液压泵的工作原理及主要结构特点(2)
液压泵的工作原理及主要结构特点
液压泵的工作原理及主要结构特点液压泵作为液压传动系统中的核心元件之一,主要用于将液体的机械能转化为液体的压力能,并输出给液压系统中的执行元件,实现液压系统的工作。
1.工作过程:液压泵通过旋转驱动轴将液体吸入泵腔,然后通过泵腔的构造形式将液体压缩,最后将压缩液体推送至输出管路,从而实现液体的压力增加。
液压泵主要通过动静液体间的容积周期变化来实现工作。
2.吸油过程:油液进入泵腔时,液体被叶轮推至泵腔的出口。
3.压油过程:液压泵的旋转运动使得叶片向轴心方向收缩,使得泵腔的容积缩小。
当泵腔的容积缩小到一定程度时,吸入管路中的液体将被压缩,从而进一步增加了液体的压力。
4.推油过程:压缩后的液体通过泵腔的输出口输出到液压系统的管路中。
液压泵的主要结构特点如下:1.泵体:液压泵的泵体通常由铸铁或铸钢等金属材料制成,具有较高的强度和刚度以承受高压力的冲击。
2.轴和轴承:液压泵的轴和轴承通常由高强度钢材制成,用于连接泵体和电机,同时支撑整个液压泵的运转。
3.叶轮:液压泵的叶轮是泵的旋转部件,通常由铸铁或铸钢制成。
叶轮的数量和形状会影响液压泵的输出流量和压力。
4.泵腔:液压泵的泵腔是液体流动的关键部件,通常为方形或椭圆形。
泵腔内的体积变化决定了液压泵的输出流量和压力。
5.定子:液压泵的定子通常由高强度的合金钢材料制成,用于固定泵腔和叶轮。
6.密封装置:液压泵的密封装置主要用于防止液体泄漏,通常采用密封圈、密封垫等形式进行密封。
1.压力范围广:液压泵可以根据需求提供不同的输出压力,能够满足不同工况下的工作要求。
2.输出流量大:液压泵的输出流量较大,能够为液压系统提供足够的液体供应。
3.工作稳定:液压泵的工作较为稳定,输出压力和流量的波动较小,能够保证液压系统的正常运行。
4.适应性强:液压泵能够适应各种不同的工作环境和场合,广泛应用于各个行业的液压传动系统中。
总之,液压泵是液压系统中的核心元件之一,它的工作原理和主要结构特点决定了液压泵具有较高的工作效率和可靠性,为液压系统的正常运行提供了重要保障。
学习任务2 液压传动系统动力和执行元件的学习
二、液压执行元件 (液压缸、液压马达)
1.液压缸
(1)活塞式液压缸 1)双杆式液压缸
(1)活塞式液压缸 1)双杆式活塞缸
活塞两端都有一根直径相等的活塞杆 伸出的液压缸称为双杆式活塞缸。
根据安装方式可分为缸筒固定式和活塞杆 固定式两种。
固定缸体时,工作台的往复 运动范围约为有效行程L的3 倍。
二、液压传动系统的组成
1)叶片泵具有结构紧凑、输出流量均匀、运转平稳、噪声小等优点。 2)自吸性和抗污染能力较差,结构复杂,造价高。 3)叶片泵多用于中高压液压系统中。
6.柱塞泵
柱塞泵是靠柱塞在缸体中做 往复运动造成密封容积的变 化来实现吸油与压油的。
柱塞泵的优点:
第一,构成密封容积的零件为圆柱形的柱塞和缸孔,加工方便,可 得到较高的配合精度,密封性能好,在高压下工作仍有较高的容积 效率。
当转子每转一周,每个工作空间要完成 两次吸油和压油, 称为双作用叶片泵。
这种叶片泵由于有两个吸油腔和两个压 油腔,并且各自的中心夹角是对称的,所 以作用在转子上的油液压力相互平衡, 因此双作用叶片泵又称为卸荷式叶片泵。
为了要使径向力完全平衡,密封空间数 (即叶片数)应当是双数。
(3)叶片泵的特点
视频
2.液压泵的主要性能参数 (1)压力 油液的压力是由油液的自重和油液受到外力作用而产生的。
由于油液自重而产生的压力一般很小,可忽略不计。 所以油液的压力为:
p--油液压强N/m2,也称帕(Pa) ; F一作用的外力,N; A-油液表面的承压面积,即活塞的有效作用面积, m2。
1)工作压力 实际工作时输出的压力。 压力取决于负载和管路上的压力损失,与液压泵的流量无关。
第三章-补充知识-液压传动基础知识-精简版2020
二、液压传动的主要缺点
与机械传动、电气传动相比,液压传动具有以下缺点
1、由于流体流动的阻力损失和泄漏较大,所以效率较低。如果处理不当,泄 漏不仅污染场地,而且还可能引起火灾和爆炸事故。
2、工作性能易受温度变化的影响,因此不宜在很高或很低的温度条件下工作。 3、液压元件的制造精度要求较高,因而价格较贵。由于液体介质的泄漏及可
液压传动
第一章 液压传动概述
第一节 液压传动的定义、工作原理及组成
一、基本概念 1、液压传动的定义
用液体作为工作介质,在密封的回路里,以液体的压力能进行能 量传递的传动方式,称之为液压传动。
2、液压控制的定义
液压控制与液压传动的不同之点在于液压控制是一个自动控制系 统,具有反馈装置,系统具有较强的抗干扰能力,所以系统输出量 的精度高。
