立体几何中的体积定理
立体几何基本定理与公式
立几基本公式空间直线.1. 空间直线位置分三种:相交、平行、异面.相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[)οο180,0∈θ) (直线与直线所成角(]οο90,0∈θ) (斜线与平面成角()οο90,0∈θ)(直线与平面所成角[]οο90,0∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度. 一、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面12方向相同12方向不相同POAa垂直,过一点有且只有一个平面和一条直线垂直.若PA⊥α,a⊥AO,得a⊥PO(三垂线定理),得不出α⊥PO. 因为a⊥PO,但PO不垂直OA.三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上一、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长) ⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形. (直棱柱定义):棱柱有一条侧棱和底面垂直. ⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)PαβθM AB Oii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. 正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=.②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥形体积:Sh V 31=(S 为底面积,h 为高)六. 空间向量.1(1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. (2)共线向量定理:对空间任意两个向量)0(,≠b b a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使λ=.(3)共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作a ∥α. (4)①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件.(简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注: 是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z使 z y x ++=(这里隐含x +y+z≠1).注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=即证.3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a222321a a a ++==(a a =⇒⋅=) 232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<ρρρρρρ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥那么向量叫做平面α的法向量. (3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,DCBAB则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).。
高考数学立体几何专题:等体积法
高考数学立体几何专题:等体积法一、引言在高考数学中,立体几何是一门重要的学科,它考察了学生的空间想象能力和逻辑推理能力。
其中,等体积法是一种常用的方法,它在解决立体几何问题中具有重要的作用。
本文将详细介绍等体积法的基本原理和应用,并通过实例来展示其用法。
二等体积法的基本原理等体积法的基本原理是:对于同一个体积,可以将其分解为不同的几何形状,并且这些几何形状的体积相等。
在立体几何中,常见的几何形状有长方体、正方体、圆柱体、圆锥体等。
这些形状的体积可以通过其高度、底面积和高度的乘积等参数来计算。
三等体积法的应用等体积法在解决立体几何问题中具有广泛的应用。
下面我们将通过几个例子来展示其用法:1、求几何体的表面积和体积例1:已知一个长方体的长、宽和高分别为a、b和c,求该长方体的表面积和体积。
解:该长方体的表面积为2(ab+bc+ac),体积为abc。
2、判断两个几何体是否体积相等例2:给定两个几何体,判断它们是否体积相等。
解:根据等体积法,我们可以分别计算两个几何体的体积,如果两个体积相等,则两个几何体体积相等;否则,两个几何体体积不相等。
3、求几何体的重心位置例3:已知一个长方体的长、宽和高分别为a、b和c,求该长方体的重心位置。
解:根据等体积法,我们可以将该长方体分成两个小的长方体,它们的重心位置与原长方体的重心位置相同。
因此,我们只需要找到这两个小长方体的重心位置即可。
四、结论等体积法是一种常用的方法,在解决立体几何问题中具有重要的作用。
它可以帮助我们计算几何体的表面积和体积,判断两个几何体是否体积相等,以及求几何体的重心位置等。
在实际应用中,我们需要灵活运用等体积法来解决各种不同的问题。
在数学的世界里,立体几何是一门研究空间几何形状、大小、位置关系的科学。
它不仅在数学领域中占据着重要的地位,同时也是高考数学中的重要考点之一。
本文将针对高考数学立体几何专题进行深入探讨,帮助大家更好地理解和掌握这一部分内容。
专题10:立体几何中的体积问题(解析版)
专题10:立体几何中的体积问题(解析版)⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上 球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
1.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)若1CC BC =,求三棱锥1B BCD -的体积.【答案】(1)证明见解析;(2)4【分析】(1)利用勾股定理,可得AC BC ⊥,结合1AC CC ⊥,根据线面垂直的判定定理以及性质定理,可得结果.(2)计算∆BCD S ,1BB ,然后根据三棱锥的体积公式,可得结果.【详解】(1)∵三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∵AC ⊂平面ABC ,∴1CC AC ⊥,∵在ABC ∆中,3AC =,4BC =,5AB =,∴222AC BC AB +=,∴90ACB ∠=︒,∴AC BC ⊥,∵1CC ⊂平面11CC B B ,CB ⊂平面11CC B B ,1CC CB C =,∴AC ⊥平面11CC B B ,∵1BC ⊂平面11CC B B ,∴1AC BC ⊥.(2)∵D 是AB 中点, ∴111343222BCD ABC S S ∆∆==⨯⨯⨯=, ∵1BB ⊥平面ABC ,114BB AA ==,∴111134433B BCD BCD V S BB -∆=⋅=⨯⨯=. 【点睛】本题考查线面垂直的判定定理以及性质定理,还考查了锥体的体积公式,难点在于根据线段长度关系利用勾股定理得出垂直,重点在于对定理的应用,属基础题.2.如图所示:在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且2AC BC ==,,O M 分别为,AB VA 的中点.(1)求证:平面MOC ⊥平面VAB ;(2)求三棱锥V ABC -的体积.【答案】(1)详见解答;(23. 【分析】(1)由已知可得OC AB ⊥,再由面面垂直定理可得OC ⊥平面VAB ,即可证明结论; (2)OC ⊥平面VAB ,用等体积法求三棱锥V ABC -的体积.【详解】(1),AC BC O =为AB 中点,OC AB ∴⊥,平面VAB ⊥平面ABC ,平面VAB 平面ABC AB =,OC ⊂平面ABC ,OC ∴⊥平面,VAB OC ∴⊂平面MOC ,平面MOC ⊥平面VAB ;(2)AC BC ⊥且2AC BC ==,O 分别为AB 的中点,11,2,2332VAB OC AB S ∆∴===⨯⨯=, OC ⊥平面VAB ,133V ABC C VAB VAB V V OC S --∆==⨯⨯=, 3V ABC V -∴=. 【点睛】本题考查面面垂直证明,注意空间垂直间的相互转化,考查椎体体积,意在考查直观想象、逻辑推理能力,属于基础题.3.如图所示,四棱锥的底面ABCD 是一个矩形,AC 与BD 交于点M ,VM 是四棱锥的高.若4VM cm =,4cm AB =,5VC cm =,求四棱锥的体积.【答案】35(cm )3. 【分析】在Rt VMC ∆中求出3(cm),MC =在Rt ABC ∆中求出25(cm)BC =,再根据棱锥的体积公式可得结果.【详解】 VM 是棱锥的高,VM MC ∴⊥.在Rt VMC ∆中,2222543(cm),MC VC VM =-=-=.26cm AC MC ∴==,在Rt ABC ∆中,22226425(cm)BC AC AB =-=-=.242585(cm )S AB BC ∴=⨯=⨯=底,3 11325854(cm )333V S VM ∴=⋅=⨯⨯=四棱锥底. 【点睛】本题考查了求三棱锥的体积,属于基础题.4.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线PB 与平面ABCD 所成的角为45,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(243 【分析】 (1)通过AC ⊥BD 与PD ⊥AC 可得AC ⊥平面PBD ;(2)由题先得出∠PBD 是直线PB 与平面ABCD 所成的角,即∠PBD =45°,则可先求出菱形ABCD 的面积,进而可得四棱锥P - ABCD 的体积.【详解】解:(1)因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC ,又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角,于是∠PBD =45°,因此BD =PD =2.又AB = AD =2,所以菱形ABCD 的面积为sin 6023S AB AD ︒=⋅⋅=,故四棱锥P - ABCD 的体积1433V S PD =⋅=. 【点睛】本题主要考查空间线、面关系等基础知识,同时考查空间想象能力、推理论证能力以及运算求解能力,是基础题.5.如图,在边长为2的菱形ABCD 中,60ADC ∠=︒,现将ADC 沿AC 边折到APC △的位置.(1)求证:PB AC ⊥;(2)求三棱锥P ABC -体积的最大值.【答案】(1)见解析;(2)1【分析】(1)取AC 的中点为O ,连接PO OB 、,由线面垂直的判定定理即可证出.(2)由体积相等转化为P ABC ΔPOB 1V AC S 3-=⋅即可求出. 【详解】(1)如图所示,取AC 的中点为O ,连接PO OB 、,易得AC PO AC OB ⊥⊥,,PO OB O = AC POB ∴⊥平面,又PB ⊆ 面POB AC PB ∴⊥(2)由(1)知AC POB 260? AC 2PO OB ABCD ADC ⊥∠=︒===平面,且在边长为的菱形中,,所以,3 ,P ABC A POB C POB V V V ---=+体积转化为 ΔPOB 1AC S 3=⋅ =11233sin sin 32POB POB ⨯⨯⨯⨯∠=∠ ,当POB 90∠=︒时,P ABC V -的最大值为1. 【点睛】本题考查了线面垂直的判定定理和等体积转化思想,属于基础题.6.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA PD ⊥,1PA PD ==,E 为AD 的中点.(1)求证:PE ⊥平面ABCD ;(2)求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2)23【分析】(1)根据等腰三角形证明PE AD ⊥,得到答案. (2)计算得到2AD =,22PE =,再利用体积公式计算得到答案. 【详解】(1)1PA PD ==,E 为AD 的中点,故PE AD ⊥,平面PAD ⊥平面ABCD , 平面PAD 平面ABCD AD =,故PE ⊥平面ABCD .(2)PA PD ⊥,1PA PD ==,故2AD =,22PE =. 故122223P ABCD V -=⨯⨯⨯=. 【点睛】 本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力. 7.如图所示,在长方体ABCD A B C D ''''-中,求棱锥D A CD ''-的体积与长方体的体积之比.【答案】1:6【解析】【分析】棱锥D A CD ''-可以看成棱锥C A DD ''-,然后结合棱锥与棱柱的体积公式求解即可.【详解】解:已知的长方体可以看成直四棱柱ADD A BCC B '''-,设它的底面ADD A ''面积为S ,高为h ,则长方体的体积为ADD A BCC B V Sh '''-=.因为棱锥D A CD ''-可以看成棱锥C A DD ''-,且A DD ''的面积为12S ,棱锥C A DD ''-的高是h ,所以111326D A CD C A DD V V Sh Sh ''''--==⨯=. 因此所求体积之比为1:6.【点睛】本题考查了棱锥及棱柱的体积公式,重点考查了转换顶点求棱锥的体积,属基础题 8.如图,过圆柱的两条母线1AA 和1BB 的截面11A ABB 的面积为S ,母线1AA 的长为l ,11190AO B ︒∠=,求此圆柱的体积.【答案】22S l π. 【分析】 根据已知易得AOB 是等腰直角三角形,根据截面11A ABB 的面积为S 求出AB 长,进而求得底面圆面积再求体积即可。
