总复习教案:函数的单调性与最值(学生版)

合集下载

单调性与最大(小)值(第二课时)教案

单调性与最大(小)值(第二课时)教案

1.3 函数的基本性质1.3.1 单调性与最大(小)值(第二课时)一、教材分析:二、学习目标:①通过实例,使学生体会、理解函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识;②能够用函数的性质解决日常生活中简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.三、教学重点:理解函数的最大(小)值的概念及其几何意义.四、教学难点:了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.五、课时安排:1课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m2的矩形新厂址,新厂址的长为x m,则宽为m,所建围墙y m,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?2、自主探索,尝试解决老师给出学生们一些问题让学生思考,并对学生的回答进行点评,然后一起总结得出结论.层层引入,完成本节课学习的主题.问题1:作出函数y=-x2-2x,y=-2x+1(x∈[-1,+∞)),y=f(x)的图象如图所示.观察这三个图象的共同特征.函数y=-x2-2x图象有最高点A,函数y=-2x+1,x∈[-1,+∞)图象有最高点B,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.问题2:你是怎样理解函数y=f(x)的图象的?函数图象是点的集合,是函数y=f(x)的一种表示形式,其上每一点的坐标(x,y)的意义是:自变量x的取值为横坐标,相应的函数值y为纵坐标.图象从“形”的角度描述了函数的变化规律.问题3:你是怎样理解函数图象最高点的?图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.问题4:问题1中,在所作函数y=f(x)的图象上任取一点A,设图像最高点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象的最高点C?由于点C是函数y=f(x)图象的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.3、信息交流,揭示规律问题5:在数学中,形如问题1中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?函数最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.问题6:函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.问题7:函数最大值的几何意义是什么?函数图象上最高点的纵坐标,体现了数形结合思想的应用.问题8:函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.问题9:点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?不是,因为该函数的定义域中没有-1.问题10:由这个问题你发现了什么值得注意的地方?讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.问题11:类比函数的最大值,请大家思考一下给出函数最小值的定义及其几何意义.函数最小值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.函数最小值的几何意义:函数图象上最低点的纵坐标.问题12:类比问题10,你认为讨论函数最小值应注意什么?讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.(二)、合作学习 让学生合作做练习,教师巡视指导然后讲解例题. 【例1】“菊花”烟花是最壮观的烟花之一. 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度h m 与时间t s 之间的关系为h (t ) = – 4.9t 2 + 14.7t + 18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m )?解:作出函数h (t ) = – 4.9t 2 + 14.7t + 18的图象(如图). 显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t ) = – 4.9t 2 + 14.7t +18,我们有:当t =14.72( 4.9)-⨯-=1.5时,函数有最大值h =24( 4.9)1814.74( 4.9)⨯-⨯-⨯-≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29m.【例2】已知函数y =21x -(x [2,6]),求函数的最大值和最小值.分析:由函数y =21x -(x [2,6])的图象可知,函数y =21x -在区间[2,6])的图象可知,函数y =21x -在区间[2,6]上递减. 所以,函数y =21x -在区间[2,6]的两个端点上分别取得最大值和最小值.解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1) – f (x 2) =122211x x --- =21122[(1)(1)](1)(1)x x x x -----=21122()(1)(1)x x x x ---. 由2≤x 1<x 2≤6,得x 2 –x 1>0,(x 1–1) (x 2–1)>0,于是 f (x 1) – f (x 2)>0,即 f (x 1)>f (x 2).所以,函数y =21x -是区间[2,6]上是减函数. 因此,函数y =21x -在区间[2,6]的两个端点上分别取得最大值与最小值,即在x =2时取得的最大值,最大值是2,在x = 6时的最小值,最小值是0.4(三)、当堂检测1、课本题组题,1,5,3932B p p2、已知函数f (x ) = x 2 – 2x – 3,若x ∈[t ,t +2]时,求函数f (x )的最值.解:∵对称轴x = 1,(1)当1≥t +2即t ≤–1时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (t +2) = t 2 +2t –3.(2)当22t t ++≤1<t +2,即–1<t ≤0时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (1) = – 4.(3)当t ≤1<22t t ++,即0<t ≤1,f (x )max = f (t +2) = t 2 + 2t – 3,3、.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.解:设商品售价定为x 元时,利润为y 元,则y=(x-8)[60-(x-10)·10]=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16).当且仅当x=12时,y 有最大值160元,即售价定为12元时可获最大利润160元.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)请同学们从下列几方面分组讨论:1.最值的概念2.应用图象和单调性求最值的一般步骤.3..函数的最值及几何意义如何?4..你学了哪几种求函数最值的方法?5..求函数最值时,要注意什么原则?七.课外作业课本P39习题1.3 A组第5题,B组第1,2题.八、教学反思:。

函数的单调性与最大(小)值教案doc 【完整版】

函数的单调性与最大(小)值教案doc 【完整版】
教学内容
《ห้องสมุดไป่ตู้调性与最大(小)值》
课前活动
1.函数的最大值、最小值的定义是什么?
2.若函数f(x)在区间[a,b]上单调,且f(x)的图象连续不间断,则函数f(x)的最值必在处取得
课中活动1
二、讲授新课:
1.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征
① ②
2,函数最大(小)值定义
单调性与最大(小)值(2)
课题名称
《单调性与最大(小)值》
课型
新授课
年级
高一年级
教学目标
1、理解函数的最大(小)值及其几何意义.
2、通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标。
3、培养学生数形结合分析问题的能力
教学重点
函数的最大(小)值及其几何意义
教学难点
利用函数的单调性求函数的最大(小)值.
体会二次函数的公式法求最值
例4求函数 在区间[2,6]上的最大值和最小值.
体会利用函数单调性求最值方面的作用。
完成P39B组1
完成《创新设计》P24“课堂达标”中1-5题。
课后活动
四、课后作业P3945
完成《创新设计》P24新知导学1,2,3的自学。
五、教学反思:
最大值:一般地,设函数 的定义域为I,如果存在实数M满足:
(1)对于任意的 ,都有 ;
(2)存在 ,使得 .
那么,称M是函数 的最大值.思考:依照函数最大值的定义,结出函数 的最小值的定义.
3、利用函数单调性来判断函数最大(小)值的方法.
①配方法②换元法③数形结合法
课中活动2
三、例题讲解:
例3的讲解。完成P324