与机械传动、电气传动相比,液压传动具有以下优点
1、液压传动的各种元件、可根据需要方便、灵活地来布置; 2、重量轻、体积小、运动惯性小、反应速度快; 3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1); 4、可自动实现过载保护; 5、一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长; 6、很容易实现直线运动; 7、容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程
低速液压马达的基本形式是 径向柱塞式,例如多作用内曲线式、单作 用曲轴连杆式和静压 平衡式等。
低速液压马达的主要特点是:排量大,体积大,转速低,有的可低到每 分钟几转甚至不到一转。通常低速液压马达的输出扭矩较大,可达 几千 到几万 ,所以又称为低速大扭矩液压马达。
第三节 液压缸
一、 液压缸的类型和特点
3、 活塞式液压缸典型结构
液压泵的工作原理及主要结构特点
液压泵的工作原理及主要结构特点液压泵是一种将机械能转化为液压能的装置,能将液体通过其中一种装置增压,并使其在管道中传递的装置。
液压泵的工作原理是通过驱动装置(通常是电动机)提供的机械能,使液体在泵内产生压力,并通过出口管道将液体压送到需要的地方。
液压泵的主要结构特点如下:1.泵体:液压泵的外部壳体,通常由铸铁或钢铸造而成,有很好的耐压性和密封性,能够保护内部的机械部件免受外界环境的影响。
2.轴承:液压泵内部的轴承承受泵的转动载荷,能够保证泵的转子在高速运动时的稳定性和可靠性。
3.转子:转子是液压泵的核心部件,由泵轴和叶片组成。
当转子旋转时,液体通过叶片的作用将机械能转化为液压能。
4.密封装置:密封装置用于保证液压泵内部的压力不会泄漏,通常包括密封圈、密封垫等。
密封装置的性能直接影响液压泵的效率和工作可靠性。
5.进口和出口:液压泵的进口和出口用于输送液体,进口处吸入液体,出口处将液体压送到需要的地方。
进口和出口通常配有阀门和连接管道,以控制液体的流动方向和流量。
液压泵的工作原理是将液体从低压区域通过泵吸入,经过压力区域的驱动下,将液体加压后从高压区域排出。
具体来说,液体从进口进入液压泵,经过泵体中的叶片和转子的旋转,产生离心力,并逐渐加压。
当液体的压力大于系统中的压力时,液体将从出口排出,并通过管道传递到需要的地方。
总的来说,液压泵通过驱动装置提供的机械能,将液体压力增加后输送到需要的地方。
液压泵的主要结构特点包括泵体、轴承、转子、密封装置和进口出口等。
液压泵的工作原理可以分为容积式泵和动量式泵两类,通过增加液体的压力来实现泵的工作。
3第三章 液压泵
泵的输出功率可由下式求得 N出 P Q 63 105 53 103 / 60 5565W 总效率为输出功率与输入功率之比 N出 5565 0.795 N 入 7000 机械效率 m
0.795 0.840 v 0.946
maojian@
2 2
R,r 定子圆弧部分的长短半径;
叶片倾角;
s 叶片厚度; z 叶片数。
maojian@
§3-4 柱塞泵
一、径向柱塞泵的工作原理和流量计算
图3—22 径向柱塞泵的工作原理 1—柱塞 2—缸体 3—衬套 4—定子 5—配油轴
maojian@
径向柱塞泵的排量和流量计算:
二、内啮合齿轮泵
内啮合齿轮泵优点: 1.结构紧凑,体积小; 2.零件少,转速可高达10000r/mim; 3.运动平稳,噪声低; 4.容积效率较高。 内啮合齿轮泵缺点: 1.转子的制造工艺复杂。
maojian@
汽车自动变速器的内啮合齿轮泵
maojian@
§3-3 叶片泵
5 6
2)电机驱动功率 P输入 P输出 / 45.9 / 0.9 51kW
maojian@
三、液压泵的类型
1.液压泵类型
柱塞式 轴向柱塞式 径向柱塞式 单作用叶片式 双作用叶片式 外啮合式 内啮合式
maojian@
液 压 泵
叶片式
齿轮式
maojian@
例2:某液压泵输出压力为200×105Pa,转速 n=1450r/min,排量为100 ml/r,该泵的容积效 率为0.95、总效率为0.9,试求这时泵的输出功 率和电动机的驱动功率。
解:1)泵的输出功率: P输出 pq实际 p V nv 200 10 100 10 1450 0.95 45916W 60 45.9kW
液压泵
二、液压泵的主要性能参数
• • • • •
m /r V 1. 排量 2. 流量 1)理论流量 qt Vn 2)实际流量 q qt ql 3)额定流量