1.立体几何中基本概念、公理、定理、推论
1.⽴体⼏何中基本概念、公理、定理、推论⽴体⼏何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:⼀条直线的两点在⼀个平⾯内,那么这条直线上的所有的点都在这个平⾯内.这是判断直线在平⾯内的常⽤⽅法.(2)公理2:如果两个平⾯有⼀个公共点,它们有⽆数个公共点,⽽且这⽆数个公共点都在同⼀条直线上.这是判断⼏点共线(证这⼏点是两个平⾯的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的⽅法之⼀.(3)公理3:经过不在同⼀直线上的三点有且只有⼀个平⾯.推论1:经过直线和直线外⼀点有且只有⼀个平⾯.推论2:经过两条相交直线有且只有⼀个平⾯.推论3:经过两条平⾏直线有且只有⼀个平⾯.公理3和三个推论是确定平⾯的依据.2. 直观图的画法(斜⼆侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平⾯表⽰⽔平平⾯.(2)已知图形中平⾏于x 轴和z 轴的线段,在直观图中保持长度和平⾏性不变,平⾏于y 轴的线段平⾏性不变,但在直观图中其长度为原来的⼀半.3. 公理4:平⾏于同⼀直线的两直线互相平⾏.(即平⾏直线的传递性)等⾓定理:如果⼀个⾓的两边和另⼀个⾓的两边分别平⾏并且⽅向相同,那么这两个⾓相等. (此定理说明⾓平移后⼤⼩不变) 若⽆“⽅向相同”,则这两个⾓相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有⼀个公共点.(2)平⾏直线――在同⼀平⾯内,没有公共点.(3)异⾯直线――不在同⼀平⾯内,也没有公共点.5. 异⾯直线⑴异⾯直线定义:不同在任何⼀个平⾯内的两条直线叫做异⾯直线.⑵异⾯直线的判定:连结平⾯内⼀点与平⾯外⼀点的直线,和这个平⾯内不经过此点的直线是异⾯直线.⑶异⾯直线所成的⾓:已知两条异⾯直线a 、b ,经过空间任⼀点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐⾓(或直⾓)叫做异⾯直线a 、b 所成的⾓(或夹⾓).⑷异⾯直线所成的⾓的求法:⾸先要判断两条异⾯直线是否垂直,若垂直,则它们所成的⾓为900;若不垂直,则利⽤平移法求⾓,⼀般的步骤是“作(找)—证—算”.注意,异⾯直线所成⾓的范围是π0,2??;求异⾯直线所成⾓的⽅法:计算异⾯直线所成⾓的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的⼏何体,如正⽅体、平⾏六⾯体、长⽅体等,以便易于发现两条异⾯直线间的关系)转化为相交两直线的夹⾓. ⑸两条异⾯直线的公垂线:①定义:和两条异⾯直线都垂直且相交的直线,叫做异⾯直线的公垂线;两条异⾯直线的公垂线有且只有⼀条.⽽和两条异⾯直线都垂直的直线有⽆数条,因为空间中,垂直不⼀定相交.②证明:异⾯直线公垂线的证明常转化为证明公垂线与两条异⾯直线分别垂直.⑹两条异⾯直线的距离:两条异⾯直线的公垂线在这两条异⾯直线间的线段的长度.6. 直线与平⾯的位置关系:(1)直线在平⾯内;(2)直线与平⾯相交.其中,如果⼀条直线和平⾯内任何⼀条直线都垂直,那么这条直线和这个平⾯垂直.注意:任⼀条直线并不等同于⽆数条直线;(3)直线与平⾯平⾏.其中直线与平⾯相交、直线与平⾯平⾏都叫作直线在平⾯外.平⾯与平⾯的位置关系:(1)平⾏――没有公共点;(2)相交――有⼀条公共直线.7.线⾯平⾏、⾯⾯平⾏⑴直线与平⾯平⾏的判定定理: 如果不在⼀个平⾯(α)内的⼀条直线(l )和平⾯(α)内的⼀条直线(m )平⾏,那么这条直线(l )和这个平⾯(α)平⾏.,,////l m l m l ααα (作⽤:线线平⾏?线⾯平⾏)⑵直线与平⾯平⾏的性质定理:如果⼀条直线(l )和⼀个平⾯(α)平⾏,经过这条直线(l )的平⾯(β)和这个平⾯(α)相交(设交线是m ),那么这条直线(l )和交线(m )平⾏.//,,//l l m l m αβαβ??=? (作⽤: 线⾯平⾏?线线平⾏)⑶平⾯与平⾯平⾏的判定定理:如果⼀个平⾯(β)内有两条相交直线(,a b )分别平⾏于另⼀个平⾯(α),那么这两个平⾯(,βα)平⾏.,,,//,////a b a b P a b ββααβα=? (作⽤:线⾯平⾏?⾯⾯平⾏)推论:如果⼀个平⾯(β)内有两条相交直线(,a b )分别平⾏于另⼀个平⾯(α)内的两条直线(,a b ''), 那么这两个平⾯(,βα)平⾏.,,,,,//,////a b a b P a b a a b b ββααβα''''=(作⽤: 线线平⾏?⾯⾯平⾏) ⑷平⾯与平⾯平⾏的性质定理:如果两个平⾏平⾯(,αβ)同时与第三个平⾯(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平⾏.//,,//a b a b αβαγβγ?=?=? (作⽤: ⾯⾯平⾏?线线平⾏)推论:如果两个平⾯(,αβ)平⾏,则⼀个平⾯(α)内的⼀条直线(a )平⾏于另⼀个平⾯(β). //,//a a αβαβ?? (作⽤: ⾯⾯平⾏?线⾯平⾏)8.线线垂直、线⾯垂直、⾯⾯垂直⑴直线与平⾯垂直的判定定理:如果⼀条直线(l )和⼀个平⾯(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平⾯(α).,,,,l m l n m n m n P l ααα⊥⊥=?⊥ (作⽤: 线线垂直?线⾯垂直)⑵直线与平⾯垂直的性质定理:如果⼀条直线(l )和⼀个平⾯(α)垂直,那么这条直线(l )和这个平⾯(α)内的任意⼀条直线(m )垂直.,l m l m αα⊥??⊥ .⑶三垂线定理: 其作⽤是证两直线异⾯垂直和作⼆⾯⾓的平⾯⾓①定理: 在平⾯内的⼀条直线,如果它和这个平⾯的⼀条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平⾯内的⼀条直线,如果它和这个平⾯的⼀条斜线,那么它也和这条斜线在平⾯内的射影垂直.(作⽤: 线线垂直?线线垂直)⑷平⾯与平⾯垂直的判定定理: 如果⼀个平⾯(α)经过另⼀个平⾯(β)的⼀条垂线(l ),那么这两个平⾯(,αβ)互相垂直.,l l βααβ⊥??⊥ (作⽤: 线⾯垂直?⾯⾯垂直)⑸平⾯与平⾯垂直的性质定理:如果两个平⾯(,αβ)垂直,那么在⼀个平⾯(α)内垂直于它们交线(m )的直线(l )垂直于另⼀个平⾯(β).,,,m l l m l αβαβαβ⊥?=?⊥?⊥ (作⽤: ⾯⾯垂直?线⾯垂直)9. 直线和平⾯所成的⾓⑴最⼩⾓定理:平⾯的斜线和它在平⾯内的射影所成的⾓,是这条斜线和这个平⾯内任意⼀条直线所成的⾓中最⼩的⾓.满⾜关系式:12cos cos cos θθθ=?θ是平⾯的斜线与平⾯内的⼀条直线所成的⾓;1θ是平⾯的斜线与斜线在平⾯内的射影所成的⾓;2θ是斜线在平⾯内的射影与平⾯内的直线所成的⾓.⑵直线和平⾯所成的⾓: 平⾯的⼀条斜线和它在平⾯内的射影所成的锐⾓,叫这条直线和这个平⾯所成的⾓. 范围:[0,90]10.⼆⾯⾓⑴⼆⾯⾓的定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓.这条直线叫做⼆⾯⾓的棱,每个半平⾯叫做⼆⾯⾓的⾯.棱为l ,两个⾯分别是α、β的⼆⾯⾓记为l αβ--.⼆⾯⾓的范围:[0,]π⑵⼆⾯⾓的平⾯⾓:在⼆⾯⾓的棱上取⼀点,在⼆⾯⾓的⾯内分别作两条垂直于棱的射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓.11.空间距离⑴点到平⾯的距离:⼀点到它在⼀个平⾯内的正射影的距离.⑵直线到与它平⾏平⾯的距离:⼀条直线上的任⼀点到与它平⾏的平⾯的距离.⑶两个平⾏平⾯的距离:两个平⾏平⾯的公垂线段的长度.⑷异⾯直线的距离12. 多⾯体有关概念:(1)多⾯体:由若⼲个平⾯多边形围成的空间图形叫做多⾯体.围成多⾯体的各个多边形叫做多⾯体的⾯.多⾯体的相邻两个⾯的公共边叫做多⾯体的棱.(2)多⾯体的对⾓线:多⾯体中连结不在同⼀⾯上的两个顶点的线段叫做多⾯体的对⾓线.(3)凸多⾯体:把⼀个多⾯体的任⼀个⾯伸展成平⾯,如果其余的⾯都位于这个平⾯的同⼀侧,这样的多⾯体叫做凸多⾯体.13.棱柱⑴棱柱的定义: 有两个⾯互相平⾏,其余每相邻两个⾯的交线互相平⾏,这样的多⾯体叫棱柱.两个互相平⾏的⾯叫棱柱的底⾯(简称底);其余各⾯叫棱柱的侧⾯;两侧⾯的公共边叫棱柱的侧棱;两底⾯所在平⾯的公垂线段叫棱柱的⾼(公垂线段长也简称⾼).⑵棱柱的分类:侧棱不垂直于底⾯的棱柱叫斜棱柱.侧棱垂直于底⾯的棱柱叫直棱柱.底⾯是正多边形的直棱柱叫正棱柱.棱柱的底⾯可以是三⾓形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧⾯都是平⾏四边形,所有的侧棱都相等,直棱柱的各个侧⾯都是矩形,正棱柱的各个侧⾯都是全等的矩形.②与底⾯平⾏的截⾯是与底⾯对应边互相平⾏的全等多边形.③过棱柱不相邻的两条侧棱的截⾯都是平⾏四边形.⑷平⾏六⾯体、长⽅体、正⽅体:底⾯是平⾏四边形的四棱柱是平⾏六⾯体.侧棱与底⾯垂直的平⾏六⾯体叫直平⾏六⾯体,底⾯是矩形的直平⾏六⾯体叫长⽅体,棱长都相等的长⽅体叫正⽅体.⑸①平⾏六⾯体的任何⼀个⾯都可以作为底⾯;②平⾏六⾯体的对⾓线交于⼀点,并且在交点处互相平分;③平⾏六⾯体的四条对⾓线的平⽅和等于各棱的平⽅和;④长⽅体的⼀条对⾓线的平⽅等于⼀个顶点上三条棱长的平⽅和.14.棱锥⑴棱锥的定义: 有⼀个⾯是多边形,其余各⾯是有⼀个公共顶点的三⾓形,这样的多⾯体叫棱锥其中有公共顶点的三⾓形叫棱锥的侧⾯;多边形叫棱锥的底⾯或底;各侧⾯的公共顶点()S ,叫棱锥的顶点,顶点到底⾯所在平⾯的垂线段()SO ,叫棱锥的⾼(垂线段的长也简称⾼).⑵棱锥的分类:(按底⾯多边形的边数)分别称底⾯是三⾓形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平⾏于底⾯的平⾯所截,那么所得的截⾯与底⾯相似,截⾯⾯积与底⾯⾯积⽐等于顶点到截⾯的距离与棱锥⾼的平⽅⽐.中截⾯:经过棱锥⾼的中点且平⾏于底⾯的截⾯,叫棱锥的中截⾯⑷正棱锥:底⾯是正多边形,顶点在底⾯上的射影是底⾯的中⼼的棱锥叫正棱锥.⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧⾯都是全等的等腰三⾓形,各等腰三⾓形底边上的⾼(叫斜⾼)也相等。
立体几何大题中有关体积、面积和距离的求法(教师版)
立体几何大题中有关体积、面积和距离的求法(教师版)立体几何大题中有关体积、面积和距离的求法知识点梳理1.柱、锥、台和球的侧面积和体积圆柱:侧面积为$S_\text{侧}=2\pi rh$,体积为$V=\pir^2h$圆锥:侧面积为$S_\text{侧}=\pi rl$,体积为$V=\frac{1}{3}\pi r^2h$圆台:侧面积为$S_\text{侧}=\pi(r_1+r_2)l$,体积为$V=\frac{1}{3}\pi h(r_1^2+r_2^2+r_1r_2)$直棱柱、正棱锥、正棱台、球的表面积和体积公式不再赘述。
2.几何体的表面积直棱柱、棱锥、棱台的表面积就是各面面积之和。
圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和。
一公式法例1.正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为。
解:因为正三棱柱的侧面展开图是边长分别为2和4的矩形,所以有以下两种情况:①:2是下底面的周长,4是三棱柱的高,此时下底面的边长为$\frac{2}{\sqrt{3}}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。
②:4是下底面的周长,2是三棱柱的高,此时下底面的边长为$\sqrt{3}$,所以体积为$V=\frac{4}{3}\sqrt{3}$,面积为$S=2\sqrt{3}$。
所以正三棱柱的体积为$\frac{4}{3}\sqrt{3}$。
例2.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()。
解:由题意可知此几何体是一个四棱锥,由图可知底面两条对角线的长分别为2和3,底面边长为2,所以底面菱形的面积为$S=\frac{3}{2}$,侧棱为$\sqrt{2^2+3^2}= \sqrt{13}$,则棱锥的高$h=\sqrt{3^2-(\frac{\sqrt{13}}{2})^2}=\frac{\sqrt{35}}{2}$。
立体几何的八个判定定理
立体几何的八个判定定理立体几何的八个判定定理是指由英国数学家约翰·威尔逊(John Wallis)在17th century所提出的一套定理。
其中包括:(1)贝瑟尔定理:任意一个平面三角形的内角之和等于180度。
(2)杨氏定理:任意一个对角相交的多边形,其内部角之和等于其外部角之和。
(3)特斯克定理:在同样边上的三个面有关的角相加等于180度。
(4)柯尔定理:在同样边上的四个面有关的角相加等于360度。
(5)高斯定理:任意一个多面体的角之和等于360度乘以面的数量。
(6)伯尔定理:任意一个多边形的角之和大于360度。
(7)双旋定理:任意一个多面体的内角之和等于多边形的角之和减去多边形的边的数量。
(8)欧几里得定理:任意一个多面体的角之和等于多边形的角之和加上多边形的边的数量乘以180度。
贝瑟尔定理是最重要的立体几何判定定理,表明任意一个平面三角形的三个内角之和都等于180度。
这个定理是用来表示平面三角形的构成的,而这个定理也被用来表示一个多边形的构成。
杨氏定理是贝瑟尔定理的推广,即任意一个对角相交的多边形,其内部角之和等于其外部角之和。
特斯克定理是杨氏定理的一个特殊情况,表示在同样边上的三个面有关的角相加等于180度。
柯尔定理也是杨氏定理的一个特殊情况,表示在同样边上的四个面有关的角相加等于360度。
高斯定理是一个重要的立体几何判定定理,即任意一个多面体的角之和等于360度乘以面的数量。