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。

教学内容:(1) 引入函数单调性的概念。

(2) 讲解函数单调增和单调减的定义。

(3) 举例说明函数单调性的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。

(2) 采用提问法,引导学生思考函数单调性的含义和应用。

教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。

(2) 讲解函数单调增和单调减的定义,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。

(4) 总结函数单调性的应用,如解不等式、求最值等。

1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。

教学内容:(1) 讲解函数单调性的传递性。

(2) 讲解函数单调性的同增异减性质。

(3) 举例说明函数单调性性质的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的性质。

(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。

教学步骤:(1) 讲解函数单调性的传递性,举例说明。

(2) 讲解函数单调性的同增异减性质,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。

(4) 总结函数单调性性质的应用,如解不等式、求最值等。

第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。

教学内容:(1) 讲解导数与函数单调性的关系。

(2) 讲解利用导数判断函数单调性的方法。

(3) 举例说明利用导数判断函数单调性的应用。

教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。

(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。

教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。

(2) 讲解利用导数判断函数单调性的方法,举例说明。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。

2. 学会利用单调性判断函数的性质,如极值、最值等。

3. 能够运用单调性解决实际问题,如求函数的极值、最值等。

二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。

2. 单调性的判断方法及应用。

3. 实际问题中的单调性应用。

三、教学重点与难点:1. 函数单调性的概念及判断方法。

2. 单调性在实际问题中的应用。

四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。

2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。

3. 互动教学法:提问、讨论,激发学生的思考。

五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。

2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。

3. 举例:分析具体函数的单调性,让学生学会判断。

4. 练习:布置练习题,让学生巩固单调性的判断方法。

5. 案例分析:分析实际问题,引导学生运用单调性解决问题。

6. 总结:回顾本节课的内容,强调单调性的重要性。

7. 作业布置:布置课后作业,巩固所学内容。

六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。

2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。

3. 案例分析:评估学生在实际问题中运用单调性的能力。

七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。

2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。

八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。

2. 课件:制作课件,辅助教学,提高课堂效果。

3. 练习题:准备练习题,巩固所学内容。

4. 实际问题案例:收集实际问题案例,用于教学实践。

九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。

导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。

函数的单调性 教案

函数的单调性 教案

函数的单调性教案教案标题:函数的单调性教案目标:1. 理解函数的单调性的概念和意义;2. 掌握判断函数单调性的方法和技巧;3. 能够应用函数的单调性解决实际问题。

教案步骤:引入与导入(5分钟):1. 引入函数的概念,复习函数的定义和表示方法;2. 引入函数的单调性的概念,解释函数的单调性与图像的关系。

讲解与示范(15分钟):1. 解释函数的单调性的定义:若对于函数f(x)的定义域内的任意两个实数a和b,若a < b,则有f(a) < f(b)(单调递增)或f(a) > f(b)(单调递减);2. 示范判断函数的单调性的方法:通过函数的导数、函数的图像、函数的表格等方式。

练习与讨论(20分钟):1. 练习判断函数的单调性:给出一些函数的表达式或图像,学生根据定义判断其单调性;2. 学生讨论判断函数单调性的方法和技巧,分享自己的解题思路。

应用与拓展(15分钟):1. 应用函数的单调性解决实际问题:例如利用函数的单调性解决最优化问题、优化生产过程等;2. 拓展函数的单调性概念:介绍函数的严格单调性和非严格单调性,以及函数的局部单调性和整体单调性。

总结与延伸(5分钟):1. 总结函数的单调性的概念和判断方法;2. 引导学生思考函数的单调性在数学和实际问题中的应用。

教案评估:1. 出示几个函数的图像,要求学生判断其单调性;2. 布置作业,要求学生解决一个实际问题,应用函数的单调性进行分析和求解。

教案拓展:1. 引入函数的凹凸性的概念,与函数的单调性进行比较;2. 引入函数的最值概念,与函数的单调性进行联系和探讨。

3.2.1函数的单调性与最值(学生版)

3.2.1函数的单调性与最值(学生版)