3
液压泵在额定转速、额定压力下,按实验标准规定必须保证的流量。 按实验标准规定,液压泵能够实现连续运转的最高压力称为液 压泵的额定压力
二、液压泵的主要性能参数
V 6.66m zB
2
q 6.66m zBnV
2
2.外啮合齿轮泵的流量计算
q 6.66m zBnV
2
m z mz m
2
mz 不变,减少齿数,
增大模数,可以在不增大 泵体积的前提下提高泵的 输出流量
3.流量脉动率
qmax qmin q
外啮合齿轮泵齿数越少,流量脉 动率就越大,其最大值可达20% 以上。
二、单作用叶片泵
1. 结构: 转子、定子、叶片、配油盘、壳体、端盖等。
特点: ●定子和转子偏心; ●定子内曲线是圆; ●配油盘有二个月牙形 窗口。 ●叶片靠离心力伸出。
2. 工作原理
单作用叶片泵
• 密封工作腔(转子、定子、叶片、配油盘组成) • 吸油过程:叶片伸出→V ↑ → p ↓ →吸油; • 排油过程:叶片缩回→V ↓ → p ↑ →排油。 • 旋转一周,完成一次吸油,一次排油——单作用泵 • 径向力不平衡——非平衡式叶片泵 (一个吸油区,一个排油区)
一种抽吸设备,水平管出口通大气,当水平管内液 体流量达到某一数值时,垂直管子将从液箱内抽吸 液体。液箱表面与大气相通,水平管内液体和被抽 吸液体相同。若不计液体流动时的能量损失,问水 平管内流量达到多大时才能开始抽吸。
10
9 8
7 6 5 4
第三章 液压泵与液压马达
(三)液压泵排量和流量
1.排量Vp (m3/r) 是指在不考虑泄漏的情况下,液压泵主轴每转一 周所排出的液体体积。 2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的 液体体积。 qt =Vn 3.实际流量qp 指液压泵工作时的输出流量。 qp= qt - △ q 4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(动画) 2、工作原理:
旋转一周,完成二次吸油,二次排油——双作用泵
径向力平衡——平衡式叶片泵(两个吸油区,两个排油区)
3、 流量计算
忽略叶片厚度:
V=2π(R2-r2)B q=Vnηv = 2π(R2-r2)Bn ηv
如考虑叶片厚度: V=2π(R2-r2)B -2BbZ(R-r)/cosθ q=Vnηv = 2π(R2-r2)Bn ηv -2BbZ(R-r)/cosθ nηv
2、液压泵进口压力 p 0 0MPa , 出口压力 pp 32MPa , 实际输出流量q 250 L min,泵输入转矩 T pi 1350N m , 输入转速 n 1000r min ,容积效率 0.96 。试求: (1)泵的输入功率 P i ,(2)泵的输出功率 P o ,(3) 泵的总效率 ,(4) 泵的机械效率 m
第三章 液压泵与液压马达
液压泵--动力元件: 将驱动电机的机械能转换成液体的压力能, 供液压系统使用,它是液压系统的能源。
3-1概
液压泵的工作原理
液压泵的工作原理
液压泵是一种通过液压传递能量来驱动的机械设备,主要用于将液压油转化为机械能。
它的工作原理可以简述为下面几个步骤:
1. 启动阶段:当液压泵启动时,驱动装置(通常是一个电动机)开始转动。
油泵内的输入轴与驱动装置相连,因此随着驱动装置的转动,输入轴也开始旋转。
2. 吸入阶段:通过旋转输入轴,液压泵会在吸入腔中产生负压。
同时,随着输入轴的旋转,液压泵的吸入口会被打开,液压油从液压油箱中进入吸入腔。
当负压力超过液压油箱中的压力时,液压油会被抽入液压泵的吸入腔中。
3. 排出阶段:当液压油进入吸入腔后,旋转输入轴会使液压油被压缩。
随后,液压泵的排出口打开,压缩的液压油被排出液压泵。
通过这个过程,液压油的能量被传递给液压系统的其他部件。
总之,液压泵的工作过程主要包括启动阶段、吸入阶段和排出阶段。
通过驱动装置的转动,液压泵能够将液压油抽入并压缩,将液压能转化为机械能,从而实现液压系统的正常运行。
第三章液压泵
第3章液压泵内容提要本章主要介绍液压动力元件的几种典型液压泵(齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、基本结构、性能特点及应用范围等)。
基本要求、重点和难点基本要求:掌握齿轮泵、叶片泵、柱塞泵的工作原理、性能参数、结构特点。
了解各类泵的典型结构及应用范围。
重点:通过本章学习,要求掌握液压泵的工作原理、功能、性能参数(压力和流量等)、性能特点及应用范围。
难点: ①密闭容积的确定(特别是齿轮泵)。
②容积效率的概念。
③额定压力和实际压力的概念。