这个定理与贝瑟尔定理的相似之处在于,它们都可以用来表明多面体的构成,它们都表示了一个多面体的性质。
伯尔定理是高斯定理的一个推广,表明任意一个多边形的角之和大于360度。
双旋定理是一个重要的立体几何判定定理,表明任意一个多面体的内角之和等于多边形的角之和减去多边形的边的数量。
欧几里得定理也是一个重要的立体几何判定定理,表明任意一个多面体的角之和等于多边形的角之和加上多边形的边的数量乘以180度。
总的来说,立体几何的八个判定定理是一个重要的数学工具,它们不仅可以帮助人们更好地理解多面体和多边形的构造,还可以帮助人们解决一些复杂的问题,比如求解三角形的面积,求解多面体的体积等等。
立体几何经典定理概述(八大定理)
立体几何经典定理概述(八大定理)立体几何经典定理概述(八大定理)本文将概述立体几何中的八大经典定理。
立体几何是研究三维空间中的图形和形体的数学学科,定理是在研究过程中得出的具有重要意义的数学命题。
1. 欧拉定理欧拉定理是立体几何中最著名的定理之一。
它规定了三维物体的面、顶点和边的关系。
具体来说,如果一个多面体满足面+顶点-边=2的关系,那么它就是一个封闭的多面体。
欧拉定理形象地描述了三维世界中多面体的特性。
2. 柯西定理柯西定理是关于立体几何中平行四边形的定理。
它指出,对于一个平行四边形,其对角线互相平分彼此。
这个定理在解决平行四边形的性质和关系时非常有用,能够帮助我们更好地理解平面几何的性质。
3. 形心定理形心定理是关于多边形形心的定理。
形心是多边形中所有顶点的连线的交点,该定理指出,任意多边形的形心一定在多边形的重心和质心连线的上面。
形心定理可以帮助我们确定多边形的形心位置,从而研究多边形的性质和变形。
4. 二等分线定理二等分线定理是关于立体几何中等分线的定理。
它规定了等分线在多面体中的特性,即等分线和相应的两个面以及它们的交点构成的平面垂直。
这个定理在解决多面体的等分线问题时非常有用,能够帮助我们进一步理解多面体的性质。
5. 范恩艾克线定理范恩艾克线定理是关于球面上切线和交角的定理。
它指出,在球面上,任意切线与相应交角的正弦值等于球心到交点的距离和切线长的比值。
这个定理在解决球面上的切线和交角问题时非常有用,能够帮助我们研究球面的性质和切线关系。
6. 斯坦纳定理斯坦纳定理是关于三维空间中图的生成树的定理。
生成树是一个无圈连通图的子图,其中包含了所有顶点并且边的数量最少。
斯坦纳定理指出,在三维空间中的图中,生成树的条数等于顶点数减去连通分量的数量。
这个定理在解决三维空间图的生成树问题时非常有用。
7. 勾股定理勾股定理是立体几何中最基础的定理之一。
它规定了直角三角形边长之间的关系,即直角三角形的两个直角边的平方和等于斜边的平方。
高中立体几何公式
高中立体几何公式长方形的周长=(长+宽)×2 正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2 平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4a S=a2长方形a和b-边长C=2(a+b) S=ab三角形a,b,c-三边长、h-a边上的高、s-周长的一半、A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长、h-a边的高、α-两边夹角S=ah =absinα菱形a-边长、α-夹角、D-长对角线长、d-短对角线长S=Dd/2 =a2sinα梯形a和b-上、下底长、h-高、m-中位线长S=(a+b)h/2 =mh圆r-半径、d-直径C=πd=2πrS=πr2 =πd2/4扇形r—扇形半径、a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长、b-弦长、h-矢高、r-半径、α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径、r-内圆半径、D-外圆直径、d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴、d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长、b-宽、c-高S=2(ab+ac+bc)V=abc棱柱S-底面积、h-高V=Sh棱锥S-底面积、h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径、h-高、C—底面周长、S底—底面积、S侧—侧面积、S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h =πr2h空心圆柱R-外圆半径、r-内圆半径、h-高V=πh(R2-r2)直圆锥r-底半径、h-高V=πr2h/3圆台r-上底半径、R-下底半径、h-高V=πh(R2+Rr+r2)/3球r-半径、d-直径V=4/3πr3=πd2/6球缺h-球缺高、r-球半径、a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径、h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径、D-环体直径、r-环体截面半径、d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径、d-桶底直径、h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
高中数学11章立体几何初步11.1空间几何体11.1.6祖暅原理与几何体的体积B
11.1.6 祖暅原理与几何体的体积(1)“幂势既同,则积不容异”,即“夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任意平面所截,两个截面的面积总相等,那么这两个几何体的体积相等”.(2)作用:等底面积、等高的两个柱体或锥体的体积相等.2.柱体、锥体、台体和球的体积公式其中S′、S分别表示上、下底面的面积,h表示高,r′和r分别表示上、下底面圆的半径,R表示球的半径.(1)夹在两个平行平面间的两个几何体,被平行于这两个平面的某个平面所截,如果截得的两个截面面积相等,则这两个几何体的体积相等.( ) (2)锥体的体积只与底面积和高度有关,与其具体形状无关. ( ) (3)由V 锥体=13S·h ,可知三棱锥的任何一个面都可以作为底面.( )[答案] (1)× (2)√ (3)√2.圆锥的母线长为5,底面半径为3,则其体积为( ) A .15πB .30C .12πD .36πC [圆锥的高h =52-32=4,故V =13π×32×4=12π.]3.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12,则圆锥的体积( )A .缩小为原来的34B .缩小为原来的23C .扩大为原来的2倍D .不变A [设圆锥的高为h ,底面半径为r , 则圆锥的体积V =13πr 2×h ,当圆锥的高扩大为原来的3倍, 底面半径缩短为原来的12时,圆锥的体积V ′=13π×⎝ ⎛⎭⎪⎫12r 2×3h =34×⎝ ⎛⎭⎪⎫13πr 2×h . 所以圆锥的体积缩小为原来的34.故选A .]4.若一个球的直径是12 cm ,则它的体积为________cm 3.288π [由题意,知球的半径R =6 cm ,故其体积V =43πR 3=43×π×63=288π(cm 3).]求柱体的体积【例1】 3 cm ,下面是正六棱柱,其底面边长为4 cm ,高为2 cm ,现从中间挖去一个直径为2 cm 的圆柱,求此几何体的体积.[解] V 六棱柱=34×42×6×2=483(cm 3), V 圆柱=π·32×3=27π(cm 3), V 挖去圆柱=π·12×(3+2)=5π(cm 3),∴此几何体的体积:V =V 六棱柱+V 圆柱-V 挖去圆柱=(483+22π)(cm 3).柱体体积问题的处理方法求解柱体体积问题的关键是能够应用棱柱或圆柱的定义确定底面和高.棱柱的高是两个平行底面间的距离,其中一个平面上的任一点到另一个面的距离都相等,都是高.圆柱的高是其母线长.具体问题中要能准确应用“底面”“高”的定义去求解相关元素.[跟进训练]1.一个正方体的底面积和一个圆柱的底面积相等,且侧面积也相等,求正方体和圆柱的体积之比.[解] 设正方体边长为a ,圆柱高为h ,底面半径为r ,则有⎩⎪⎨⎪⎧ a 2=πr 2,2πrh =4a 2,①②由①得r =ππa , 由②得πrh =2a 2,∴V 圆柱=πr 2h =2ππa 3,∴V 正方体∶V 圆柱=a 3∶⎝⎛⎭⎪⎫2ππa 3=π2∶1=π∶2. 求锥体的体积【例2】 111111三棱锥B A 1B 1C ,三棱锥C A 1B 1C 1的体积之比.[思路探究] AB ∶A 1B 1=1∶2―→S △ABC ∶S △A 1B 1C 1―→ 计算VA 1-ABC ―→计算VC -A 1B 1C 1―→计算VB -A 1B 1C[解] 设棱台的高为h ,S △ABC =S ,∵AB ∶A 1B 1=1∶2,则S △A 1B 1C 1=4S . ∴VA 1ABC =13S △ABC ·h =13Sh ,VC A 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh ,∴VB A 1B 1C =V 台VA 1ABC VC A 1B 1C 1 =73Sh -Sh 3-4Sh 3=23Sh , ∴三棱锥A 1ABC ,B A 1B 1C ,C A 1B 1C 1的体积比为1∶2∶4.割补法与等积法求锥体体积三棱柱、三棱台可以分割成三个三棱锥,分割后可求锥体的体积和柱体或台体的体积关系,割补法在立体几何中是一种重要的方法.另外等积法也是常用的求锥体体积的一种方法.[跟进训练]2.如图所示,正方体ABCD A 1B 1C 1D 1的棱长为1,则三棱锥D ACD 1的体积是( ) A .16 B .13 C .12D .1A [三棱锥D ACD 1的体积VD ACD 1=VD 1ACD =13S △ADC ×D 1D =13×12×AD ×DC ×D 1D =13×12=16.] 求台体的体积【例3】 780 cm 2.求正四棱台的体积.[思路探究] 可以尝试借助四棱台内的直角梯形,求出棱台底面积和高,从而求出体积.[解] 如图所示,正四棱台ABCD A 1B 1C 1D 1中,A 1B 1=10 cm ,AB =20 cm.取A 1B 1的中点E 1,AB 的中点E ,则E 1E 是侧面ABB 1A 1的高.设O 1,O 分别是上、下底面的中心,则四边形EOO 1E 1是直角梯形.由S 侧=4×12(10+20)·E 1E =780,得EE 1=13,在直角梯形EOO 1E 1中,O 1E 1=12A 1B 1=5,OE =12AB =10,∴O 1O =E 1E 2-OE -O 1E 12=12,V 正四棱台=13×12×(102+202+10×20)=2 800 (cm 3).故正四棱台的体积为2 800 cm 3.本例若改为“正四棱台的上、下两底的底面边长分别为2 cm 和4 cm ,侧棱长为2 cm ,”求该棱台的体积.[解] 如图,正四棱台ABCD A 1B 1C 1D 1中,上、下底面边长分别为2 cm 和4 cm , 则O 1B 1= 2 cm ,OB =2 2 cm ,过点B 1作B 1M ⊥OB 于点M ,那么B 1M 为正四棱台的高,在Rt△BMB 1中,BB 1=2 cm ,MB =22-2= 2 (cm).根据勾股定理MB 1=BB 21-MB 2=22-22=2(cm).S 上=22=4 (cm 2),S 下=42=16(cm 2),∴V 正四棱台=13×2×(4+4×16+16)=13×2×28=2823(cm 3). 求台体体积的技巧求台体的体积关键是求出上、下底面的面积和台体的高.要注意充分运用棱台内的直角梯形或圆台的轴截面寻求相关量之间的关系.求球的体积【例4】 AB =BC =CA =3 cm ,求球的体积和表面积.[思路探究] 解决本题要充分利用已知条件,尤其是球半径、截面圆半径和球心距构成的直角三角形.[解] 如图,设过A ,B ,C 三点的截面为圆O ′,连接OO ′、AO 、AO ′.∵AB =BC =CA =3(cm), ∴O ′为正三角形ABC 的中心, ∴AO ′=33AB = 3 (cm). 设OA =R ,则OO ′=12R ,∵OO ′⊥截面ABC , ∴OO ′⊥AO ′, ∴AO ′=32R = 3 (cm),∴R =2(cm), ∴V 球=43πR 3=323π(cm 3),S 球=4πR 2=16π(cm 2).即球的体积为323π cm 3,表面积为16π cm 2.计算球的表面积或体积的关键是确定球的半径R ,一般题目不直接给出球的半径,而是隐藏在某些条件中,解题过程中,一定要注意挖掘隐含条件.[跟进训练]3.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.4 [设球的半径为r ,放入3个球后,圆柱液面高度变为6r . 则有πr 2·6r =8πr 2+3·43πr 3,即2r =8, 所以r =4 cm.] 知识:1.对柱体、锥体、台体的体积公式的四点说明 (1)等底、等高的两个柱体的体积相同.(2)等底、等高的锥体和柱体的体积之间的关系可以通过实验得出,等底、等高的柱体的体积是锥体的体积的3倍.(3)柱体、锥体、台体的体积公式之间的关系(4)求台体的体积转化为求锥体的体积.根据台体的定义进行“补形”,还原为锥体,采用“大锥体”减去“小锥体”的方法求台体的体积.2.球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. (2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.方法:不规则几何体的体积问题的求解策略:若几何体是组合体,可将其分解为若干个“柱、锥、台、球”的基本型,再根据相关公式求解.