3.2.1函数的单调性【知识梳理】1.函数的单调性和单调区间(1)函数的单调性条件一般地,设函数f (x )的定义域为D ,区间I ⊆D :如果∀x 1,x 2∈I ,当x 1<x 2时都有都有结论f (x )在区间I 上单调递增f (x )在区间I 上单调递减图示(2)函数的单调区间如果函数y =f (x )在区间I 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间I 叫做y =f (x )的.温馨提示(1)函数的递增(或递减)是针对定义域D 内的某个区间I 而言的,显然I ⊆D.(2)定义中x 1,x 2有三个特征:①x 1,x 2属于同一个区间;②任意性,x 1与x 2不能用I 上的特殊值代替;③有序性,通常规定x 1<x 2.2.增函数与减函数当函数f (x )在它的定义域上单调递增时,称它是;当函数f (x )在它的定义域上单调递减时,称它是.例1根据定义,研究函数()(0)f x kx b k =+≠的单调性.【变式1】证明函数f(x)=x-1x在(0,+∞)上单调递增.【变式2】求证:函数f(x)=-1x-1在区间(-∞,0)上单调递增.题型一证明或判断函数的单调性【例1】已知函数f(x)=1x2-1.(1)求函数f(x)的定义域;(2)判断函数f(x)在(1,+∞)上的单调性,并加以证明.跟踪练习:根据定义,研究函数f(x)=K1在x∈(-1,1)上的单调性.题型二利用图象确定函数的单调区间【例2】设函数f(x)2+4x+3,-4≤x<0,x+3,x≥0,画出函数f(x)的图象,并指出函数的定义域、值域、单调区间.题型三函数单调性的应用【例3】(1)已知函数f(x)=x2+bx+c的图象的对称轴为直线x=2,试比较f(1),f(2),f(4)的大小.(2)已知f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),求x的取值范围.3.2.2函数的最大(小)值【知识梳理】函数的最大值与最小值.最大值最小值条件一般地,设函数y=f(x)的定义域为D,如果存在实数M满足∀x∈D,都有∀x∈D,都有∃x0∈D,使得结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值几何意义f(x)图象上点的f(x)图象上点的温馨提示(1)最值首先是一个函数值,即存在一个自变量x0,使得f(x0)等于最值. (2)对于定义域内的任意x,都有f(x)≤f(x0)(或f(x)≥f(x0)),“任意”两个字不可省略.例4“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为2() 4.914.718h t t t=-++,那么烟花冲出去后什么时候是它爆裂的最佳时刻?这是距地面的高度是多少(精确到1m)?【变式1】已知函数f(x)x2,0≤x≤2,x>2,求函数f(x)的最大值、最小值.例5已知函数2()1f xx=-([2,6]x∈),求函数的最大值和最小值.【变式2】已知函数f(x)=32x-1.(1)证明:函数f(x)(2)求函数f(x)在[1,5]上的最值.能力提升题型一利用图象求函数最值【例1】已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.题型二:利用单调性求函数的最值【例2】已知函数f(x)=x+16 x .(1)判断函数f(x)在(4,+∞)上的单调性并证明;(2)求函数f(x)在[6,9]上的最值.【练】已知函数f(x)=K1r2,x∈[3,5].(1)判断函数f(x)的单调性,并证明;(2)求函数f(x)的最大值和最小值.题型三求二次函数的最值【例3】已知函数f(x)=3x2-12x+5,当自变量x在下列范围内取值时,求函数的最大值和最小值:(1)R;(2)[0,3];(3)[-1,1].【练】1.已知二次函数f(x)=x2-2x+3.(1)当x∈[-2,3]时,求f(x)的最值.(2)当x∈[t,t+1]时,求f(x)的最小值g(t).2.已知函数f(x)=ax2+2bx+1,x∈[1,3],且a,b为常数.(1)若a=1,求f(x)的最大值;(2)若a>0,b=-1,且f(x)的最小值为-4,求a的值.。

《函数单调性教案》word版

《函数单调性教案》word版

教案名称:《函数单调性教案》课时安排:2课时教学目标:1. 理解函数单调性的概念;2. 学会判断函数的单调性;3. 能够运用函数单调性解决实际问题。

教学内容:第一课时一、导入(10分钟)教师通过生活中的实例引入函数单调性的概念,如商品打折问题,让学生感受函数单调性在实际生活中的应用。

二、新课讲解(30分钟)1. 引导学生回顾一次函数、二次函数的图像特点,分析其单调性;2. 讲解函数单调性的定义,并通过具体例子进行解释;3. 引导学生总结判断函数单调性的方法。

三、案例分析(15分钟)教师给出几个具有代表性的案例,让学生判断其单调性,并解释判断过程。

四、课堂练习(10分钟)学生独立完成练习题,教师巡回指导。

第二课时五、复习导入(10分钟)教师通过复习上节课的内容,引导学生回顾函数单调性的概念及判断方法。

六、深入学习(30分钟)1. 讲解函数单调性的性质,如单调增函数的图像特点;2. 引导学生探讨函数单调性在实际问题中的应用,如最大值、最小值问题。

七、拓展延伸(15分钟)教师给出一些拓展问题,引导学生思考函数单调性在其他数学领域的应用。

八、课堂练习(10分钟)学生独立完成练习题,教师巡回指导。

教学评价:1. 课后作业:检查学生对函数单调性的理解及应用能力;2. 课堂练习:观察学生在课堂练习中的表现,了解其掌握情况;3. 学生反馈:收集学生对教学内容的意见和建议,以便改进教学方法。

教案名称:《函数单调性教案》课时安排:2课时教学目标:1. 理解函数单调性的概念;2. 学会判断函数单调性;3. 能够运用函数单调性解决实际问题。

教学内容:第一课时四、课堂练习(10分钟)1. 学生独立完成练习题,教师巡回指导;2. 选取部分学生的作业进行点评,讲解正确答案和解题思路。

五、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点;2. 学生分享学习心得,提出疑问;3. 教师解答学生疑问,为下一节课的学习做好铺垫。