④外反馈限压式变量叶片泵的特性。
⑤柱塞泵的变量机构。
3.1液压泵基本概述液压泵作为液压系统的动力元件,将原动机(电动机、柴油机等)输入的机械能(转矩T 和角速度ω)转换为压力能(压力p 和流量q )输出,为执行元件提供压力油。
液压泵.的性能好坏直接影响到液压系统的工作性能和可靠性,在液压传动中占有极其重要的地位。
3.1.1液压泵的工作原理如图3-1所示,单柱塞泵由偏心轮1、柱塞2、弹簧3、缸体4和单向阀5、6等组成,柱塞与缸体孔之间形成密闭容积。
当原动机带动偏心轮顺时针方向旋转时,柱塞在弹簧力的作用下向下运动,柱塞与缸体孔组成的密闭容积增大,形成真空,油箱中的油液在大气压力的作用下经单向阀5进入其内(单向阀6关闭)。
这一过程称为吸油,当偏心轮的几何中心转到最下点O 1/时,容积增大到极限位置,吸油终止。
吸油过程完成后,偏心轮继续旋转,柱塞随偏心轮向上运动,柱塞与缸体孔组成的密闭容积减小,油液受挤压经单向阀6排出(单向阀5关闭),这一过程称为排油,当偏心轮的几何中心转到最上点O 1//时,容积减小至极限位置,排油终止。
偏心轮连续旋转,柱塞上下往复运动,泵在半个周期内吸油、半个周期内排油,在一个周期内吸排油各一次。
图3-1 单柱塞泵工作原理 1-偏心轮 2-柱塞 3-弹簧 4-缸体 5、6-单向阀 7-油箱如果记柱塞直径为d ,偏心轮偏心距为e ,则柱塞向上最大行程e s 2=,排出的油液体积2422e d s d V ππ==。
第三章 液压泵
第一节 概 述
2.分类
➢ 按结构将液压泵分为:
➢齿轮泵 ➢外啮合齿轮泵 ➢内啮合齿轮泵
➢叶片泵 ➢单作用叶片泵
➢双作用叶片泵 ➢柱塞泵
➢径向柱塞泵 ➢轴向柱塞泵
➢ 按排量能否改变可分为: ➢定量泵 ➢变量泵
➢ 根据其排量和排液方向能否改变 又可分为: ➢单向定量泵 ➢双向定量泵 ➢单向变量泵 ➢双向变量泵
➢排量取决于泵的结构参数,而与其工况无关,它是衡量和比较不同泵的供液能 力的统一标准,是液压泵的一个特征参数。
➢ 流量——是指泵在单位时间内排除液体的体积,以Q表示,单位L/min。
➢流量有理论流量、实际流量和额定流量三种。
➢ 理论流量——是指不考虑泄漏的理想情况下泵在单位时间(常指每分钟)内
排出的液体的体积,以Ql表示。
– 在渐开线齿形内啮合齿轮泵中,小齿轮和内齿轮之间要装一块月牙形隔板,以便把吸油腔 和压油腔隔开,见图3-10a所示。
– 摆线齿形内啮合齿轮泵又称摆线转子泵,在这种泵中,小齿轮和内齿轮只相差一齿,因而 不需设置隔板,见图3-10b所示。
量或称空在排量)。
➢对于性能正常的液压泵,其容积效率大小随泵的结构类型不同而异。如
齿轮泵为0.7~0.9,叶片泵为0.8~0.95,柱塞泵为0.9~0.95。
第一节 概 述
2. 机械效率ηj
机械效率是表征泵摩擦损失的性能参数,它等于泵的理论输出功率与
输入功率之比。
Pl
j
Pd
3. 总效率η
总效率是表征泵总功率损失的性能参数,它等于泵的实际输出功率与
➢ 内泄漏——是指泵的排液腔向吸液腔的泄漏; ➢ 外泄漏——是指从泵的吸排液腔向其他自由空间的泄漏。 ➢ 泄漏量的大小取决于运动副的间隙、工作压力和液体黏度等因素,而与泵的运动速度关 系不大。 ➢ 当泵的结构和采用的液体粘度一定时,泄漏量将随工作压力的提高而增大,即压力
液压泵的工作原理及主要性能参数
液压泵的工作原理及主要性能参数
总效率 液压泵特性曲线
pi po
pqtv Tim
vm
液压泵在低压时,机械摩擦损 失在总损失中所占的比重较大, 其机械效率很低。随着工作压 力的提高,机械效率很快提高。 在达到某一值后,机械效率大 致保持不变,从而表现出总效 率曲线几乎和容积效率曲线平 行下降的变化规律。
液压传动与气动技术
液压泵的工作原理及主要性能参数
容积式液压泵工作原理
液压泵是靠密封工作腔的容积变化来 工作的。
➢ 它具有一定的密封容积,而且其密 封容积是变化的,同时还要有吸压 油部分。
➢ 液压泵输出油液流量的大小,由密 封工作腔的容积变化量和单位时间 内的变化次数决定。
➢ 因此这类液压泵又称为容积式泵。
➢ 柱塞泵(轴向和径向)
液压泵的工作原理及主要性能参数
性能参数 压力 ➢ 工作压力:指泵的输出压力,其数值决定于外负载。 – 如果负载是串联的,泵的工作压力是这些负载压力之和; – 如果负责是并联的,则泵的工作压力决定于并联负载中的 最小负载压力; ➢ 额定压力:是指根据实验结果而推荐的可连续使用的最高压力 – 反映泵的能力(一般为泵铭牌上所标的压力) – 在额定压力下运行时,泵有足够的流量输出,较高效率 ➢ 最高压力:泵的极限压力,不允许长期在最高压力下运行