还有很多的题型主要应用化归与转化的思想化不规则为规则,以“分割”“补形”为工具将不规则图形转化为常见的几何体的形式.1.已知球O 的表面积为16π,则球O 的体积为( ) A .43π B .83π C .163πD .323πD [因为球O 的表面积是16π,所以球O 的半径为2,所以球O 的体积为4π3×23=323π,故选D .]2.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B.2π C.4π D.8π B [设轴截面正方形的边长为a ,由题意知S 侧=πa ·a =πa 2.∴4π=πa 2,a =2. ∴V 圆柱=π×⎝ ⎛⎭⎪⎫a 22×a =2π.]3.若圆锥、圆柱的底面直径和它们的高都等于一个球的直径,则圆锥、圆柱、球的体积之比为( )A .1∶3∶4B .1∶3∶2C .1∶2∶4D .1∶4∶2B [设球的半径为R ,则V 圆锥=13πR 2·2R =23πR 3,V 圆柱=πR 2·2R =2πR 3,V 球=43πR 3.所以V 圆锥∶V 圆柱∶V 球=23∶2∶43=1∶3∶2.]4.如图,四棱锥P ABCD 的底面ABCD 为平行四边形,CE =2EP ,若三棱锥P EBD 的体积为V 1,三棱锥P ABD 的体积为V 2,则V 1V 2的值为________.13[设四棱锥P ABCD 的高为h ,底面ABCD 的面积为S , 则V 2=V P ABD =13×12Sh =16Sh .因为CE =2EP ,所以EP =13PC ,所以V 1=V P EBD =V E PBD =13V C PBD =13V P BCD =13×16Sh =118Sh ,所以V 1V 2=118Sh16Sh =13.]5.一个正三棱锥底面边长为6,侧棱长为15,求这个三棱锥体积. [解] 如图所示,正三棱锥S ABC .设H 为正三角形ABC 的中心,连接SH ,则SH 的长即为该正三棱锥的高.连接AH 并延长交BC 于E ,则E 为BC 的中点,且AE ⊥BC .∵△ABC 是边长为6的正三角形, ∴AE =32×6=33.∴AH =23AE =2 3. 在△ABC 中,S △ABC =12BC ·AE =12×6×33=9 3.在Rt△SHA 中,SA =15,AH =23, ∴SH =SA 2-AH 2=15-12= 3. ∴V 正三棱锥=13S △ABC ·SH =13×93×3=9.。
立体几何八大定理总结
立体几何八大定理总结《立体几何八大定理总结——那些让我又爱又恨的家伙们》嘿,同学们!今天咱就来唠唠立体几何的八大定理。
别小看它们,这可真是让咱又爱又恨呐!先说线面平行定理吧,它就像个调皮的小精灵,总在那儿晃悠,告诉你一条线和平一个面没交点,这线就和那面平行啦。
有时候我就想,这线咋就这么“安分守己”呢,没交点就平行,咋就这么直接呢。
然后是面面平行定理,这俩面平行就像好朋友,有着相同的“性格”,一组相交线分别平行,嘿,它们就平行了。
感觉就像找朋友似的,条件对上号了,就成了。
线面垂直定理可厉害咯,一条线垂直一个面里的两条相交线,它就和这面垂直啦。
就像个超级英雄,只要打倒两条“小怪兽”线,就能征服整个面。
面面垂直定理呢,像两个打架的武林高手,一个面经过另一个面的垂线,它们就扭打在一起啦,形成了垂直。
还记得三垂线定理不?就像是个魔术,斜线在平面上的投影和平面内的一条直线垂直,那斜线和这直线也垂直。
这简直太神奇了吧,有种变戏法的感觉。
体积那些定理也让人印象深刻啊,特别是三棱锥的体积,计算起来就像解谜题一样,找好底和高,就能算出那小块立体空间的大小。
有时候算错了,哎哟,那感觉就像好不容易搭的积木倒了一样。
这些定理啊,有时候就像迷宫里的线索,得好好琢磨,一旦弄明白了,那简直豁然开朗,就像找到了迷宫的出口,爽歪歪!学这些定理的时候,那真是绞尽脑汁,做题做到头大。
但等你真正掌握了,那成就感爆棚啊!感觉自己就是个立体几何小专家。
总之,立体几何八大定理啊,就是我们学习路上的小伙伴,有时候调皮捣蛋让你头疼,但最终会让你变得更强大。
和它们好好相处吧,相信不久的将来,我们都能在立体几何的世界里游刃有余啦!哈哈!现在,同学们,继续加油,和这些定理大战三百回合吧!。
立体几何公式
立体几何公式————————————————————————————————作者: ————————————————————————————————日期:解立体几何有两种方法,一种是几何法,一种是代数法1.几何法顾名思义,就是像初中学平面几何那样,通过空间想象来找角,边。
这种方法比较简单,直观,写的步骤少而且算数容易。
当让对应的要求,你必须有很高的空间想象力。
尤其不要自以为是以为他是直角,就按照直角来算,一定要有根据,要注意一,所要计算的角是否在一个面上。
二,两条边所组成的角是否是一个平面的角三,定理一定要非常的熟练,并且能延伸2.代数法代数法就比较简单了,通过向量建系计算。
攻无不克。
但要注意:一,要仔细,有条理。
算错一个数就全错了。
二,建系的时候,要看清直角关系,尽量找一个三条边都相互垂直的角来建系,,实在没有也最其实立体几何不难,重要的是掌握方法,多练习,多思考遇到的问题主要有:求空间距离;求空间角度(线面角、二面角、异面直线缩成的角)--注意范围遇到问题,主要考虑的有:1、几何法即通常找辅助县。
基本从平行线、中点等方面考虑,进而转化为平面问题。
2、向量法这种方法比较死板,一般有垂直或知道角度时使用。
可用于求角度问题3、坐标法这种方法可用范围较广,须建立空间直角坐标系。
和几何法比较,计算量大,但是思考过程简单,一般有三条直线两两垂直时使用。
在距离、角度等方面都有很好的效果。
我也是高二,立体几何这章学完了,这些都是总结后的一些方法。
基本从这几个方面想问题,大题都一般可以解决。
至於选择填空,就要方法灵活些了。
一点经验,希望有用。
先做个例子,比如怎么解决二面角问题二面角类问题,找二面角的时候,估计百分之八九十都是先找一个面的垂线,再过垂足或与另外一个面的交点向交线做垂线,再连接。
根据三垂线定理就可以证明那两条线的夹角就是二面角了。
说的你可能有点迷糊(我已经迷糊了),给你个题,你看看这个题,应该就明白了这个题我没解出来,但是找到二面角了。
第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥ABCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥PABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥SABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥DABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥AECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ABC =V N ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC A 1B 1C 1的体积为V ,则V =3VB 1ABC =3VA B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABCA1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥PABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥QBCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCDA1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D MAB =V M DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。
高考一轮复习第7章立体几何第2讲空间几何体的表面积与体积
第二讲 空间几何体的表面积与体积知识梳理·双基自测 知识梳理知识点一 柱、锥、台和球的侧面积和体积侧面积 体积圆柱 S 侧=2πrh V =_S 底·h__=πr 2h圆锥 S 侧=_πrl __ V =13S 底·h=13πr 2h =13πr 2l 2-r 2 圆台 S 侧=π(r 1+r 2)l V =13(S 上+S 下+S 上·S 下)·h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=_ch__ V =_S 底h__ 正棱锥 S 侧=12ch′V =13S 底h 正棱台 S 侧=12(c +c′)h′V =13(S 上+S 下+S 上·S 下)h 球S 球面=_4πR 2V =43πR 3 (1)棱柱、棱锥、棱台的表面积就是_各面面积之和__.(2)圆柱、圆锥、圆台的侧面展开图分别是_矩形__、_扇形__、_扇环形__;它们的表面积等于_侧面积__与底面面积之和.重要结论1.长方体的外接球:球心:体对角线的交点;半径:r =_a 2+b 2+c22__(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球: (1)外接球:球心是正方体中心;半径r =_32a__(a 为正方体的棱长); (2)内切球:球心是正方体中心;半径r =_a2__(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体中心;半径r =_22a__(a 为正方体的棱长). 3.正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):(1)外接球:球心是正四面体的中心;半径r =_64a__(a 为正四面体的棱长); (2)内切球:球心是正四面体的中心;半径r =_612a__(a 为正四面体的棱长). 双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)台体的体积可转化为两个锥体的体积之差.( √ ) (3)锥体的体积等于底面积与高之积.( × )(4)已知球O 的半径为R ,其内接正方体的棱长为a ,则R =32a.( √ ) (5)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 题组二 走进教材2.(必修2P 27T1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( B ) A .1 cm B .2 cm C .3 cmD .32cm [解析] 由条件得:⎩⎪⎨⎪⎧πrl+πr 2=12π2πrl =π,∴3r 2=12,∴r =2.题组三 走向高考3.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( C ) A .12π B .24π C .36πD .144π[解析] 这个球是正方体的外接球,其半径等于正方体的体对角线长的一半, 即R =232+232+2322=3,所以,这个球的表面积为S =4πR 2=4π×32=36π.故选:C .4.(2018·课标全国Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π[解析] 设圆柱底面半径为r ,则4r 2=8,即r 2=2.∴S 圆柱表面积=2πr 2+4πr 2=12π.5.(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( A )A .73 B .143C .3D .6[解析] 由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面.棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:13×⎝ ⎛⎭⎪⎫12×2×1×1+⎝ ⎛⎭⎪⎫12×2×1×2=13+2=73.故选:A .考点突破·互动探究考点一 几何体的表面积——自主练透例1 (1)(2021·北京模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( C )A .2+ 5B .4+ 5C .2+2 5D .5(2)(2021·安徽江南十校联考)已知某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( B )A .78-9π2B .78-9π4C .78-πD .45-9π2(3)(多选题)(2021·山东潍坊期末)等腰直角三角形直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( AB )A .2πB .(1+2)πC .22πD .(2+2)π[解析] (1)由三视图知,该几何体是底面为等腰三角形,其中一条侧棱与底面垂直的三棱锥(SA ⊥平面ABC),如图所示,由三视图中的数据可计算得S △ABC =12×2×2=2,S △SAC =12×5×1=52,S △SAB =12×5×1=52,S △SBC =12×2×5=5,所以S 表面积=2+2 5.故选C .(2)由三视图可知该几何体是一个长方体中挖去一个18球,如图所示.∴S =3×3×2+3×5×4-27π4+9π2=78-94π.故选B .(3)若绕直角边旋转一周形成的几何体是圆锥,其表面积为π+2π;若绕斜边旋转一周形成的几何体是两同底圆锥构成的组合体,其表面积为2π,故选A 、B .名师点拨空间几何体表面积的求法(1)旋转体的表面积问题注意其轴截面及侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.〔变式训练1〕(2020·河南开封二模)已知某个几何体的三视图如图所示,根据图中标出的数据,可得出这个几何体的表面积是( C )A .6B .8+4 6C .4+2 6D .4+ 6[解析] 由三视图得几何体如图所示,该几何体是一个三棱锥,底面是一个底和高均为2的等腰三角形,一个侧面是一个底和高均为2的等腰三角形,另外两个侧面是腰长为AC =AB =22+12=5, 底边AD 长为22的等腰三角形, 其高为52-22=3,故其表面积为S =2×12×22+2×12×22×3=4+2 6.