函数单调性复习教案

函数单调性复习教案

函数单调性复习教案教案标题:函数单调性复习教案教学目标:1. 确定学生对函数单调性的理解程度,并能够准确地定义函数的单调性。

2. 帮助学生回顾和巩固函数单调性的相关概念和性质。

3. 培养学生通过图像、表格和符号等多种方式判断函数的单调性的能力。

4. 提供练习和应用机会,以加深学生对函数单调性的理解和运用。

教学准备:1. 教师准备多媒体投影仪、电脑和投影屏幕。

2. 教师准备白板、白板笔和彩色粉笔。

3. 教师准备教材、教辅资料和练习题。

教学过程:一、导入(5分钟)1. 教师通过提问或展示一个函数图像的方式引入本节课的话题。

2. 引导学生回顾函数的基本概念和性质,例如定义域、值域、图像、奇偶性等。

二、概念复习(10分钟)1. 教师通过多媒体投影仪展示函数单调性的定义和相关概念。

2. 引导学生参与讨论,共同理解函数单调性的含义和特点。

3. 教师通过示例函数的图像和数学表达式,引导学生判断函数的单调性。

三、性质讲解(15分钟)1. 教师通过多媒体投影仪展示函数单调性的性质和判断方法。

2. 引导学生思考和讨论函数单调性与导数的关系,进一步理解函数单调性的特点。

3. 教师通过具体的例子和练习题,帮助学生掌握函数单调性的判断方法。

四、练习与应用(20分钟)1. 教师提供一些练习题,要求学生通过图像、表格和符号等方式判断函数的单调性。

2. 学生个别或小组合作完成练习,教师及时给予指导和反馈。

3. 教师引导学生应用函数单调性的概念和性质解决实际问题,培养学生的应用能力。

五、总结与拓展(10分钟)1. 教师与学生一起总结本节课的重点内容和学习收获。

2. 教师提供一些拓展问题,鼓励学生进一步思考和探索函数单调性的相关问题。

3. 教师布置课后作业,巩固和拓展学生对函数单调性的理解和应用。

教学评估:1. 教师观察学生在课堂上的参与度和表现情况。

2. 教师检查学生完成的练习题和课后作业,评估学生对函数单调性的掌握情况。

3. 教师与学生进行互动问答,检验学生对函数单调性的理解和运用能力。

第三高考数学一轮复习 函数的单调性与最值教案

第三高考数学一轮复习 函数的单调性与最值教案

城东蜊市阳光实验学校第三中学高考数学一轮复习函数的单调性与最值教案①利用函数的单调性.②定义法:先求定义域,再利用单调性定义.③图象法:假设f(x)是以图象形式给出的,或者者者f(x)的图象易作出,可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间. 5.函数的最值 设函数y =f(x)的定义域为I ,假设存在实数M 满足:(1)对于任意的x ∈I ,都有.(2)存在x0∈I ,使得.那么,我们称M 是函数y =f(x)的.最值与函数的值域有何关系?【提示】函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在。

(1) 求一个函数的最值时,应首先考虑函数的定义域.(2)函数的最值是函数值域中的一个取值,是自变量x 取了某个值时的对应值,故函数获得最值时,一定有相应的x 的值.前提自测 1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,那么 (D) 2.假设函数y =ax 与y =-x b在(0,+∞)上都是减函数,那么y =ax2+bx 在(0,+∞)上是 (B) A .增函数 B .减函数C .先增后减 D .先减后增. 3.函数()f x =223x ax -+在区间(],2-∞上是单调函数,那么实数的取值范围是a≥2.4.设x1,x2为y =f(x)的定义域内的任意两个变量,有以下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;其中能推出函数y =f(x)为增函数的命题为__①_③_____5.函数2()23f x x x =-+在[]0,m 上有最大值3,最小值2,那么正数m 的取值范围1≤m≤2.6.证明函数x x x f 3)(3+=在),(+∞-∞上是增函数 自主﹒﹒探究 例1答案:a >0:f(x)为减函数。

a <0:f(x)为增函数。

函数单调性与最值的综合(一轮复习教案)

函数单调性与最值的综合(一轮复习教案)

学习过程一、复习预习1.函数的值域1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。

2.确定函数的值域的原则①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合;②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。

二、知识讲解常见函数的值域:1 一次函数的)0(≠+=a b ax y 的定义域为R ,值域为R ,对于一个R 中的任意一个数,对R 中都有为唯一的数与它相对应。

2 二次函数)0(2≠++=a c bx ax y 的定义域为R ,值域为B 。

当0>a 时,}44{2ab ac y y B -≥=,当0<a 时,}44{2a b ac y y B -≤=,对R 中都有为唯一的数与它相对应。

3反比例函数()0ky k x=≠的值域为{}0y R y ∈≠.4求函数值域的方法:观察法,配方法,换元法,分离常数法,反解法,判别式法等。

单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)(2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

3函数的单调性和最值-北师大版高中数学必修第一册(2019版)教案

3函数的单调性和最值-北师大版高中数学必修第一册(2019版)教案

3 函数的单调性和最值-北师大版高中数学必修第一册(2019版)教案课程目标本课程的主要目标是让学生了解函数的单调性和最值的概念,并能够运用所学知识解决实际问题。

具体目标包括:1.掌握函数单调性的定义和判别方法;2.掌握函数最值的概念和求解方法;3.能够应用函数的单调性和最值解决实际问题。

课程内容一、函数的单调性1.函数的单调性概念:如果一个函数在其定义域上任意两点的函数值的大小关系都相同,那么这个函数就是单调的。

2.单调性判定方法:可以通过研究函数的导数或者函数的一阶差分值来判断一个函数的单调性。

3.单调性的应用:函数的单调性可以应用于最值的求解、不等式的证明等问题中。

二、函数的最值1.函数最大值和最小值的概念:在函数定义域内,函数值最大的数就叫做函数的最大值;函数值最小的数就叫做函数的最小值。

2.最值的求解方法:可以通过求解导数或者利用单调性来确定函数的最值。

3.最值的应用:最值可以应用于最优化问题、优化设计等方面。

教学方法1.讲解法:通过案例分析,教师介绍单调性和最值的概念和判定方法。

2.组合式教学:学生分组协作,通过完成练习题来深化对单调性和最值的认识。

3.实践教学:通过实际问题的解决,来锻炼学生应用所学知识解决实际问题的能力。

教学设计一、引入教师通过实际生活中的例子,引导学生认识单调性和最值,并且让学生思考,如果需要求解最优解,我们应该怎么办?二、知识点讲解1.函数的单调性概念、判定方法和应用;2.函数的最值的概念、求解方法和应用。

三、分组练习教师组织学生进行分组协作练习,通过练习题来复习和深化所学知识。

四、实践应用教师通过实际问题的讨论,让学生应用所学知识解决实际问题。

总结通过本课程的学习,学生将会掌握函数单调性和最值的概念和应用,以及运用所学知识解决实际问题的能力。

同时,本课程也将为学生今后的学习打下坚实的基础。

函数的性质(学生版)

函数的性质(学生版)