液压传动与气动技术
容积式液压泵结构简图 1-偏心轮;2-柱塞;3-缸体; 4-弹簧;5-吸油阀;6-压油阀
液压泵的工作原理及主要性能参数
容积式液压泵的特点 液压泵容积式泵必定有一个或若干个周期变化的密封容积。密封容积变小使油液被挤出, 密封容积变大时形成一定真空度,油液通过吸油管被吸入。密封容积的变换量以及变化频 率决定泵的流量。 合适的配流装置。不同形式泵的配流装置虽然结构形式不同,但所起作用相同,并且在容 积式泵中是必不可少的。 容积式泵排油的压力决定于排油管道中油液所受到的负载。
液压泵工作原理
液压泵工作原理液压泵是一种将机械能转化为液压能的装置,广泛应用于工程机械、农业机械、船舶等领域。
它的工作原理主要是利用机械设备提供的动力,驱动液体产生压力,从而实现液体的输送和传动。
下面将详细介绍液压泵的工作原理。
1. 基本结构液压泵的基本结构包括液压泵本体、传动装置和控制装置。
液压泵本体是液压泵的核心部件,它由泵壳、叶轮、泵轴等组成。
传动装置通常由电动机、内燃机或其他动力装置组成,用于驱动液压泵工作。
控制装置用于控制液压泵的启停和调节工作参数。
2. 工作原理液压泵的工作原理主要是利用叶轮的旋转运动产生离心力,使液体产生压力,从而实现液体的输送和传动。
具体工作原理如下:(1)启动液压泵时,传动装置提供动力,使液压泵本体内的叶轮开始旋转。
(2)液体被吸入泵壳内,随着叶轮的旋转运动,液体被迫向叶轮中心移动,产生离心力。
(3)离心力使液体产生压力,从而被压缩,并沿着叶轮的流道被排出。
(4)排出的液体被输送到液压系统中的执行元件(如液压缸、液压马达等),实现对执行元件的控制和驱动。
3. 工作特点液压泵具有以下工作特点:(1)输送稳定:液压泵通过叶轮的旋转运动,可稳定地将液体输送到液压系统中,保证系统的正常工作。
(2)压力可调:液压泵的压力可以通过调节传动装置的转速和控制装置的参数来实现调节,从而满足不同工况下的液压系统需求。
(3)结构简单:液压泵的结构相对简单,易于制造和维护,具有较高的可靠性和使用寿命。
4. 应用领域液压泵广泛应用于各种工程机械、农业机械、船舶等领域,如挖掘机、推土机、拖拉机、船舶传动系统等。
它在这些领域中扮演着重要的角色,为机械设备的正常工作提供了稳定的动力支持。
总之,液压泵是一种将机械能转化为液压能的装置,其工作原理主要是利用叶轮的旋转运动产生离心力,使液体产生压力,从而实现液体的输送和传动。
它具有输送稳定、压力可调和结构简单等特点,广泛应用于工程机械、农业机械、船舶等领域。
液压泵结构与工作原理
结构 参数。为了减小脉动的影响,除了在造型上考虑外,必要时可以在系统中设置 蓄能器和液压滤波器 (5)液压泵的工作腔靠容积的变化来吸、排油,所以就会在过度密封区存在容积
剧烈变化时压力急剧升高或降低的“困油现象”从而影响效率,产生压力脉动,噪
类型 输出压力
外啮合轮泵 低压
双作用叶片泵 中压
径向柱塞泵 高压
吸入和排出
– 图示方向回转时,齿C退出啮合,其齿间V增大,P降低,液体在
吸入液面P作用下,经吸入口流入 – 随着齿轮回转,吸满液体的齿间转过吸入腔,沿壳壁转到排出腔 – 当重新进入啮合时,齿间的液体即被轮齿挤出
结构特点
– 泵如果反转,吸排方向相反 – 由于啮合紧密,齿顶和端面间隙都小,液体不会大量漏回吸入腔 – 磨擦面较多,只用来排送有润滑性的油液。
液压泵职能符号(国家及ISO标准)
特 性分类 单向定量 双向定 量 单向变 量 双向变 量
液压泵
图3-34
(一)液压泵
1、压力 p (工作压力、额定压力、最 大压力) 2、排量 q、流量 Q 3、液压泵的功率W和效率 4、转速 n 5、自吸能力
流量公式
Q QtV Qt nq
恒功率变量机构
1-限位螺钉 2-弹簧调节螺钉 3-弹簧盘推杆 4-外弹簧 5-内弹簧 6-伺服阀芯 7-变量活塞 8-拨销 9-变量头壳体 10-斜盘
恒 流 量 变 量 机 构
三、总功率变量泵
(a)机械联系的符号
(b)液压联系的符号
图3-23
总功率变量泵的液压符号
径向泵的工作原理
液压泵的工作特点
双作用叶片泵的几个主要问题
定子内表面曲线 叶片倾角 困油问题
第三章:液压泵和液压马达(含习题答案)
第三章液压泵和液压马达第一节液压泵第二节齿轮泵第三节叶片泵第四节柱塞泵第五节液压马达第六节液压泵和液压马达的选用重点:液压泵和液压马达的工作原理、效率功率计算难点:结构教学目的:理解原理,熟悉结构在液压系统中,液压泵和液压马达都是能量转换装置。
液压泵:把驱动电动机的机械能转换成液压系统中油液的压力能,供系统使用;液压马达:把输来的油液的压力能转换成机械能,使工作部件克服负载而对外做功。
