选B.【答案】B?5.【解析】∵A∪B={0,1,2,a, },又A∪B={0,1,2,4,16},∴{a, }={4,16},∴a=4,故选D.【答案】D6.【解析】S={x|2x+1>0}={x|x>- },T={x|3x-5<0}={x|x< },则S∩T={x|- <x< }.故选D.【答案】D7.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】458.【解析】由于{1,3}∪A={1,3,5},则A?{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】49.【解析A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤110.【解析】∵A∩B={9},∴9∈A,∴2a-1=9或 =9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.11.【解析】由A∪B={1,2,3,5},B={1,2, -1}得 -1=3或 -1=5.若 -1=3则x=±2;若 -1=5,则x=± ;综上,x=±2或± .
高一集合练习题(推荐8篇)
高一集合练习题(推荐8篇)高一集合练习题(1)(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
(二)子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B。
高一数学集合练习题一及答案3篇
高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。
高一数学集合练习题(一)及答案
一、选择题(每题4分,共40分)1、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 104、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4}5、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x xx Z -=∈是空集中,错误的个数是 ( )A 4B 3C 2D 17、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤9、 满足条件M}{1=}{1,2,3的集合M 的个数是 ( )A 1B 2C 3D 410、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( )A a b P +∈B a b Q +∈C a b R +∈D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分)11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。
高一数学集合单元测试卷
高一数学集合单元测试卷一、选择题(每题5分,共40分)1. 下列对象能构成集合的是()A. 很大的数。
B. 聪明的人。
C. 小于10的正整数。
D. 某班跑得快的同学。
2. 设集合A = {xx^2 - 3x + 2 = 0},则集合A中的元素为()A. 1,2.B. -1,-2C. 1,-2D. -1,2.3. 已知集合A={1,2,3},B = {2,3,4},则A∩ B=()A. {1,2,3,4}B. {2,3}C. {1,4}D. varnothing4. 若集合A={xx > 1},B={xx < 3},则A∪ B=()A. {x1 < x < 3}B. {xx > 1}C. {xx < 3}D. R5. 设全集U={1,2,3,4,5},集合A = {1,2,3},则∁_U A=()A. {4,5}B. {1,2,3}C. {2,3,4,5}D. {1,4,5}6. 已知集合A={x - 1,B={x0,则A∩ B=()A. {x1 < x < 0}B. {x0 < x < 2}C. {x2 < x < 3}D. {x1 < x < 3}7. 若集合M={xx = 3k - 2,k∈ Z},N={xx = 3l+1,l∈ Z},则M与N的关系是()A. M = NB. M⊂neqq NC. N⊂neqq MD. M∩ N=varnothing8. 集合A={xx^2 - 5x + 6 = 0},集合B={xax - 1 = 0},若B⊆ A,则a的值为()A. (1)/(2)或(1)/(3)B. (1)/(2)或(1)/(3)或0C. (1)/(3)D. (1)/(2)二、填空题(每题5分,共20分)1. 集合{1,2,3}的所有子集个数为______。
2. 已知集合A = {xx < - 1或x > 3},B={xx < a},若A∪ B = A,则a的取值范围是______。
高一数学集合与命题单元测验(附答案)
高一数学单元测试(一)2006.10.(满分 100 分, 90 分钟达成)(本试卷同意使用计算器)班级 ________姓名 _______________学号 ________成绩 ________一、选择题:请选择你以为最正确的答案(每题有且只有一个),写在括号内。
1、全集 U={ x∣|x|<3, x∈ Z} , A={0 , 1, 2} , B={ - 1, 2} ,则 A∩ C U B=()(A){1}(B){0,1}(C){2}(D){0 ,1,2}2、设会合 M ={ n∣n∈ Z} , P={ n∣n∈ Z} ,则 M∩ P 等于()24(A)Z(B)M(C)P(D)3、设 A,B, U 均为非空会合,且知足A B U,则以下各式中错误的选项是()(A)C U A∪B=U(B)C U A∪ C U B=U(C)A∩C U B=(D)C U A∩ C U B=C U B4、“ x>5”的一个充足非必需条件是()(A)x>6(B)x>3(C)x<0(D)x≠ 1005、原命题“若 A∪ B=B,则 A∩B=A”与其抗命题、否命题、逆否命题总合 4 个命题中,真命题的个数是() (A)0 个(B) 1 个(C) 2 个(D) 4 个6、设 A 、 B 是两个会合,对于 A B ,以下说法正确的选项是()(A)存在 x0 B ,使 x0 A(B)B A 必定不建立(C)x0 A 是 x0 B 的充足条件(D) B 不行能为空集7、设A是B的必需不充足条件,B是 C 的充要条件, C 是D的充足不用要条件,则D是A的() (A)充足不用要条件(B)必需不充足条件(C)既不充足又不用要条件(D)不可以确立8、已知会合A={ x∣ x=4n,n∈ Z} ,B={ x∣ x=4n+1,n∈ Z} ,C={ x∣ x=4n- 1, n∈ Z} ,且 a∈ A, b∈ B, c∈ C,若d=a- b- c,则()(A)d∈ A(B)d∈B (C)d∈C(D) d∈C R(AUBUC)二、填空题:请在横线上方填写最后的、最完好的结果。
(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)
集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是() A.1 B.2 C.3 D.45.集合A={0,2,a},B={1,}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A.ØB.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1高一数学《集合》单元练习题
一、选择题)1.下列命题正确的有(
)很小的实数可以构成集合;(1??????221x?,y|y?x1|y?x?y是同一个集合;与集合(2)集合1365,0.51,,,?)个元素;(3这些数组成的集合有224????R?,yy|xy?0,xx,是指
第二和第四象限内的点集。
4)集合(3210.C.个个A.个B.D个
m AB?A?}|mx?1?A?{?1,1}B{x),则2.若集合,,且的值为(
11?1??0111或B.C.D或.或A.