函数的性质(一)函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接.两种形式设任意x1,x2∈[a,b]且x1<x2,那么①f(x1)-f(x2)x1-x2>0⇔f(x)在[a,b]上是增函数;f(x1)-f(x2)x1-x2<0⇔f(x)在[a,b]上是减函数.②(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在[a,b]上是减函数.两条结论知能梳理(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.四种方法函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性.(4)图象法:利用图象研究函数的单调性.(二)函数的奇偶性(1)奇、偶函数的概念如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.(2)奇、偶函数的性质奇函数在关于原点对称的区间上的单调性相同,、偶函数在关于原点对称的区间上的单调性相反.一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.(三)函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f (x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.三条结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x =a对称.若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b -a)为周期的周期函数.(2)若f(x+a)=-f(x)或f(x+a)=1f(x)或f(x+a)=-1f(x),那么函数f(x)是周期函数,其中一个周期为T=2a;(3)若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函数,其中一个周期为T=2|a-b|.考向一函数的单调性的判断【例1】►试讨论函数f(x)=xx2+1的单调性.[审题视点] 可采用定义法或导数法判断.判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等.精讲精练【训练1】讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考向二利用已知函数的单调区间求参数的值(或范围)【例2】►已知函数f(x)=x2+ax(a>0)在(2,+∞)上递增,求实数a的取值范围.已知函数的解析式,能够判断函数的单调性,确定函数的单调区间,反之已知函数的单调区间可确定函数解析式中参数的值或范围,可通过列不等式或解决不等式恒成立问题进行求解.【训练2】函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是( ).A.a=-3 B.a<3 C.a≤-3 D.a≥-3考向三利用函数的单调性求最值【例3】►已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3 .(1)求证:f(x)在R上是减函数; (2)求f(x)在[-3,3]上的最大值和最小值.[审题视点] 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.【训练3】 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性; (3)若f (3)=-1,求f (x )在[2,9]上的最小值.【如何解不等式恒成立问题】当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.考向四 判断函数的奇偶性【例1】►下列函数:①f (x )= 1-x 2+ x 2-1;②f (x )=x 3-x ;③f (x )=ln(x +x 2+1); ④f (x )=3x -3-x 2;⑤f (x )=lg 1-x1+x .其中奇函数的个数是( ). A .2 B .3 C .4 D .5判断函数的奇偶性的一般方法是:(1)求函数的定义域;(2)证明f (-x )=f (x )或f (-x )=-f (x )成立;或者通过举反例证明以上两式不成立.如果二者皆未做到是不能下任何结论的,切忌主观臆断.【训练1】 判断下列函数的奇偶性:(1)f (x )=4-x 2|x +3|-3; (2)f (x )=x 2-|x -a |+2.考向五 函数奇偶性的应用【例2】►已知f (x )=x ⎝ ⎛⎭⎪⎫12x -1+12(x ≠0). (1)判断f (x )的奇偶性; (2)证明:f (x )>0.根据函数的奇偶性,讨论函数的单调区间是常用的方法.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可. 【训练2】已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.考向六函数的奇偶性与周期性【例3】已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.【训练3】已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 013)+f(2 015)的值为( ).A.-1 B.1 C.0 D.无法计算【如何解决奇偶性、单调性、周期性的交汇问题】设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调增(或减)区间.【试一试】已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ). A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( ). A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)2.(2011·湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ).A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)3.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)4.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是______. 5.若x >0,则x +2x的最小值为________.6.(2011·全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ).A.-12B.-14C.14D.127.(2012·福州一中月考)f (x )=1x -x 的图象关于( ). A .y 轴对称B .直线y =-x 对称C.坐标原点对称D.直线y=x对称8.(2011·广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数9.(2011·福建)对于函数f(x)=a sin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( ).A.4和6 B.3和1 C.2和4 D.1和210.(2011·浙江)若函数f(x)=x2-|x+a|为偶函数,则实数a=________.。

高考数学一轮复习 2.2函数的单调性与最值教案-人教版高三全册数学教案

高考数学一轮复习 2.2函数的单调性与最值教案-人教版高三全册数学教案

第二节 函数的单调性与最值教学目标:知识与技能:理解函数的单调性,最大(小)值及几何意义 ;会运用函数的图象理解和研究图象的性质过程与方法:会画初等函数的图象,能利用图象的单调性研究函数的性质情感、态度与价值观:教学过程中,要让学生充分体验数形结合思想,感受图形解题。