工作原理上,大部分液压泵和液压马达是可逆的。
一、液压泵的工作原理二、液压泵的性能参数三、液压泵的分类一、液压泵的工作原理容积式液压泵:靠密封工作腔的容积变化进行工作,其输出流量的大小由密封工作容积变化的大小来决定。
i P T ω=o V P pq =η=ηV按结构形式分为:齿轮式、叶片式、柱塞式三大类。
按输出(输入)流量分为:定量液压泵和变量液压泵。
第一节液压泵三、液压泵的分类a)单向定量液压泵b)双向定量液压泵c)单向变量液压泵d) 双向变量液压泵液压泵的图形符号作业:3-2齿轮泵优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸能力强、对油液污染不灵敏、维修方便及工作可靠,因此在汽车上得到了广泛的应用。
齿轮泵缺点:泄漏较大,流量脉动大,噪声较高,径向不平衡力大,所能达到的额定压力不够高,目前其最高工作压力30MPa 。
第二节齿轮泵齿轮泵按结构形式分为:①外啮合齿轮泵②内啮合齿轮泵泵的泵体内装有一对相同的外啮合齿轮,齿轮两侧靠端盖密封。
泵体、端盖和齿轮的各个齿间一、外啮合齿轮泵1. 外啮合齿轮泵工作原理第二节齿轮泵槽组成了许多密封的工作腔。
b zm Dhb V 22ππ==排量:b zm V 266.6=排量修正:排量近似计算:假设齿间的工作容积与轮齿的有效体积相等,则齿轮每转排量等于主动齿轮的所有齿间容积及其所有轮齿的有效体积之和(1)困油现象:齿轮泵要平稳而连续地工作,齿轮啮合的重合度系数必须大于1,因此总有两对轮齿同时啮合,并有一部分油液被围困在两对轮齿所形成的封闭容积之间,困油容积由大变小,再由小变大,使油压变化,产生振动和噪声。
液压泵的工作原理、特点及参数
液压泵的工作原理、特点及参数一、液压泵的工作原理及特点1。
液压泵的工作原理图3—1 液压泵工作原理图液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图3-1所示的是一单柱塞液压泵的工作原理图,图中柱塞2装在缸体3中形成一个密封容积a,柱塞在弹簧4的作用下始终压紧在偏心轮1上。
原动机驱动偏心轮1旋转使柱塞2作往复运动,使密封容积a的大小发生周期性的交替变化.当a有小变大时就形成部分真空,使油箱中油液在大气压作用下,经吸油管顶开单向阀6进入油箱a而实现吸油;反之,当a由大变小时,a腔中吸满的油液将顶开单向阀5流入系统而实现压油.这样液压泵就将原动机输入的机械能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。
单柱塞液压泵具有一切容积式液压泵的基本特点:(1)具有若干个密封且又可以周期性变化空间.液压泵输出流量与此空间的容积变化量和单位时间内的变化次数成正比,与其他因素无关。
这是容积式液压泵的一个重要特性。
(2)油箱内液体的绝对压力必须恒等于或大于大气压力。
这是容积式液压泵能够吸入油液的外部条件.因此,为保证液压泵正常吸油,油箱必须与大气相通,或采用密闭的充压油箱。
(3)具有相应的配流机构,将吸油腔和排液腔隔开,保证液压泵有规律地、连续地吸、排液体。
液压泵的结构原理不同,其配油机构也不相同。
如图3-1中的单向阀5、6就是配油机构.容积式液压泵中的油腔处于吸油时称为压油腔。
吸油腔的压力决定于吸油高度和吸油管路的阻力吸油高度过高或吸油管路阻力太大,会使吸油腔真空度过高而影响液压泵的自吸能力,压油腔的压力则取决于外负载和排油管路的压力损失,从理论上讲排油压力与液压泵的流量无关.容积式液压泵排油的理论流量取决于液压泵的有关几何尺寸和转速,而与排油压力无关。
但排油压力会影响泵的内泄露和油液的压缩量,从而影响泵的实际输出流量,所以液压泵的实际输出流量随排油压力的升高而降低。
液压机的工作原理反特点
任务一 液压机的工作原理反特点
(4)校正压装液压机。 (5)层压液压机。 (6)挤压液压机。 (7)压制液压机。 (8)打包、压块液压机。 (9)各种专用液压机。 (10)手动液压机。
上一页 下一页 返回
任务一 液压机的工作原理反特点
(三)知识准备
液压机是一种以液体为工作介质,用来传递能量以实现各种 工艺的机器。液压机是成型生产中应用最广的设备之一,自 19世纪问世以来发展很快,已力工业生产中必不可少的设备 之一。液压机被广泛应用于机械工业的许多领域,如在锻压 (塑料加工)领域中,液压机被广泛用于自由锻造、模锻、冲 压(木成型)、挤压、剪切、拉拔成型及塑性成型等成型工艺 中;而在机械工业的李领域,液压机更被应用于粉末制品、 塑料制品、磨料制品、金刚石成型、校工装、打包、压砖、 橡胶注塑成型、海绵钦加工、人造板热压,乃至炸药模压介 分广泛的不同工业领域。