故选C .考点二 几何体的体积——师生共研例2 (1)(2021·浙江金色联盟百校联考)一个空间几何体的三视图(单位:cm)如图所示,则该几何体的体积为( )cm 3.( A )A .π6+13B .π3+16C .π6+16D .π3+13(2)(2021·云南师大附中月考)如图,某几何体的三视图均为边长为2的正方形,则该几何体的体积是( D )A .56 B .83 C .1D .163(3)(2021·湖北武汉部分学校质检)某圆锥母线长为4,其侧面展开图为半圆面,则该圆锥体积为_83π3__.(4)(2020·江苏省南通市通州区)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上一点,且C 1P =2PC .设三棱锥P - D 1DB 的体积为V 1,正四棱柱ABCD -A 1B 1C 1D 1的体积为V ,则V 1V 的值为_16__.[解析] (1)由三视图可知该几何体是由底面半径为1 cm ,高为1 cm 的半个圆锥和三棱锥S -ABC 组成的,如图,三棱锥的高为SO =1 cm ,底面△ABC 中,AB =2 cm ,AC =1 cm ,AB ⊥AC .故其体积V =13×12×π×12×1+13×12×2×1×1=⎝ ⎛⎭⎪⎫π6+13cm 3.故选A .(2)由题意三视图对应的几何体如图所示,所以几何体的体积为正方体的体积减去2个三棱锥的体积,即V =23-2×13×12×2×2×2=163,故选D .(3)该圆锥母线为4,底面半径为2,高为23, V =13×π×22×23=83π3. (4)设正四棱柱ABCD -A 1B 1C 1D 1的底面边长AB =BC =a ,高AA 1=b , 则VABCD -A 1B 1C 1D 1=S 四边形ABCD ×AA 1=a 2b ,VP -D 1DB =VB -D 1DP =13S △D 1DP·BC=13×12ab·a=16a 2b ,∴VP -D 1DB VABCD -A 1B 1C 1D 1=16,即V 1V =16.[引申]若将本例(2)中的俯视图改为,则该几何体的体积为_83__,表面积为_83__.[解析] 几何体为如图所示的正三棱锥(棱长都为22). ∴V =8-4×43=83,S =4×34×(22)2=8 3.名师点拨求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体 积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换注:若以三视图的形式给出的几何体问题,应先得到直观图,再求解. 〔变式训练2〕(1)(2020·海南)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为_13__.(2)(2021·开封模拟)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( C )A .3B .32 C .1D .32(3)(2017·浙江)某三棱锥的三视图如图所示,则该三棱锥的体积为( A )A .16 B .13 C .12D .1(4)(2021·浙北四校模拟)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( B )A .8B .8πC .16D .16π[解析] (1)如图,∵正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,∴S △ANM =12×1×1=12,∴VA -NMD 1=VD 1-AMN =13×12×2=13,故答案为:13.(2)如题图,在正△ABC 中,D 为BC 的中点,则有AD =32AB =3,又因为平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,所以V 三棱锥A -B 1DC 1=13·S△B 1DC 1·AD=13×12×2×3×3=1,故选C .(3)由三视图可画出三棱锥的直观图如图所示.其底面是等腰直角三角形ACB ,直角边长为1,三棱锥的高为1,故体积V =13×12×1×1×1=16.故选A .(4)由三视图的图形可知,几何体是等边圆柱斜切一半,所求几何体的体积为:12×22π×4=8π.故选B .考点三 球与几何体的切、接问题——多维探究角度1 几何体的外接球例3 (1)(2021·河南中原名校质量测评)已知正三棱锥P -ABC 的底面边长为3,若外接球的表面积为16π,则PA =_23或2__.(2)(2020·新课标Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( A )A .64πB .48πC .36πD .32π(3)(2019·全国)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为( D )A .86πB .46πC .26πD .6π[解析] (1)由外接球的表面积为16π,可得其半径为2,设△ABC 的中心为O 1,则外接球的球心一定在PO 1上,由正三棱锥P -ABC 的底面边长为3,得AO 1=3,在Rt △AOO 1中,由勾股定理可得(PO 1-2)2+(3)2=22,解得PO 1=3或PO 1=1,又PA 2=PO 21+AO 21,故PA =9+3=23或PA =1+3=2,故答案为:23或2.(2)由题意可知图形如图:⊙O 1的面积为4π, 可得O 1A =2, 则ABsin60°=2O 1A =4,∴AB =4sin60°=23,∴AB=BC=AC=OO1=23,外接球的半径为:R=AO21+OO21=4,球O的表面积为:4×π×42=64π,故选A.(3)∵PA=PB=PC,△ABC为边长为2的等边三角形,∴P-ABC为正三棱锥,∴PB⊥AC,又E,F分别为PA、AB中点,∴EF∥PB,∴EF⊥AC,又EF⊥CE,CE∩AC=C,∴EF⊥平面PAC,∴PB⊥平面PAC,∴∠APB=90°,∴PA=PB=PC=2,∴P-ABC为正方体一部分,2R=2+2+2=6,即R=62,∴V=43πR3=43π×668=6π.名师点拨几何体外接球问题的处理(1)解题关键是确定球心和半径,其解题思维流程是:(R—球半径,r—截面圆的半径,h—球心到截面圆心的距离).注:若截面为非特殊三角形可用正弦定理求其外接圆半径r.(2)三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.注意:不共面的四点确定一个球面.角度2 几何体的内切球例4 (1)(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_23π__. (2)(2021·安徽蚌埠质检)如图,E ,F 分别是正方形ABCD 的边AB ,AD 的中点,把△AEF ,△CBE ,△CFD 折起构成一个三棱锥P -CEF(A ,B ,D 重合于P 点),则三棱锥P -CEF 的外接球与内切球的半径之比是_26__.[解析] (1)因为圆锥内半径最大的球应该为该圆锥的内切球, 如图,圆锥母线BS =3,底面半径BC =1, 则其高SC =BS 2-BC 2=22, 不妨设该内切球与母线BS 切于点D , 令OD =OC =r ,由△SOD ∽△SBC ,则OD OS =BCBS ,即r22-r =13,解得r =22,V =43πr 3=23π,故答案为:23π.(2)不妨设正方形的边长为2a ,由题意知三棱锥P -CEF 中PC 、PF 、PE 两两垂直,∴其外接球半径R =PC 2+PF 2+PE 22=62a ,下面求内切球的半径r ,解法一(直接法):由几何体的对称性知,内切球的球心在平面PCH(H 为EF 的中点)内,M 、N 、R 、S 为球与各面的切点,又22=tan ∠CHP =tan2∠OHN , ∴tan ∠OHN =22=rNH,∴NH =2r , 又PN =2r ,∴22r =PH =22a ,∴r =a 4. 解法二(体积法):V C -PEF =13r·(S △PEF +S △PCE +S △PCF +S △CEF ),∴a 3=r·⎝ ⎛⎭⎪⎫a 22+a 2+a 2+2a 2×32a 2,∴r =a 4,故R r =6a 2·4a=2 6.名师点拨几何体内切球问题的处理(1)解题时常用以下结论确定球心和半径:①球心在过切点且与切面垂直的直线上;②球心到各面距离相等.(2)利用体积法求多面体内切球半径. 〔变式训练3〕(1)(角度1)(2020·南宁摸底)三棱锥P -ABC 中,△ABC 为等边三角形,PA = PB = PC =3,PA ⊥PB ,三棱锥P -ABC 的外接球的体积为( B )A .27π2B .273π2C .273πD .27π(2)(角度1)(2021·山西运城调研)在四面体ABCD 中,AB =AC =23,BC =6,AD ⊥平面ABC ,四面体ABCD 的体积为 3.若四面体ABCD 的顶点均在球O 的表面上,则球O 的表面积是( B )A .49π4B .49πC .49π2D .4π(3)(角度2)棱长为a 的正四面体的体积与其内切球体积之比为_63π__.[解析] (1)因为三棱锥P -ABC 中,△ABC 为等边三角形,PA =PB =PC =3,所以△PAB ≌△PBC ≌△PAC .因为PA ⊥PB ,所以PA ⊥PC ,PC ⊥PB .以PA ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝ ⎛⎭⎪⎫3323=273π2.故选B .(2)如图,H 为BC 的中点,由题意易知AH =3,设△ABC 外接圆圆心为O 1,则|O 1C|2=32+(3-|O 1C|)2,∴|O 1C|=23,又12×6×3×|AD|3=3,∴|AD|=1,则|OA|2=|O 1C|2+⎝ ⎛⎭⎪⎫122=494,∴S 球O =4πR 2=49π,故选B .(3)如图,将正四面体纳入正方体中,显然正四面体内切球的球心O(也是外接球的球心)、△BCD 的中心O 1都在正方体的对角线上,设正四面体的棱长为a ,则|AO|=64a ,又|O 1A|=a 2-⎝⎛⎭⎪⎫33a 2=63a ,∴内切球半径|OO 1|=612a ,∴V 正四面体V 内切球=13×34a 2×63a4π3⎝ ⎛⎭⎪⎫612a 3=63π.名师讲坛·素养提升 最值问题、开放性问题例5 (1)(最值问题)(2018·课标全国Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .54 3(2)(2021·四川凉山州模拟)已知长方体ABCD -A 1B 1C 1D 1的体积V =12,AB =2,若四面体A -B 1CD 1的外接球的表面积为S ,则S 的最小值为( C )A .8πB .9πC .16πD .32π[解析] (1)设等边△ABC 的边长为a ,则有S △ABC =12a·a·sin 60°=93,解得a =6.设△ABC 外接圆的半径为r ,则2r =6sin 60°,解得r =23,则球心到平面ABC 的距离为42-232=2,所以点D 到平面ABC 的最大距离为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=183,故选B .(2)设BC =x ,BB 1=y ,由于V =12,所以xy =6.根据长方体的对称性可知四面体A -B 1CD 1的外接球即为长方体的外接球, 所以r =4+x 2+y22,所以S =4πr 2=π(4+x 2+y 2)≥π(4+2xy)=16π, (当且仅当x =y =6,等号成立). 故选C .名师点拨立体几何中最值问题的解法(1)观察图形特征,确定取得最值的条件,计算最值.(2)设出未知量建立函数关系,利用基本不等式或导数计算最值.例6 (开放性问题)若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值为_116⎝ ⎛⎭⎪⎫或1412等__(只需写一个可能值). [解析] 如图,若AB =AC =BD =CD =AD =2,BC =1,取AD 的中点H ,则CH =BH =3,且AH ⊥平面BCH ,又S △BCH =114,∴V A -BCD =13S △BCH ×2=116. 如图,若AB =AC =BD =CD =2,AD =BC =1,同理可求得V A -BCD =1412.〔变式训练4〕(2021·河南阶段测试)四面体ABCD 中,AC ⊥AD ,AB =2AC =4,BC =25,AD =22,当四面体的体积最大时,其外接球的表面积是_28π__.[解析] 由已知可得BC 2=AC 2+AB 2,所以AC ⊥AB ,又因为AC ⊥AD ,所以AC ⊥平面ABD ,四面体ABCD 的体积V =13AC·12AB·ADsin∠BAD ,当∠BAD =90°时V 最大,把四面体ABCD 补全为长方体,则它的外接球的直径2R 即长方体的体对角线,(2R)2=AD 2+AC 2+AB 2=28,所以外接球的表面积为4πR 2=28π.。
立体几何的计算定理
立体几何的计算定理立体几何是研究空间物体的形状、大小、位置和运动等性质的一门数学学科。
在立体几何中,存在着一些重要的计算定理,它们能够帮助我们准确计算立体图形的各种参数和性质。
本文将介绍一些常用的立体几何计算定理。
一、体积计算定理体积是描述立体图形容积大小的量。
在立体几何中,我们常用以下定理来计算体积。
1. 平行四边形棱柱的体积计算定理:平行四边形棱柱的体积等于底面积与高的乘积。
2. 直方体的体积计算定理:直方体的体积等于底面积与高的乘积。
3. 圆柱体的体积计算定理:圆柱体的体积等于底面积与高的乘积。
4. 锥体的体积计算定理:锥体的体积等于底面积与高的乘积的三分之一。