教学重点:函数的单调性,最大(小)值教学难点:利用图象的单调性研究函数教 具:多媒体、实物投影仪教学过程:一、复习引入:1.增函数、减函数一般地,设函数f(x)的定义域为I ,区间D ⊆I,如果对于任意x1,x2∈D,且x1<x2,都有:(1)f(x)在区间D 上是增函数⇔f(x1)<f(x2)(2)f(x)在区间D 上是减函数⇔f(x1)>f(x2)2.单调性、单调区间若函数y=f(x)在区间D 上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间.3.函数的最值设函数y=f(x)的定义域为I,如果存在M ∈R,① 对于任意的x ∈I,都有f(x)≤M (或f(x)≥M )② 存在x0∈I,使得f(x0)=M则称M 是f(x)的最大(或小)值二.例题讲解【典例1】(1)函数f(x)=log2(x2-4)的单调递减区间为_______. (2)试讨论函数 x ∈(-1,1)的单调性(其中a ≠0).【思路点拨】(1)根据复合函数的单调性求解.(2)用定义法或导数法求解.答案:(1) (-∞,-2)(2)方法一(定义法):设x1,x2∈(-1,1)且x1<x2,则 ∵-1<x1<x2<1,∴x2-x1>0,x12-1<0,x22-1<0,-1<x1x2<1,x1x2+1>0,∴因此当a >0时,f(x1)-f(x2)>0. ()2ax f x ,x 1=-()()12122212ax ax f x f x x 1x 1-=---()()()21122212a x x x x 1x 1(x 1)-+=--21122212(x x )(x x 1)0.(x 1)(x 1)-+-->即f(x1)>f(x2),此时函数在(-1,1)上为减函数;当a <0时,f(x1)-f(x2)<0.即f(x1)<f(x2),此时函数在(-1,1)上为增函数.方法二(导数法):当a >0时,f ′(x)<0;当a <0时,f ′(x)>0.∴当a >0时,f(x)在(-1,1)上为减函数;当a <0时,f(x)在(-1,1)上为增函数.【互动探究】若将本题(1)中的函数改为 试求函数f(x)的单调递减区间.【解析】函数f(x)的定义域为(-1,+∞),令t=x+1,因为 在t ∈(0,+∞)上是减函数,t=x+1在x ∈(-1,+∞)上为增函数,所以函数 的单调递减区间为(-1,+∞). 【典例2】(1)设函数g(x)=x2-2(x ∈R), 则f(x)的值域是( ) (A)[ ]∪(1,+∞) (B)[0,+∞) (C)[ ) (D)[ ]∪(2,+∞) 【变式训练】用定义法判断函数.【解析】由x2-1≥0得x ≥1或x≤-1,即函数的定义域为(-∞,-1]∪[1,+∞).设x1<x2,则∵x1-x2<0,∴当x1,x2∈(-∞,-1]时,x1+x2<0,则f(x1)-f(x2)>0,即f(x1)>f(x2),故函数在(-∞,-1]上是减函数.当x1,x2∈[1,+∞)时,x1+x2>0,则f(x1)-f(x2)<0,即f(x1)<f(x2),故函数在[1,+∞)上是增函数.【小结】求函数最值的五种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值. ()()()()()2222222a x 12ax a x 1f x x 1x 1---+'==--()()12f x log x 1,=+12y log t =()12f x log (x 1)=+()()()()()g x x 4,x g x ,f x g x x,x g x ,⎧++⎪=⎨-≥⎪⎩<9,04-9,4+∞9,04-y =()()12f x f x -=22x x x x -+==0,+>(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.【提醒】在求函数的值域时,应先确定函数的定义域. 【变式训练】(1)函数 在区间[a,b ]上的最大值是1,最小值是31 , 则a+b=________.【解析】易知f(x)在[a,b ]上为减函数,答案:6【典例3】(1)(2014·某某模拟)若函数f(x)为R 上的增函数,且f(ax+1)≤f(x-2)对任意x∈[21 ,2]都成立,则实数a 的取值X 围是. (2)已知 满足对任意x1≠x2,都有 成立,那么a 的取值X 围是______.【思路点拨】(1)根据单调性转化不等式求解,注意定义域.(2)寻找f(x)是增函数满足的条件,列不等式组求解.【规X 解答】(1)因为f(x)为R 上的增函数,所以由f(ax+1)≤f(x-2)得ax+1≤x-2,即a ≤1-x 3 在[ 21 ,2]上恒成立, 令g(x)=1- x 3 ,则由于g(x)在[ 21 ,2]上为增函数, 所以g(x)min=g( 21 )=1- =-5, 所以a ≤-5,即a ∈(-∞,-5].答案:(-∞,-5] 2)∵对任意x1≠x2,都有 成立,∴函数f(x)是R 上的增函数.答案:【小结】 ()1f x x 1=-()()1f a 1,1,a 1111f b ,.3b 13⎧⎧==⎪⎪⎪-∴⎨⎨=⎪⎪=⎩⎪-⎩即a 2,a b 6.b 4,=⎧∴∴+=⎨=⎩()()x 2a x 1x 1f x a x 1⎧-+⎪=⎨≥⎪⎩,<,,,()()1212f x f x 0x x -->312()()1212f x f x 0x x -->()12a 0,a 1,a 2a 11,⎧∴-⎪⎨⎪≥-⨯+⎩>>3a 2.2∴≤<“f ”不等式的解法根据函数的单调性,解含有“f ”的不等式时,要根据函数的性质,转化为如“f(g(x))>f(h(x))”的形式,再利用单调性,转化为具体不等式求解,但要注意函数的定义域比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.对于分段函数的单调性,不仅要注意每一段上的单调性,还应注意端点处函数值的大小关系.【变式训练】已知函数 若f(2-a2)>f(a),则实数a 的取值X 围是( ) (A)(-∞,-1)∪(2,+∞) (B)(-1,2)(C)(-2,1) (D)(-∞,-2)∪(1,+∞)【解析】选由f(x)的图象可知f(x)在(-∞,+∞)上是单调增函数,由f(2-a2)>f(a)得2-a2>a,即a2+a-2<0,解得-2<a<1.三.课堂练习与作业思考辨析,考点自测,知能巩固()22x 4x,x 0,f x 4x x ,x 0,⎧+≥⎪=⎨-<⎪⎩()()()2222x 4x x 24,x 0,C.f x 4x x x 24,x 0,⎧+=+-≥⎪=⎨-=--+<⎪⎩。

初升高数学暑假衔接(人教版)第10讲 函数的单调性与最大(小)值(学生版)

初升高数学暑假衔接(人教版)第10讲 函数的单调性与最大(小)值(学生版)

第10讲函数的单调性与最大(小)值1.理解函数的单调性及其意义,明确增函数、减函数的图象特征;2.能根据图象写出函数的单调区间,并能利用定义进行证明;3.理解函数的最大(小)值及其几何意义,会求一些简单函数的最值。

一、函数的单调性1、单调函数的定义设函数f (x )的定义域为I.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x 当21x x <时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是单调递增函数;当21x x <时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是单调递减函数。