(5)液压机结构简单,能够适应多品种生产。 (6)工作平稳,撞击、振动和噪声较小,对工人健康、厂房
基础、周围环境及设备本身都有很大好处。 (7)操作方便,便于制造,标准化、系列化、通用化程度高。
上一页 下一页 返回
任务一 液压机的工作原理反特点
但液压机也存在着以下缺点: (1)液压机在快速性方面不如机械压力机。这是由于工作缸内
压机。 (4)校正压装液压机。用于零件校形及装配。 (5)层压液压机。用于胶合板、刨花板、玻璃纤维增强材料等
的压制。
上一页 下一页 返回
任务一 液压机的工作原理反特点
(6)挤压液压机。用于挤压各种金属线材、管材棒材、型材及 工件的拉伸、穿孔等工艺。
上一页 下一页 返回
任务一 液压机的工作原理反特点
1.液压机的工作原理
液压泵概述
q=qt-ql
由于泄漏量q 随着压力p的增大而增大 所以实际流量q随 的增大而增大, 由于泄漏量 l随着压力 的增大而增大,所以实际流量 随 着压力p的增大而减小 的增大而减小。 着压力 的增大而减小。 额定流量q ⑷额定流量 n(mL/min) ) 它用来评价液压泵的供油能力,液压泵技术规格指标之一。 它用来评价液压泵的供油能力,液压泵技术规格指标之一。
9
工 学 院
液压泵的输入功率、理论功率和输出功率之间的关系 液压泵的输入功率、
输入 机械 功率 Pi
ηm
理论 机械 功率 Ptm η
理论 液压 功率工 学 院
10
液压泵的特性曲线
目前对一定型号的液压泵, 目前对一定型号的液压泵,仍用试验测出的效率曲线 来评价泵的性能质量,确定泵的合理使用范围。 来评价泵的性能质量,确定泵的合理使用范围。试验 测出的效率曲线称为特性曲线 特性曲线。 测出的效率曲线称为特性曲线。 通常所提供的特性曲线主要是负载特性曲线和转速特 通常所提供的特性曲线主要是负载特性曲线和 负载特性曲线 性曲线。 性曲线。 负载特性曲线是指在一定转速(通常是额定转速) 负载特性曲线是指在一定转速(通常是额定转速)下, 是指在一定转速 工 容积效率和总效率泵随工作压力而变化的曲线。 容积效率和总效率泵随工作压力而变化的曲线。 转速特性曲线是指在一定压力(通常是额定压力) 学 转速特性曲线是指在一定压力(通常是额定压力)下, 是指在一定压力 容积效率随转速而变化的曲线。 容积效率随转速而变化的曲线。 院
的实际输出流量随排油压力的升高而降低。 的实际输出流量随排油压力的升高而降低。
工 容积式液压泵排油的理论流量取决于液压泵的有关几何尺寸 和转速,而与排油压力无关。 和转速,而与排油压力无关。但排油压力要影响泵的内泄漏学 和油液的压缩量,从而影响泵的实际输出流量,所以液压泵 和油液的压缩量,从而影响泵的实际输出流量,所以液压泵 院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压泵的工作原理及主要结构特点
心力和压力油的作用下,尖部紧贴在定子内表面上。
这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油后再由大到小排油,叶片旋转一周时,完成两次吸油和两次排油片间容积变化,完成泵的作用。
在轴对称位置上布置有两组吸油口和排油口径向载荷小,噪声较低流量脉动小
?柱塞泵由缸体与柱塞构成,柱塞在缸体内作往复运动,在工作容积增大时吸油,工作容积减小时排油。
采用端面配油?径向载荷由缸体外周的大轴承所平衡,以限制缸体的倾斜利用配流盘配流传动轴只传递转矩、轴径较小。
由于存在缸体的倾斜力矩,制造精度要求较高,否则易损坏配流盘
? 一根主动螺杆与两根从
动螺杆相互啮合,三根螺杆的啮合线把螺旋槽分割成若干个密封容积。
当螺杆旋转时,这个密封容积?利用螺杆槽内容积的移动,产生泵的作用不能变量无流量脉动径向载荷较双螺杆式小、尺寸大,质量大
沿轴向移动而实现吸油和
排油
液压泵工作原理及叶片泵
支红俊
授课时间:2学时
授课方法:启发式教学
授课对象:职高学生
重点、难点:泵和叶片泵的工作原理、叶片泵的符号
液压泵
引入:
问:人与液压传动有无紧密的联系。
学生活动
归纳:24小时伴随人的活动。
人的心血管系统是精致的液压传动系统。
问:血液为什么能周而复始、川流不息地在全身流动?学
生活动
二尖瓣归纳:依靠人的心脏。
问:心脏是如何工作的?学生活动
归纳:如图所示:全靠心脏节律性的搏动,通过舒张和收缩来推动血液流动。
当心脏舒张时左边的二尖瓣打幵,右边的二尖瓣关闭,产生吸血
当心脏收缩时,左边的二尖瓣关闭,右边的二尖瓣打幵,产生压血。