5. 球体的体积计算定理:球体的体积等于四分之三乘以半径的立方。
二、表面积计算定理表面积是描述立体图形外部覆盖的面积的量。
在立体几何中,我们常用以下定理来计算表面积。
1. 正方体的表面积计算定理:正方体的表面积等于底面积的六倍。
2. 矩形长方体的表面积计算定理:矩形长方体的表面积等于底面积的两倍加上底面积形成的四个侧面的面积。
3. 圆柱体的表面积计算定理:圆柱体的表面积等于底面积的两倍加上底面积与高的乘积的两倍。
4. 球体的表面积计算定理:球体的表面积等于四乘以半径的平方。
三、欧拉定理欧拉定理是立体几何中的一个重要定理,它描述了一个立体图形的顶点、棱边和面的关系。
欧拉定理可以表述为:一个立体图形的顶点数加上面的数目,再减去边的数目等于2。
欧拉定理在立体几何的计算中具有重要的作用,可以用来检验计算结果的准确性,或者通过已知的参数来计算未知的参数。
四、平行四边形定理平行四边形定理是立体几何中关于平行四边形的性质和关系的定理。
其中一条重要的定理是平行四边形的对角线等分的定理,即平行四边形的对角线相交于一个点,且该点把对角线分成两段,两段长度相等。
平行四边形定理可以用来证明或计算平行四边形的各种性质,例如四边形的面积、周长、对角线长等。
五、球面上的计算定理在球面上,也存在一些与计算相关的定理。
专题七 立体几何——高考数学公式定律速记清单
专题七 立体几何——高考数学公式定律速记清单(一)空间几何体的表面积与体积 1.棱柱体积:V Sh 棱柱=.(S 为底面积,h 为高) 表面积:2S S S 侧面棱柱底面=+ 2.棱锥体积:V Sh 棱锥=. (S 为底面积,h 为高) 表面积:S S S 侧面棱锥底面=+ 3.棱台体积:1S')3(V h S 棱台= (S 、S'为底面积,h 为高)表面积:S S S S 侧面棱台上底下底=++ 4.圆柱体积:2V r h π圆柱= (r 为底面半径,h 为高)表面积:222S rl r ππ圆柱=+.(r 为底面半径,l 为母线长) 5.圆锥体积:213V r h π圆锥= (r 为底面半径,h 为高)表面积:2S rl r ππ圆锥=+.(r 为底面半径,l 为母线长)6.圆台体积:22()13V h r rr r π''圆台=++ (r 、r ′为底面半径,h 为高)表面积:22()S r r l r r πππ''圆台=+++ 7.球体积:343V R π球= (R 为球的半径)表面积:24S R π球=8.多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P、A、B、C构成的三条线段P A、PB、PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(二)点,直线,平面之间的位置关系1.线面平行与垂直的判定与性质2.面面平行与垂直的判定与性质时和第三个平面相交,(三)利用空间向量证明平行与垂直关系 1.利用向量方法证明平行与垂直设直线l ,m 的方向向量分别为111222()()=,,,=,,a a b c b a b c .平面αβ,的法向量分别为333444()()μ=,,,=,,a b c v a b c . (1)线线平行l m 121212⇔⇔⇔b a b c ==,=,=a b a k a k b k c k .(2)线线垂直l m ⊥121212·00⇔⊥⇔⇔=++=a b a b a a b b c c (3)线面平行l α131313·00μμ⇔⊥⇔⇔=++=.a a a a b b c c (4)线面垂直l α⊥13133μ⇔⇔⇔μa b c ==,=,=a a k a k b k c k . (5)面面平行αβ343434μμ⇔⇔⇔v a b c ==,=,=.v k a k b k c k (6)面面垂直αβ⊥343434·00μμ⇔⊥⇔⇔=++=v v a a b b c c . 2.向量法求空间角(1)异面直线所成的角:设,a b 分别为异面直线a ,b 的方向向量,则两异面直线所成的角满足cos θ||||||⋅=a b a b . (2) 线面角设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角满足sin θ=||||||⋅c n c n . (3)二面角①如图(ⅰ),AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小AB CD θ=〈,〉.②如图(ⅰ)(ⅰ),12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足12θ=〈,〉cos cos n n 或12-〈,〉cos n n .(4)点到平面的距离的向量求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离⋅=AB n d n.3.模、夹角和距离公式(1) 设123123()()=,,,=,,a a a a b b b b ,则222123·==a a a a a a ,222123·==b b b b b b ,||||⋅=〈,〉=a b c a a b b os112233222223123122++a b a b a ba a ab b b .(2) 距离公式设111222()()A x y z B x y z ,,,,,,则222121212()()()AB x x y y z z =-+-+- 4.利用空间向量求线线角、线面角的思路(1)异面直线所成的角θ,可以通过两直线的方向向量的夹角ϕ求得,即cos cos θϕ=.(2)直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cos θϕ=.5.利用空间向量求二面角的思路二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.6.利用空间向量求点到平面距离的方法如图,设A 为平面α内的一点,B 为平面α外的一点,n 为平面α的法向量,则B 到平面α的距离⋅=AB n d n.。
空间几何体各考点
空间几何体[考情分析] 空间几何体的结构特征是立体几何的基础,空间几何体的表面积和体积是高考的重点与热点,多以选择题、填空题的形式考查,难度中等或偏上.考点一 空间几何体的折展问题核心提炼空间几何体的侧面展开图 1.圆柱的侧面展开图是矩形. 2.圆锥的侧面展开图是扇形. 3.圆台的侧面展开图是扇环.例1 (1)“莫言下岭便无难,赚得行人空喜欢.”出自南宋诗人杨万里的作品《过松源晨炊漆公店》.如图是一座山的示意图,山大致呈圆锥形,山脚呈圆形,半径为40 km ,山高为4015 km ,B 是山坡SA 上一点,且AB =40 km.为了发展旅游业,要建设一条从A 到B 的环山观光公路,这条公路从A 出发后先上坡,后下坡,当公路长度最短时,下坡路段长为( )A .60 kmB .12 6 kmC .72 kmD .1215 km答案 C解析 该圆锥的母线长为(4015)2+402=160, 所以圆锥的侧面展开图是圆心角为2×π×40160=π2的扇形,如图,展开圆锥的侧面,连接A ′B ,由两点之间线段最短,知观光公路为图中的A ′B ,A ′B =SA ′2+SB 2=1602+1202=200, 过点S 作A ′B 的垂线,垂足为H ,记点P 为A ′B 上任意一点,连接PS ,当上坡时,P 到山顶S 的距离PS 越来越小,当下坡时,P 到山顶S 的距离PS 越来越大, 则下坡段的公路为图中的HB , 由Rt △SA ′B ∽Rt △HSB , 得HB =SB 2A ′B =1202200=72(km).(2)(2022·深圳检测)如图,在三棱锥P -ABC 的平面展开图中,AC =3,AB =1,AD =1,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB 等于( )A.12B.13C.35D.34 答案 D解析 由题意知,AE =AD =AB =1,BC =2, 在△ACE 中,由余弦定理知, CE 2=AE 2+AC 2-2AE ·AC ·cos ∠CAE =1+3-2×1×3×32=1, ∴CE =CF =1,而BF =BD =2,BC =2, ∴在△BCF 中,由余弦定理知,cos ∠FCB =BC 2+CF 2-BF 22BC ·CF =4+1-22×2×1=34.规律方法 空间几何体最短距离问题,一般是将空间几何体展开成平面图形,转化成求平面中两点间的最短距离问题,注意展开后对应的顶点和边.跟踪演练1 (1)(多选)如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A.C∈GHB.CD与EF是共面直线C.AB∥EFD.GH与EF是异面直线答案ABD解析由图可知,还原正方体后,点C与G重合,即C∈GH,又可知CD与EF是平行直线,即CD与EF是共面直线,AB与EF是相交直线(点B与点F 重合),GH与EF是异面直线,故A,B,D正确,C错误.(2)如图,在正三棱锥P-ABC中,∠APB=∠BPC=∠CP A=30°,P A=PB=PC=2,一只虫子从A点出发,绕三棱锥的三个侧面爬行一周后,又回到A点,则虫子爬行的最短距离是()A.3 2 B.3 3C.2 3 D.2 2答案 D解析将三棱锥由P A展开,如图所示,则∠AP A1=90°,所求最短距离为AA1的长度,∵P A=2,∴由勾股定理可得AA 1=22+22=2 2.∴虫子爬行的最短距离为2 2.考点二 表面积与体积核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式(1)V 柱=Sh (S 为底面面积,h 为高). (2)V 锥=13Sh (S 为底面面积,h 为高).(3)V 台=13(S 上+S 上·S 下+S 下)h (S 上,S 下为底面面积,h 为高).(4)V 球=43πR 3(R 为球的半径).例2 (1)(2022·全国甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙等于( )A. 5 B .2 2 C.10 D.5104答案 C解析 方法一 因为甲、乙两个圆锥的母线长相等,所以结合S 甲S 乙=2,可知甲、乙两个圆锥侧面展开图的圆心角之比是2∶1.不妨设两个圆锥的母线长为l =3,甲、乙两个圆锥的底面半径分别为r 1,r 2,高分别为h 1,h 2,则由题意知,两个圆锥的侧面展开图刚好可以拼成一个周长为6π的圆, 所以2πr 1=4π,2πr 2=2π,得r 1=2,r 2=1. 由勾股定理得,h 1=l 2-r 21=5,h 2=l 2-r 22=22, 所以V 甲V 乙=13πr 21h113πr 22h 2=4522=10.方法二 设两圆锥的母线长为l ,甲、乙两圆锥的底面半径分别为r 1,r 2,高分别为h 1,h 2,侧面展开图的圆心角分别为n 1,n 2, 则由S 甲S 乙=πr 1l πr 2l =n 1πl 22πn 2πl 22π=2,得r 1r 2=n 1n 2=2. 由题意知n 1+n 2=2π, 所以n 1=4π3,n 2=2π3,所以2πr 1=4π3l ,2πr 2=2π3l ,得r 1=23l ,r 2=13l .由勾股定理得,h 1=l 2-r 21=53l , h 2=l 2-r 22=223l , 所以V 甲V 乙=13πr 21h113πr 22h 2=4522=10.(2)(多选)(2022·新高考全国Ⅱ)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED ,AB =ED =2FB .记三棱锥E -ACD ,F -ABC ,F -ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 1答案 CD解析 如图,连接BD 交AC 于O ,连接OE ,OF .设AB =ED =2FB =2,则AB =BC =CD =AD =2, FB =1.因为ED ⊥平面ABCD ,FB ∥ED , 所以FB ⊥平面ABCD ,所以V 1=V E -ACD =13S △ACD ·ED =13×12AD ·CD ·ED =13×12×2×2×2=43,V 2=V F -ABC =13S △ABC ·FB =13×12AB ·BC ·FB =13×12×2×2×1=23.因为ED ⊥平面ABCD ,AC ⊂平面ABCD , 所以ED ⊥AC , 又AC ⊥BD ,且ED ∩BD =D ,ED ,BD ⊂平面BDEF ,所以AC ⊥平面BDEF . 因为OE ,OF ⊂平面BDEF , 所以AC ⊥OE ,AC ⊥OF . 易知AC =BD =2AB =22, OB =OD =12BD =2,OF =OB 2+FB 2=3, OE =OD 2+ED 2=6, EF =BD 2+(ED -FB )2 =(22)2+(2-1)2=3,所以EF 2=OE 2+OF 2,所以OF ⊥OE . 又OE ∩AC =O ,OE ,AC ⊂平面ACE , 所以OF ⊥平面ACE , 所以V 3=V F -ACE =13S △ACE ·OF=13×12AC ·OE ·OF =13×12×22×6×3=2, 所以V 3≠2V 2,V 1≠V 3,V 3=V 1+V 2,2V 3=3V 1, 所以选项A ,B 不正确,选项C ,D 正确. 规律方法 空间几何体的表面积与体积的求法(1)公式法:对于规则的几何体直接利用公式进行求解.(2)割补法:把不规则的图形分割成规则的图形,或把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体.(3)等体积法:选择合适的底面来求体积.跟踪演练2 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为( ) A .802π B .40 C .402π D .405π答案 C解析 由圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,可得sin ∠ASB =1-⎝⎛⎭⎫782=158, 又△SAB 的面积为515, 可得12SA 2sin ∠ASB =515,即12SA 2×158=515,可得SA =45, 由SA 与圆锥底面所成角为45°, 可得圆锥的底面半径为22×45=210, 则该圆锥的侧面积为π×210×45=402π.