2、单调性的图形趋势(从左往右)上升趋势下降趋势3、函数的单调区间:若函数y =f(x)在区间D 上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D 叫做y =f(x)的单调区间.【注意】(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,故单调区间的端点若属于定义域,则区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大;(4)单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;二、函数的最大(小)值1、最大值:对于函数y =f (x ),其定义域为D ,如果存在x 0∈D ,f (x )=M ,使得对于任意的x ∈D ,都有f (x )≤M ,那么,我们称M 是函数y =f (x )的最大值,即当x =x 0时,f (x 0)是函数y =f (x )的最大值,记作y max =f (x 0).2、最小值:对于函数y =f (x ),其定义域为D ,如果存在x 0∈D ,f (x )=M ,使得对于任意的x ∈D ,都有f (x )≥M ,那么,我们称M 是函数y =f (x )的最小值,即当x =x 0时,f (x 0)是函数y =f (x )的最小值,记作y min =f (x 0).3、几何意义:一般地,函数最大值对应图像中的最高点,最小值对应图像中的最低点,它们不一定只有一个.三、定义法证明函数单调性的步骤①取值:设x 1,x 2为该区间内任意的两个值,且x 1<x 2②作差变形:做差f (x 1)-f (x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形③定号:确定差值的符号,当符号不确定时,可以分类讨论④判断:根据定义做出结论。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。

教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。

教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。

教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。

教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。

教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。

教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。

《函数的单调性与最大(小)值》教案#优选.

《函数的单调性与最大(小)值》教案#优选.

1.3.1 函数的单调性与最大(小)值(1)教案授课人:马山中学蒙立勇1.教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数的单调性的方法.(2)过程与方法:从生活实际和已有旧知出发,引导学生探索函数的单调性的概念,应用图象和单调性的定义解决函数单调性问题,使学生领会数形结合的数学方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:使学生体验数学的严谨性,培养学生细心观察、归纳、分析的良好习惯和不断探求新知识的精神.2.教学重点(1)函数单调性的概念;(2)运用函数单调性的定义判断和证明一些函数的单调性.教学难点利用函数单调性的定义判断和证明函数的单调性.3.教学方法和教学手段运用导学案方式引导学探索发现新识。

4.教学过程5、教学基本流程:单调性的直观感受---单调性的定性描述-----单调性的定量刻画-----单调性的具体应用合作学习问题探究(2)对于函数f(x),当自变量x在定义域的某个区间上的任取两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),则在这个区间上随着自变量x的增大,函数值f(x)都在逐步增大,则函数在这个区间上是增函数由此可知要确保函数是增函数,x1,x2在这个区间必须是任意才可以归纳总结形成结论一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D上的自变量的任意两个值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数如果对于定义域I内的某个区间D上的自变量的任意两个值x1,x2,当x1<x2时,都有f(x1)> f(x2),那么就说f(x)在区间D上是减函数如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数在这个区间上是单调函数,区间D叫做函数的单调区间,分为递增区间和递减区间引导学生依据前面的讨论说出增函数的定义,同时让学生模仿增函数的定义叙述出减函数的定义教师引导学生找出定义中的关键词:定义域内的某个区间----自变量的任意两个值-----都有。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

2.2函数的单调性与最值教案(带详解)绝对经典

2.2函数的单调性与最值教案(带详解)绝对经典

§2.2 函数的单调性与最值要点梳理1. 函数的单调性(1)单调函数的定义定义当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数 图像(2)若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫作函数y =f (x )的单调区间.(3)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

