有理数复习课件1
合集下载
第1章 有理数 复习课件 2024-2025学年湘教版数学七年级上册
0
若这个数等于0,那它的绝对值为____________;
它本身
若这个数大于0,那它的绝对值为____________。
例如 :5的绝对值是5,-9的绝对值是9。
思考回顾
4.怎样比较有理数的大小?
(1)利用数轴比较有理数的大小:在数轴上表示有理数,它们从左到右
的顺序,就是从小到大的顺序,即左边的数小于右边的数.
因数的乘积.
典例精析
【考点一】负数的概念以及应用
某检修小组乘汽车沿一条东西方向的公路检修线路,如果规定向东
为正,向西为负,某天从A地出发,到收工时所走的路线(单位:
千米)如下:+10,-5,+4,-9,+8,+12,-8。若汽车每千米耗油
0.2升,问
(1)收工时检修组在A地何处?
(2)到收工时共耗油多少升?
第
1章
有理数
小结与评价
“一”
知识图谱
思考回顾
1. 为什么要引入负数?有理数可以如何分类?
生活中存在一些具有相反意义的量,自然数、整数已满足不了实
际生活计算的需要,所以要引入负数概念。
正整数 、 ________
负整数 、 ________
零
整数分为________
;
正分数 、 ________
负分数 ;
8
−
3
本题考查有理数的加减乘除混
合运算的法则,本题可以用乘
法分配律,但是为寻求简便计
算,我们先计算小括号内的,
再进行乘法,最后相减。
典例精析
【考点三】有理数的混合运算
在进行有理数混合运算的过程中,我们总是寻求更简便的计算方法,
以下是常用的几种技巧:
若这个数等于0,那它的绝对值为____________;
它本身
若这个数大于0,那它的绝对值为____________。
例如 :5的绝对值是5,-9的绝对值是9。
思考回顾
4.怎样比较有理数的大小?
(1)利用数轴比较有理数的大小:在数轴上表示有理数,它们从左到右
的顺序,就是从小到大的顺序,即左边的数小于右边的数.
因数的乘积.
典例精析
【考点一】负数的概念以及应用
某检修小组乘汽车沿一条东西方向的公路检修线路,如果规定向东
为正,向西为负,某天从A地出发,到收工时所走的路线(单位:
千米)如下:+10,-5,+4,-9,+8,+12,-8。若汽车每千米耗油
0.2升,问
(1)收工时检修组在A地何处?
(2)到收工时共耗油多少升?
第
1章
有理数
小结与评价
“一”
知识图谱
思考回顾
1. 为什么要引入负数?有理数可以如何分类?
生活中存在一些具有相反意义的量,自然数、整数已满足不了实
际生活计算的需要,所以要引入负数概念。
正整数 、 ________
负整数 、 ________
零
整数分为________
;
正分数 、 ________
负分数 ;
8
−
3
本题考查有理数的加减乘除混
合运算的法则,本题可以用乘
法分配律,但是为寻求简便计
算,我们先计算小括号内的,
再进行乘法,最后相减。
典例精析
【考点三】有理数的混合运算
在进行有理数混合运算的过程中,我们总是寻求更简便的计算方法,
以下是常用的几种技巧:
第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)
知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.
人教版七年级数学上册 第一章 有理数复习课件(共51张PPT)
01
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22
复习课
有理数
1. 正__整_数__、__零_、__负__整_数统称整数,试举例说明。
2. 正_分__数__、_负__分__数___统称分数,试举例说明。
3. __整__数__、_分__数____统称有理数。
有理数的分类表
整数 有 理 数 分数
正整数 0
自然数
(非负整数)
负整数
正分数 负分数
有理数的分类
②下列说法正确的是( )A A.–1/4的相反数是0.25
B.4的相反数是-0.25
C.0.25的倒数是-0.25,
D.0.25的相反数的倒数是-0.25
③用-a表示的数一定是( D) A.负数 B.正数 C.正数或负数 D.都不对
④一个数的相反数是最小的正整数,那么这个数 是( A)
A .–1 B. 1 C .±1 D. 0
A.“向东5米”与“向西10米”不是相反意义的 量; B.如果汽球上升25米记作+25米,那么-15米
的意义就是下降-15米; C.如果气温下降6℃记作-6℃,那么+8℃的意
义就是零上8℃; D.若将高1米设为标准0,高1.20米记作+0.20
米,那么-0.05米所表示的高是0.95米.