(2)(2022·连云港模拟)如图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A.72π24B.73π24C.72π12D.73π12答案 B解析 如图,设上底面的半径为r ,下底面的半径为R ,高为h ,母线长为l ,则2πr =π·1,2πR =π·2, 解得r =12,R =1,l =2-1=1, h =l 2-(R -r )2=12-⎝⎛⎭⎫122=32,上底面面积S ′=π·⎝⎛⎭⎫122=π4, 下底面面积S =π·12=π,则该圆台的体积为13(S +S ′+SS ′)h =13×⎝⎛⎭⎫π+π4+π2×32=73π24. 考点三 多面体与球核心提炼求空间多面体的外接球半径的常用方法(1)补形法:侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 例3 (1)(2022·烟台模拟)如图,三棱锥V -ABC 中,VA ⊥底面ABC ,∠BAC =90°,AB =AC =VA =2,则该三棱锥的内切球和外接球的半径之比为( )A .(2-3)∶1B .(23-3)∶1C .(3-1)∶3D .(3-1)∶2答案 C解析 因为VA ⊥底面ABC ,AB ,AC ⊂底面ABC , 所以VA ⊥AB ,VA ⊥AC , 又因为∠BAC =90°,所以AB ⊥AC ,而AB =AC =VA =2,所以三条互相垂直且共顶点的棱,可以看成正方体中共顶点的长、宽、高,因此该三棱锥外接球的半径R =12×22+22+22=3,设该三棱锥的内切球的半径为r , 因为∠BAC =90°,所以BC =AB 2+AC 2=22+22=22, 因为VA ⊥AB ,VA ⊥AC ,AB =AC =VA =2, 所以VB =VC =VA 2+AB 2=22+22=22, 由三棱锥的体积公式可得,3×13×12×2×2·r +13×12×22×22×32·r =13×12×2×2×2⇒r =3-33, 所以r ∶R =3-33∶3=(3-1)∶3.(2)(2022·新高考全国Ⅱ)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π答案 A解析 由题意,得正三棱台上、下底面的外接圆的半径分别为23×32×33=3,23×32×43=4.设该棱台上、下底面的外接圆的圆心分别为O 1,O 2,连接O 1O 2(图略),则O 1O 2=1,其外接球的球心O 在直线O 1O 2上.设球O 的半径为R ,当球心O 在线段O 1O 2上时,R 2=32+OO 21=42+(1-OO 1)2,解得OO 1=4(舍去);当球心O 不在线段O 1O 2上时,R 2=42+OO 22=32+(1+OO 2)2,解得OO 2=3,所以R 2=25,所以该球的表面积为4πR 2=100π. 综上,该球的表面积为100π.规律方法 (1)求锥体的外接球问题的一般方法是补形法,把锥体补成正方体、长方体等求解. (2)求锥体的内切球问题的一般方法是利用等体积法求半径.跟踪演练3 (1)(2022·全国乙卷)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( ) A.13 B.12 C.33D.22答案 C解析 该四棱锥的体积最大即以底面截球的圆面和顶点O 组成的圆锥体积最大. 设圆锥的高为h (0<h <1),底面半径为r , 则圆锥的体积V =13πr 2h =13π(1-h 2)h ,则V ′=13π(1-3h 2),令V ′=13π(1-3h 2)=0,得h =33,所以V =13π(1-h 2)h 在⎝⎛⎭⎫0,33上单调递增,在⎝⎛⎭⎫33,1上单调递减,所以当h =33时,四棱锥的体积最大. (2)(2022·衡水中学调研)将两个一模一样的正三棱锥共底面倒扣在一起,已知正三棱锥的侧棱长为2,若该组合体有外接球,则正三棱锥的底面边长为________,该组合体的外接球的体积为________. 答案6 823π 解析 如图,连接P A 交底面BCD 于点O ,则点O 就是该组合体的外接球的球心.设三棱锥的底面边长为a , 则CO =PO =R =33a , 得2×33a =2, 所以a =6,R =2, 所以V =43π·(2)3=823π.专题强化练一、单项选择题1.(2022·唐山模拟)圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( ) A .1∶1 B .1∶2 C .2∶1 D .2∶3答案 A解析 设球的半径为r ,依题意知圆柱的底面半径也是r ,高是2r ,圆柱的侧面积为2πr ·2r =4πr 2,球的表面积为4πr 2,其比例为1∶1.2.(2021·新高考全国Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .2 2C .4D .4 2 答案 B解析 设圆锥的母线长为l ,因为该圆锥的底面半径为2,所以2π×2=πl ,解得l =2 2. 3.某同学为表达对“新冠疫情”抗疫一线医护人员的感激之情,亲手为他们制作了一份礼物,用正方体纸盒包装,并在正方体六个面上分别写了“致敬最美逆行”六个字.该正方体纸盒水平放置的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如图是该正方体的展开图.若图中“致”在正方体的后面,那么在正方体前面的字是( )A .最B .美C .逆D .行 答案 B解析 把正方体的表面展开图再折成正方体,如图,面“致”与面“美”相对,若“致”在正方体的后面,那么在正方体前面的字是“美”.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,则三棱锥A -B 1CD 1的体积为( ) A.43 B.83 C .4 D .6 答案 B解析 如图,三棱锥A -B 1CD 1是由正方体ABCD -A 1B 1C 1D 1截去四个小三棱锥A -A 1B 1D 1,C -B 1C 1D 1,B 1-ABC ,D 1-ACD 形成的,又1111ABCD A B C D V -=23=8,11111111A A B D C B C D B ABC D ACD V V V V ----====13×12×23=43, 所以11A B CD V -=8-4×43=83.5.(2022·河南联考)小李在课间玩耍时不慎将一个篮球投掷到一个圆台状垃圾篓中,恰好被上底口(半径较大的圆)卡住,球心到垃圾篓底部的距离为510a ,垃圾篓上底面直径为24a ,下底面直径为18a ,母线长为13a ,则该篮球的表面积为( ) A .154πa 2 B.6163πa 2 C .308πa 2 D .616πa 2答案 D解析 球与垃圾篓组合体的轴截面图如图所示.根据题意,设垃圾篓的高为h ,则h =(13a )2-(12a -9a )2=410a . 所以球心到上底面的距离为10a . 设篮球的半径为r , 则r 2=10a 2+(12a )2=154a 2. 故篮球的表面积为4πr 2=616πa 2.6.(2022·湖北联考)定义:24小时内降水在平地上积水厚度(mm)来判断降雨程度.其中小雨(<10 mm),中雨(10 mm ~25 mm),大雨(25 mm ~50 mm),暴雨(50 mm ~100 mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )A .小雨B .中雨C .大雨D .暴雨答案 B解析 由题意知,一个半径为2002=100(mm)的圆面内的降雨充满一个底面半径为2002×150300=50(mm),高为150(mm)的圆锥,所以积水厚度d =13π×502×150π×1002=12.5(mm),属于中雨.7.(2022·八省八校联考)如图,已知正四面体ABCD 的棱长为1,过点B 作截面α分别交侧棱AC ,AD 于E ,F 两点,且四面体ABEF 的体积为四面体ABCD 体积的13,则EF 的最小值为( )A.22 B.32 C.13 D.33答案 D解析 由题知V B -AEF =13V B -ACD ,所以S △AEF =13S △ACD =13×12×1×1×32=312,记EF =a ,AE =b ,AF =c , 则12bc sin 60°=312,即bc =13. 则a 2=b 2+c 2-2bc cos 60°≥2bc -bc =bc =13,当且仅当b =c =33时取等号,所以a 即EF 的最小值为33. 8.(2022·新高考全国Ⅰ)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤33,则该正四棱锥体积的取值范围是( ) A.⎣⎡⎦⎤18,814 B.⎣⎡⎦⎤274,814 C.⎣⎡⎦⎤274,643 D .[18,27]答案 C解析 方法一 如图,设该球的球心为O ,半径为R ,正四棱锥的底面边长为a ,高为h ,依题意,得36π=43πR 3,解得R =3.由题意及图可得⎩⎨⎧l 2=h 2+⎝⎛⎭⎫22a 2,R 2=(h -R )2+⎝⎛⎭⎫22a 2,解得⎩⎨⎧h =l 22R =l 26,a 2=2l 2-l418,所以正四棱锥的体积V =13a 2h=13⎝⎛⎭⎫2l 2-l 418·l 26=l 418⎝⎛⎭⎫2-l 218(3≤l ≤33), 所以V ′=49l 3-l 554=19l 3⎝⎛⎭⎫4-l 26(3≤l ≤33).令V ′=0,得l =26, 所以当3≤l <26时,V ′>0; 当26<l ≤33时,V ′<0,所以函数V =l 418⎝⎛⎭⎫2-l 218(3≤l ≤33)在[3,26)上单调递增,在(26,33]上单调递减,又当l =3时,V =274;当l =26时,V =643;当l =33时,V =814,所以该正四棱锥的体积的取值范围是⎣⎡⎦⎤274,643.方法二 如图,设该球的球心为O ,半径为R ,正四棱锥的底面边长为a ,高为h ,依题意,得36π=43πR 3,解得R =3.由题意及图可得⎩⎨⎧l 2=h 2+⎝⎛⎭⎫22a 2,R 2=(h -R )2+⎝⎛⎭⎫22a 2,解得⎩⎨⎧h =l 22R =l 26,a 2=2l 2-l418,又3≤l ≤33,所以该正四棱锥的体积V =13a 2h=13⎝⎛⎭⎫2l 2-l 418·l 26=l 418⎝⎛⎭⎫2-l 218 =72×l 236·l 236·⎝⎛⎭⎫2-l 218 ≤72×⎣⎢⎡⎦⎥⎤l 236+l 236+⎝⎛⎭⎫2-l 21833=643⎝⎛⎭⎫当且仅当l 236=2-l 218,即l =26时取等号, 所以正四棱锥的体积的最大值为643,排除A ,B ,D.方法三 如图,设该球的半径为R ,球心为O ,正四棱锥的底面边长为a ,高为h ,正四棱锥的侧棱与高所成的角为θ,依题意,得36π=43πR 3,解得R =3,所以正四棱锥的底面边长a =2l sin θ,高h =l cos θ. 在△OPC 中,作OE ⊥PC ,垂足为E , 则可得cos θ=l 2R =l 6∈⎣⎡⎦⎤12,32,所以l =6cos θ, 所以正四棱锥的体积 V =13a 2h =13(2l sin θ)2·l cos θ=23(6cos θ)3sin 2θcos θ=144(sin θcos 2θ)2. 设sin θ=t ,易得t ∈⎣⎡⎦⎤12,32,则y =sin θcos 2θ=t (1-t 2)=t -t 3, 则y ′=1-3t 2.令y ′=0,得t =33, 所以当12<t <33时,y ′>0;当33<t <32时,y ′<0, 所以函数y =t -t 3在⎝⎛⎭⎫12,33上单调递增,在⎝⎛⎭⎫33,32上单调递减.又当t =33时,y =239;当t =12时,y =38; 当t =32时,y =38, 所以38≤y ≤239,所以274≤V ≤643. 所以该正四棱锥的体积的取值范围是⎣⎡⎦⎤274,643. 二、多项选择题9.(2022·武汉模拟)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,下列结论正确的是( )A .圆柱的侧面积为4πR 2B .圆锥的侧面积为2πR 2C .圆柱的侧面积与球的表面积相等D .球的体积是圆锥体积的两倍 答案 ACD解析 对于A ,∵圆柱的底面直径和高都等于2R , ∴圆柱的侧面积S 1=2πR ·2R =4πR 2,故A 正确; 对于B ,∵圆锥的底面直径和高等于2R , ∴圆锥的侧面积为S 2=πR ·R 2+4R 2=5πR 2,故B 错误; 对于C ,圆柱的侧面积为S 1=4πR 2,球的表面积S 3=4πR 2,即圆柱的侧面积与球的表面积相等,故C 正确; 对于D ,球的体积为V 1=43πR 3,圆锥的体积为V 2=13πR 2·2R =23πR 3,即球的体积是圆锥体积的两倍,故D 正确.10.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上且所有面均与内球相切,则( ) A .该正方体的棱长为2B .该正方体的体对角线长为3+ 3C .空心球的内球半径为3-1D .空心球的外球表面积为(12+63)π 答案 BD解析 设内、外球半径分别为r ,R ,则正方体的棱长为2r ,体对角线长为2R ,∴R =3r , 又由题知R -r =1, ∴r =3+12,R =3+32, ∴正方体棱长为3+1,体对角线长为3+3, ∴外接球表面积为4πR 2=(12+63)π.11.