2、单调性语言另类表示:或或时,则在定义域上是增函数;或时,则在定义域上是减函数;3.基本初等函数的单调性:4.复合函数单调性:同增异减5.多个函数的和的增减性:①增增增,②增减增,③减减减函数,④减增减;()()12120f x f x x x ->-()()()12120x x f x f x -⋅->⎡⎤⎣⎦()f x ()()12120f x f x x x -<-()()()12120x x f x f x -⋅-<⎡⎤⎣⎦()f x +=-=+=-=6.分段函数在定义域上的若具有一种单调性,则要求分段函数在每段定义域上的单调性保持一致,还对断点处的函数值的大小有要求;7.绝对值函数的单调性8.利用单调性解不等式9.值域的求法【注】函数的多个递增区间或递减区间不能合并,在表示的时候一般将各区间用逗号或“和”字进行连接. 函数f (x )、g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比. 10.函数的最值基础自测1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 2. 函数f (x )=log 5(2x +1)的单调增区间是______________. 3. 函数f (x )=2xx +1在[1,2]的最大值和最小值分别是__________. 4. 已知函数y =f (x )在R 上是减函数,A (0,-2)、B (-3,2)在其图像上,则不等式-2<f (x )<2的解集为________. 5. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤0题型分类 深度解析题型一 函数单调性的判断例1 试讨论函数f (x )=axx -1 (a ≠0)在(-1,1)上的单调性.(1)已知a >0,函数f (x )=x +ax(x >0),证明函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数;(2)求函数y =x 2+x -6的单调区间.题型二 利用函数单调性求参数例2 1、已知函数f (x )=ax 2-2x -3在区间(-∞,4)上是单调递减的,则实数a 的取值范围是2、若函数f (x )=ax -1x +1在(-∞,-1)上是减函数,求实数a 的取值范围.3、若函数f (x )=|3x -a |在区间[3,+∞)上单调递增,则a 的取值范围是 .4、已知函数是上的增函数,则的取值范围是( )A. B. C. D.(1)若函数f (x )=(2a -1)x +b 是R 上的减函数,则a 的取值范围为____________. (2)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3题型三 利用函数单调性解函数不等式例3 函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.已知函数f (x )是定义在[0,+∞)上的递增函数,且f (1)=2,则满足f (2x-1)<2的解集是题型四 复合函数单调性()()()2511x ax x f x a x x⎧---≤⎪=⎨>⎪⎩R a 30a -≤<32a -≤≤-2a ≤-0a <例4 求函数y =log 13(x 2-3x )的单调区间.题型五 求函数最值(值域) 例5求下列函数值域: 1、直接观察法:①xy 1=, ②x y -=32、配方法: ①]4,1(32-2-∈-=x x x y , ② 322+--=x x y3、单调性法:①x x y 11--=②),1(,4+∞∈+=x xx y③]5,3[,112∈+-=x x x y ④]3,1[,1132∈+++=x x x x y 4、换元法:23--=x x y变式训练5 求下列函数值域:1、y =; 2、),2(322+∞-∈-+=x x x y ,3、①),1(1+∞∈+-=x x x y , ②1x y x =+4、2y x =题型六 抽象函数单调性问题例6 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.变式训练6 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.课后练习一、选择题1. 下列函数中,在(-∞,0)上为增函数的是( )A .y =1-x 2B .y =x 2+2xC .y =11+xD .y =xx -12. 已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )A.⎝⎛⎭⎫0,34B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫0,34 D.⎣⎡⎦⎤0,34 3. 已知f (x )=⎩⎪⎨⎪⎧a x(x >1),⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)4. 给定函数①y =21x ,②y =)1(log 21+x ,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④5、已知函数 若,则实数的取值范围是( ) A. B. C. D.6、函数y=322-+x x 的单调递减区间是( )A .(-∞,-3)B .(-1,+∞)C .(-∞,-1)D .[-1,+∞)3,0,()ln(1),>0.x x f x x x ⎧≤=⎨+⎩2(2)()f x f x ->x (,1)(2,)-∞-⋃+∞(,2)(1,)-∞-⋃+∞(1,2)-(2,1)-7、若函数y=ax bx --在区间(-∞,4) 上是增函数,则有( ) A .a>b ≥4 B .a ≥4>b C .4≤a<b D .a ≤4<b 8、函数f (x )=⎩⎨⎧≥-<+-)1()1()1(3)21(2x x x a x a 的值域为 ,则实数 的范围( )A .B .C .D .二、填空题1. f (x )=x 2-2x ,x ∈[-2,4])的单调增区间为__________;f (x )max =________. 2. 函数f (x )=ln(4+3x -x 2)的单调递减区间是__________.3. 若函数f (x )=2|x -b |+2在[0,+∞)上为增函数,则实数b 的取值范围是____________. 4、函数y=11+-x x ,当时,函数的值域为__________________.5、6、7、已知函数()ln1x af x x -=+在区间()0,1单调增加,则a 的取值范围是 . 8、若函数f (x )=⎩⎨⎧≥<+-)1(2)1(x x a x x ,,的最小值为2,则a 的取值范围是 .三、解答题1.已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值.2.已知函数f (x )=x 2+ax(x ≠0,a ∈R ).(1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.§2.2 函数的单调性与最值要点梳理1. 函数的单调性(1)单调函数的定义定义当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数 图像(2)若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫作函数y =f (x )的单调区间.(3)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节函数的单调性与最值[知识能否忆起]一、函数的单调性 1.单调函数的定义增函数减函数定义设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2) ,那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象逐渐上升自左向右看图象逐渐下降2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值[小题能否全取]1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x |2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-123.(教材习题改编)函数f (x )=11-x (1-x )的最大值是( )A.45B.54C.34D.434.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________.5.已知函数f (x )为R 上的减函数,若m <n ,则f (m )______f (n );若f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),则实数x 的取值范围是______.1.函数的单调性是局部性质从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.2.函数的单调区间的求法函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.函数单调性的判断典题导入[例1] 证明函数f (x )=2x -1x在(-∞,0)上是增函数.由题悟法对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法: (1)结合定义(基本步骤为取值、作差或作商、变形、判断)证明;(2)可导函数则可以利用导数证明.对于抽象函数单调性的证明,一般采用定义法进行.以题试法1.判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.求函数的单调区间典题导入[例2] (2012·长沙模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤k ,k ,f (x )>k ,取函数f (x )=2-|x |.当k =12时,函数f k (x )的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)若本例中f (x )=2-|x |变为f (x )=log 2|x |,其他条件不变,则f k (x )的单调增区间为________.由题悟法求函数的单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. (2)定义法:先求定义域,再利用单调性定义.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数的正负确定函数的单调区间.以题试法2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)单调性的应用典题导入[例3] (1)若f (x )为R 上的增函数,则满足f (2-m )<f (m 2)的实数m 的取值范围是________.(2)(2012·安徽高考)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.由题悟法单调性的应用主要涉及利用单调性求最值,进行大小比较,解抽象函数不等式,解题时要注意:一是函数定义域的限制;二是函数单调性的判定;三是等价转化思想与数形结合思想的运用.以题试法3.(1)(2013·孝感调研)函数f (x )=1x -1在[2,3]上的最小值为________,最大值为________. (2)已知函数f (x )=1a -1x(a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =__________.1.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x2.若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( ) A .-7 B .1 C .17D .253.(2013·佛山月考)若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax 2+bx在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增4.“函数f (x )在[a ,b ]上为单调函数”是“函数f (x )在[a ,b ]上有最大值和最小值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(2012·青岛模拟)已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)6.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )A .最小值f (a )B .最大值f (b )C .最小值f (b )D .最大值f ⎝⎛⎭⎫a +b 27.函数y =-(x -3)|x |的递增区间是________.8.(2012·台州模拟)若函数y =|2x -1|,在(-∞,m ]上单调递减,则m 的取值范围是________.9.若f (x )=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.10.求下列函数的单调区间: (1)y =-x 2+2|x |+1;(2)y =a 1-2x -x 2(a >0且a ≠1).11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.12.(2011·上海高考)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围.1.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ) A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2)D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫132.(2012·黄冈模拟)已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.323.函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝⎛⎭⎫x y =f (x )-f (y ),当x >1时,有f (x )>0.(1)求f (1)的值;(2)判断f (x )的单调性并加以证明; (3)若f (4)=2,求f (x )在[1,16]上的值域.1.求函数f (x )=x 2+x -6的单调区间.2.定义在R 上的函数f (x )满足:对任意实数m ,n ,总有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)试求f (0)的值;(2)判断f (x )的单调性并证明你的结论;(3)设A ={(x ,y )|f (x 2)·f (y 2)>f (1)},B ={(x ,y )|f (ax -y +2)=1,a ∈R},若A ∩B =∅,试确定a 的取值范围.。

相关文档
最新文档