问:心脏工作的必备条件有哪些
归纳:三条:1、内腔是一密闭容积;2、密闭容积能交替变化;3、有配血器官(二尖瓣)。
一、液压泵的工作原理
如图所示:
介绍结构及组成。
提问:找出液压泵与心脏工作
原理的共同点。
学生活动
归纳:1、柱塞与缸形成密封容积;
2 、当偏心轮旋转时,密闭容积可以交替变化;
3、单向阀起到配流作用。
提问:有什么不同点。
学生活动
归纳:当密封容积增大时,产生部分真空,在大气压的作用
F产生吸油。
举例说明:如图所示:
将鸡蛋放到与其大小差不多杯口上,鸡蛋
放不进去,若将燃烧的纸先放到水杯里,接着
将鸡蛋放到瓶口上,鸡蛋在大气压的作用下迅速进入水杯
里。
水杯问:液压泵的工作的条件有哪些。
学生活动
归纳:1、应具备密封容积且交替变化。
2 、应有配油装置。
3 、吸油过程中油箱必须与大气相通
一、叶片泵
可分为:单作用和双作用叶片泵。
1、单作用叶片泵
(1)结构和工作原理。
结构:如彩色立体挂图所示及教具演示。
分析:各零件的相
互关系。
提问:找出密封容积,配油装置。
分析:由定子、转子、叶片和配油盘等构成密封容积。
工作原理:如自画挂图所示。
转子叶片
问:通过什么使密封容积变化产生
盘
吸油和压油的。
能否实现变量。
学生活动
演示并分析:通过两个叶片之间密封
容积的增大和减小,产生吸
压油窗通过定子和转子偏心距的增大和减小来实现变量。
当偏心距越大,两个叶片之间从下转到上时,
因容积差大,所以吸油量大;反之。
问:当偏心距在定子轴线上方时,会出现什么现象。
学生活动归纳:吸油口和压油口的位置发生改变。
为双向变量泵。
符号:如图所示:
(2)限压式变量泵
如图所示 组成:弹簧、定子、柱塞、转子等。
工作原理:利用柱塞与弹簧相平衡原理。
通过负载反馈的液体压力控制柱塞克服弹簧力,使定子相对 与转子的偏心距的减小,从而控制泵的输出流
定子与转子的偏心距大,泵输出的流量大,活塞的运动速 度快;但接触工件时,阻力增大,反馈压力大,定子与转 子的偏心距减小,泵输出的流量小,活塞的运动速度减慢
提问:由几名学生归纳总结。
学生活动
小结:1、叶片泵是通过两叶片之间密封容积的增大和减小, 产生吸油和压油的。
转子转一转时,两叶片间产生一次吸油和压油。
2 、叶片泵的偏心距大、吸油量大、压油量也大。
反之。
叶片泵双向变量泵 典型液压泵的工
作原理及主要结构特点
表3典型液压泵的工作原理及主要结构特点 类型 结构、原理示意图 工作原理 结构特点 外啮合齿轮泵 当齿轮旋转时,在A 腔,由于轮齿脱幵使容积逐渐增大,形成真 空从油箱吸
油,随着齿轮的旋转充满在齿槽内的油被带到 B 腔,在 B 腔,由于 轮齿啮合, 容积逐渐减小, 把液压油排出 利用齿和泵壳形成的封闭容积的变化, 完成泵的功能,不需要配流装置,不能变量
结构最简单、价格低、径向载荷大
内啮合齿轮泵 当传动轴带动外齿轮旋转时,与此相啮合的内齿轮也随着旋转。
吸油腔由于轮齿
量的减小。
反之。
应用:如图所示
「配流盘
弹簧 配流盘
幅
F
工件
柱塞
P
(刀具)在非工作行程时,负载小, 反馈压力小
脱开而吸油,经隔板后,油液进入压油腔,压油腔由于轮齿啮合而排油典型的内啮合齿轮泵主要有内齿轮、外齿轮及隔板等组成利用齿和齿圈形成的容积变化,完成泵的功能。
在轴对称位置上布置有吸、排油口。
不能变量
尺寸比外啮合式略小,价格比外啮合式略高,径向载荷大
叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。
这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油后再由大到小排油,叶片旋转一周时,完成两次吸油和两次排油利用插入转子槽内的叶片间容积变化,完成泵的作用。
在轴对称位置上布置有两组吸油口和排油口
径向载荷小,噪声较低流量脉动小
柱塞泵柱塞泵由缸体与柱塞构成,柱塞在缸体内作往复运动,在工作容积增大时吸油,工作容积减小时排油。
采用端面配油径向载荷由缸体外周的大轴承所平衡,以限制缸体的倾斜
利用配流盘配流
传动轴只传递转矩、轴径较小。
由于存在缸体的倾斜力矩,制造精度要求较高,否则易损坏配流盘螺杆泵一根主动螺杆与两根从动螺杆相互啮合,三根螺杆的啮合线把螺旋槽分割成若干个密封容积。
当螺杆旋转时,这个密封容积沿轴向移动而实现吸油和排油利用螺杆槽内容积的移动,产生泵的作用。
不能变量
无流量脉动
径向载荷较双螺杆式小、尺寸大,质量大
(1 )齿轮泵(外啮合齿轮泵和内啮合齿轮泵)(2 )叶片泵(单作用叶片泵和
双作用叶片泵)(3)柱塞泵(轴向柱塞泵和径向柱塞泵)。