如图,已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的体积为32π3答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,分别取BC ,B 1C 1的中点E ,E 1,记四棱台ABCD -A 1B 1C 1D 1的上、下底面中心分别为O 1,O ,连接AC ,A 1C 1,BD 1,B 1D 1,A 1O ,OE ,OP ,PE ,由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱P A ,PB ,PC ,PD 的中点, 则P A =2AA 1=4,OA =22AB =2A 1B 1=2, 所以OO 1=12PO =12P A 2-OA 2=3,故该四棱台的高为3,故A 正确;由P A =PC =4,AC =4,得△P AC 为正三角形, 则AA 1与CC 1所成角为60°,故B 错误; 四棱台的斜高h ′=12PE =12PO 2+OE 2=12(23)2+(2)2=142, 所以该四棱台的表面积为 (22)2+(2)2+4×2+222×142=10+67,故C 错误;由△P AC 为正三角形,易知OA 1=OA =OC =OC 1,OB 1=OD 1=OB =OD ,所以O 为四棱台外接球的球心,且外接球的半径为2,所以该四棱台外接球的体积为4π3×23=32π3,故D 正确.12.(2022·聊城模拟)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴长与短半轴长乘积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是( ) A .底面椭圆的离心率为22B .侧面积为242πC .在该斜圆柱内半径最大的球的表面积为36πD .底面积为42π 答案 ABD解析 不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的几何体是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°, 则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b , 则2a =2·2b ,即a =2b , c =a 2-b 2=a 2-⎝⎛⎭⎫22a 2=22a , 所以离心率为e =c a =22,A 正确;作EG ⊥BF ,垂足为G ,则EG =6, 易知∠EBG =45°,则BE =62, 又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;由于斜圆柱的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球的表面积为4π×22=16π,C 错误; 易知2b =4,则b =2,a =22, 所以椭圆面积为πab =42π,D 正确.三、填空题13.(2022·湘潭模拟)陀螺是中国民间的娱乐工具之一,也叫做陀罗.陀螺的形状结构如图所示,由一个同底的圆锥体和圆柱体组合而成,若圆锥体和圆柱体的高以及底面圆的半径长分别为h 1,h 2,r ,且h 1=h 2=r ,设圆锥体的侧面积和圆柱体的侧面积分别为S 1和S 2,则S 1S 2=________.答案22解析 由题意知,圆锥的母线长为l =h 21+r 2=2r ,则圆锥的侧面积为S 1=πrl =2πr 2,根据圆柱的侧面积公式,可得圆柱的侧面积为 S 2=2πrh 2=2πr 2,所以S 1S 2=22.14.(2022·福州质检)在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,F 是线段A 1B 1上的动点,则AF +FC 1的最小值为________. 答案6+ 2解析 依题意,把正三棱柱ABC -A 1B 1C 1的上底面△A 1B 1C 1与侧面矩形ABB 1A 1放在同一平面内,连接AC 1,设AC 1交A 1B 1于点F ,如图,此时点F 可使AF +FC 1取最小值,大小为AC 1,而∠AA 1C 1=150°,则AC 1=AA 21+A 1C 21-2AA 1·A 1C 1cos ∠AA 1C 1 =22+22-23cos 150° =8+43=6+2,所以AF +FC 1的最小值为6+ 2.15.某同学在参加《通用技术》实践课时,制作了一个实心工艺品(如图所示).该工艺品可以看成是一个球体被一个棱长为4的正方体的6个面所截后剩余的部分(球心与正方体的中心重合),其中一个截面圆的周长为3π,则该球的半径为________;现给出定义:球面被平面所截得的一部分叫做球冠.截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.如果球面的半径是R ,球冠的高是h ,那么球冠的表面积计算公式是S =2πRh .由此可知,该实心工艺品的表面积是________.答案 52 47π2 解析 设截面圆半径为r ,则球心到某一截面的距离为正方体棱长的一半,即此距离为2,根据截面圆的周长可得3π=2πr ,得r =32, 故R 2=r 2+22=254,得R =52, 所以球的表面积S 1=25π.如图,OA =OB =52,且OO 1=2, 则球冠的高h =R -OO 1=12, 得所截的一个球冠表面积S =2πRh =2π×52×12=5π2,且截面圆的面积为π×⎝⎛⎭⎫322=9π4, 所以工艺品的表面积为4πR 2-6⎝⎛⎭⎫S -9π4=25π-3π2=47π2.16.(2022·开封模拟)如图,将一块直径为23的半球形石材切割成一个正四棱柱,则正四棱柱的体积取最大值时,切割掉的废弃石材的体积为________.答案 23π-4解析 设正四棱柱的底面正方形边长为a ,高为h ,则底面正方形的外接圆半径r =22a , ∴h 2+r 2=h 2+12a 2=3,∴a 2=6-2h 2,∴正四棱柱的体积V =a 2h =(6-2h 2)h =-2h 3+6h (0<h <3), ∴V ′=-6h 2+6=-6(h +1)(h -1),∴当0<h <1时,V ′>0;当1<h <3时,V ′<0;∴V =-2h 3+6h 在(0,1)上单调递增,在(1,3)上单调递减, ∴V max =V (1)=4,又半球的体积为23π×()33=23π, ∴切割掉的废弃石材的体积为23π-4.。
高中数学立体几何体积的求解方法
高中数学立体几何体积的求解方法立体几何体积的求解方法在求解立体几何体积时,需要注意一个原则:找到易于求解的底面和高。
其中,椎体是最易考到的题型,尤其是高的求解。
下面介绍四种求解椎体体积的方法:1.直接法:通过点作底面的垂线,求垂线段的长作为高,底面的面积是底面积。
2.转移法(等体积法):更换椎体的底面,选择易于求解的底面积和高。
3.分割法(割补法):将一个复杂的几何体分成若干易于计算的椎体。
4.向量法:利用空间向量的方法(理科)。
下面列举几个典型例题:1.直接法例1:在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.求四棱锥B-A1A1C1D的体积。
例2:已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.若M是PC的中点,求三棱锥M-ACD的体积。
变式1:在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且FC=1.求三棱锥E-BCF的体积。
变式2:在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°。
求三棱锥P-ABC的体积。
2.转移法例3:已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形。
若BC=4,AB=20,求三棱锥D-BCM的体积。
例4:在四棱锥P-ABCD中,侧棱PA丄底面ABCD底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE。
求三棱锥P-XXX的体积。
变式3:在三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD。
若AB=BD=CD=1,M为AD中点,求三棱锥A-XXX的体积。
变式4:在矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面XXX。
高中数学立体几何知识点
高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
(2):棱柱中除底面的各个面。
(3):相邻侧面的公共边叫做棱柱的侧棱。
(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。
如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。
棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱(1):旋转轴叫做圆柱的轴。
(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
圆锥(1):作为旋转轴的直角边叫做圆锥的轴。
(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。
(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
(4):作为旋转轴的直角边与斜边的交点。
(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。
如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。
棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.椭球体
椭圆绕对称轴所在直线旋转一周产生的曲面围成的几何体叫做椭球体.椭球体的体积43V abc π=
,其中a 、b 、c 分别是椭球的半轴.7.桶形体
如图,r 为桶形体上、下底面半径,R 为中截面半径,h 为高,则
(1)当桶形体的母线为圆弧时,体积为221(2)3
V h R r π=+.(2)当桶形体的母线为抛物线弧时,体积为221(843)15
V h R Rr r π=
++.8.有内切球的凸多面体的体积设球的半径为R ,几何体的表面积为S ,几何体n 个面的面积分别为i S ,1,2,,i n =⋅⋅⋅,
则凸多面体的体积1211111133333
n i n i V RS R S RS RS RS ====++⋅⋅⋅+∑.六、立体几何中的体积定理
1.祖暅原理夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.
推论:等底等高的锥体的体积相等;等底等高的柱体的体积相等.
等底等高的三棱锥的体积是三棱柱体积的三分之一.
2.体积比定理
(1)等底锥体的体积比等于对应高的比;等底柱体的体积比等于对应高的比.
(2)等高锥体的体积比等于对应底面积的比;等高柱体的体积比等于对应底面积的比.
(3)相似体的对应线段比等于相似比,相似体的对应平面的面积比等于相似比的平方;458
相似体的体积比等于相似比的立方.
3.体积比模型(一)
如图,平面PAB 截四面体ABCD 的棱CD 或其延长线于P ,则C BAP D BAP V CP V DP
--=
.4.体积比模型(二)
如左图,C 、D 在平面ABM 异侧,CD 与平面ABM 交于P (M 、N 、P 三点共线),则C ABM D ABM V CP V DP
--=.如右图,当C 、D 在平面ABM
同侧时,结论也成立.5.体积比模型(三)
如图,P 、Q 、R 分别是四面体OABC 的棱OA 、OB 、OC 上的点,则
O PQR
O ABC V OP OQ OR V OA OB OC
--⋅⋅=⋅⋅
.6.体积比模型(四)
如图,E 、F 、G 、H 分别是四面体ABCD 的棱AB 、BC 、CD 、DA 上的点,若
1AE EB λ=,2BF FC λ=,3CG GD λ=,4DH HA
λ=,则123412341(1)(1)(1)(1)EFGH ABCD V V λλλλλλλλ-=++++.459
7.体积比模型(五)
过四面体内切球球心的平面分四面体的体积比等于这个平面分四面体的表面积的比.推广:多面体有内切球,则过多面体内切球球心的平面分多面体的体积比等于这个平面分多面体的表面积的比.
8.一组体积比结论连接四面体各面重心的新四面体的体积是原来的118
;连接四面体各侧面中线的中点及地底面任意点的新四面体的体积是原来的
132;连接平行六面体各面中心的八面体的体积是原来的16
.9.体积比模型(六)
如图,如果圆锥的椭圆截面1O 与底面圆周有唯一交点A ,且该椭圆截面分点A 所在轴截面PAB 的母线PB 的比为PM PB
λ=,则截面所截得的斜锥体与圆锥的体积比为λ的三次方,即3()P AM P AB
V V λ--=锥锥
.推广1:如图,如果圆锥的椭圆截面1O 与底面圆周没有交点,且该椭圆截面1O 的长轴EF 分圆锥的母线PA 、PB 的比分别为,PE PF PA PB
λμ==,则截面所截得的斜锥体与圆锥的体积比为λμ的三次方,即3()P EF P AB
V V λμ--=锥锥.460
推广2:如图,圆台轴截面为等腰梯形ABCD ,以AC 为直径的椭圆截面把圆台分成上下两部分,如果圆台上下底面半径比为
r R
λ=,则截面所截得的上下两部分的体积比为λ的三次方.第六节图形变迁
图形变迁的实质是用运动变化的观点认识事物之间的联系。
一、“Z ”字图的变迁
如图,空间四点满足,AN MN BN MN ⊥⊥,我们形象地称为“Z ”字图。
下面各图实际上是同一个图形,后面八图可以看成是由“Z ”字图演化而来的,这就是图形的变迁。
有时解题时要切割图形、补充图形,就必须熟悉图形的变迁。
二、帐篷图及其变迁
有这样一个常用图形,它象我们平时用的一顶帐篷,故形象地称为帐篷图。
它是三面角的一种。
461。