????22R?,y)x?y?0,x?R,yxM?(x,y)?y?0,N?(x),则有(3.若集合
??MNMMN?N?MMN?MN
D.C.BA..
1?x?y?)的解集是(4.方程组
?229?x?y?????????????5,44,?5?5,5,?44。
.B.D.C A.
)5.下列式子中,正确的是(
????RR?Z?x|x?0,Zx?B.A.
?????.DC.空集是任何集合的真子集)6.下列表述中错误的是(
B?BA ?B,则A AB?则A A?B, B.若A.若
??????BCBAACC A)B((AA )B ? .C. D UUU二、填空题1.用适当的符号填空????????1x?x,y3______?x|x?2,|1,2y____)(1??3?2?x2?5_______|x 2),(1????30x|xx?,?xx?R_______x|? 3)(??x??????3?或
x4A?b,C?x|x?xa?,?URAx|?a__________b_,??__________则。
.设2U5543344人既不爱好体育也不爱好音乐,3.某班有学生人,其中体育爱好者人,音乐爱好者人,还有1
则该班既爱好体育又爱好音乐的人数为人。
????2x?BAB?x1,4,x1,A?,B?。
且.若4,则
2a}02??3xA?{x|ax?的取值范围5.已知集合至多有一个元素,则;
a的取值范围若至少有一个元素,则。
三、解答题
????????2,求,,M?,?bA?bx|y?xM?ay?xa?ax.设1
2220}?a?1)x??1x4A?{xx?x?0},B?{x?2(aR?x,
2其中.设,a BAB?的取值范围。
如果,求实数
??????22220?xC6????|A?xx?axa?190Bx|x5x??0?x|?2x8?.集合3,,??a,CBA??,A的值。
求实数满足,
????220m?1)??0Bx|x(m?x???3xxA?|?x2R?U.4,集合;设,??BACm )(若的值。
,求U
2
参考答案:一、选择题 2)前者是数集,而后者是点集,种类不同,(1)错的
原因是元素不确定,(1.A36130.5???,个元素,(4)本集合还包括坐标轴(3,有重复的元素,应该是)2421???A?AB0??0mm?0m,?B,?B满足时,时,;当当 2. D,即??
m??1?1或?1,m?1或?1A?AB m?1,?1或0;,∴而;∴
m??N?M)?(00,N;, 3. A x?y?1x?5????4)?(5,4)?(5,得,该方程组有一组解4. D,解集为;??x?y?9y??4???R?R?D应改为可加上“非空”,或去掉“真”,选项D选项A应改为,选项C,选项B5.
????里面的确有个元素“中的”,而并非空集;B?A?AABBA?时,6. C当
二、填空题??,,(2?)(1),(?3) 1.
3?2x?1,y?2y?x?1,),满足(1 3.62?3??51.4?2.2?3.72?,)估算(2,
????,0,11?1,1???,右边(3)左边
22?7?48?(23)40?5)7?(2?或,
????b?xax??|x???AC(CA)4x|3?4,?3b?a 2. UU x264人;仅爱好体育全班分类人:设既爱好体育又爱好音乐的人数为 3.
43?x34?x人;既不爱好体育又不爱好音乐的的人数为人;仅爱好音乐的人数为
43?x?34?x?x?4?55x?264。
∴人,∴人数为22AB?得BA?B2?或0,2,xx?4或?x1?x,则
4. 。
由,且
3
99????,或?a?0a|a?a|a, 5. ????88????Aa?0??9?8a?0;,或中仅有一个元素时,当A??9?8a?00;中有个元素时,当A??9?8a?0;当中有两个元素时,三、解答题
??2aA?ax?x?xx?ax?b? 1.解:由的两个根,得212x?x?a0?1)x?b?x?(a,的两个根即2111xx?b,得a???x?x?1?a2a,,∴212139??11??,?M??∴??39??????224,0A??A?AB?B 得B?1)?8aa???4(a?1)8?4(解:由,而,2.
?B?A10a????8a?8??B;,符合时,当,即
??0?8a?8??B?A0B?1??a;,符合当,即时,??A?B4,0??B10a????8a?8?;时,当,即中有
两个元素,而??4,0B??a?1∴得a?1或a??1。
∴
?????4,2?2,3?C?B A2,3B?A中,至少有一个元素在,3.解:,则,而
2?a?5或
?20?3a?a??199A3A?2??AC,得,∴,又,即
?a?5时,A?B与AC?
而矛盾,
a??2∴???12,A???,得B?)B?A(CA,4. 解:,由
U??B?A1?B?1m?;时,当,符合
??B?A m,1?B???m??2m?m1?2时,,而,即,∴当m?12。
∴或
4。