6.正数、负数在实际生活中的应用
8.05×106
解:⑴ 0.07010 ,精确到 十万分位(或精确到0.00001),
有四个有效数字: 7,0,1,0
⑵ 103.2万 ,精确到 千位
有四个有效数字 1,0,3, 2 (3) 2.4千,精确到 百位, 有二个有效数字2,4
(4) 8.05×106 ,精确到 万位,
有三个有效数字 8,0,5
小测验
1. 22 2 22
人教版七年级数学上册第一章《有理数》复习PPT课件
2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能
《有理数复习课》公开课教学PPT课件【初中数学人教版七年级上册】
三、巩固练习
计算:
(1)0.125
3
1 4
3
1 8
11
2 3
0.25
(2)( 7 3 5 5 ) (36) 12 4 6 18
(3)(2) ( 1 ) ( 1 ) 12 12
(4)(24
)
(2
2 3
)2
5
1 2
(
1 6
)
(0.5)2
三、巩固练习
解:0.125 (3 1) (3 1) (11 2) 0.25
二、知识要点
4.相反数 只有符号不同的两个数,其中一个是另一个的相反数.
(1)数a的相反数是-a(a是任意一个有理数); (2) 0的相反数是0. (3)若a、b互为相反数,则a+b=0.
练习:(1)如果a=-13,那么-a=______; (2)如果-a=-5.4,那么a=______; (3)如果-x=-6,那么x=______; (4)-x=9,那么x=______.
3
4
2
–3 –2 –1 0 1 2 3 4
(1)数a的绝对值记作︱a︱;
若a>0,则︱a︱= a ; (2) 若a<0,则︱a︱= -a ;
若a =0,则︱a︱= 0 ;
(3)对任何有理数a,总有︱a︱≥0.
二、知识要点
7.有理数大小的比较 (1)可通过数轴比较:
在数轴上的两个数,右边的数总比左边的数大; 正数都大于0,负数都小于0;正数大于一切负数; (2)两个负数,绝对值大的反而小. 即:若a<0,b<0,且︱a︱>︱b︱,则a < b.
三、巩固练习
( 7 3 5 5 ) (36) 12 4 6 18
=( 7 ) (36) 3 (36) 5 (36) 5 (36)
浙教版数学七年级上册第一章《有理数》复习课件
若a是正数,则a>-a; 若a是负数,则a<-a; 若a是零,则a=-a。
2、绝对值的性质: 一个正数的绝对值是它本身;(绝对值等于本身的数) 一个负数的绝对值是它的相反数;(绝对值等于它的相反数的数) 零的绝对值是零; 互为相反数的两个数的绝对值相等。(绝对值等于的两个数)
3、一个数的绝对值是非负数:|a| ≥ 0.
三、绝对值
校本6
校本6
四、有理数大小的比较
有理数大小比较法则:
一般情况下,数轴上表示的两个数,右边的数总比左边的数大.
五种情况: 1、两个正数比较:绝对值大的数大; 2、两个负数比较:绝对值大的数反而小; 3、一正一负比较:正数大于负数; 4、正数与零比较:正数都大于零; 5、负数与零比较:负数都小于零。
校本6
校本6
思考题
小明在课外书上看到一道习题:“若a表示一个有 理数,请比较a与-a的大小”,他觉得太简单了,马上 就得出了a> -a的结论,他做得对吗?
第一章 《有理数》的复习
一、 从自然数到有理数
有理数 有理数
整数
正整数 零
负整数
自然数(非负整数)
正分数 有限小数或无限
负有理数
正整数 正分数
负整数 负分数
非零数:正数和负数 非负数:正数和零 非正数:负数和零
非负整数:正整数和零 非正整数:负整数和零
校本6
校本6
二、 数轴
1、像这样规定了原点、正方向和单位长度的直线叫做数轴
2、相反数的概念:只有符号不同的两个数称互为相反数, 零的相反数是零。
3、在数轴上两个互为相反数表示的点一定位于原点的两侧, 并且到原点的距离相等。
4、+a表示求a本身;-a表示求a的相反数。
2、绝对值的性质: 一个正数的绝对值是它本身;(绝对值等于本身的数) 一个负数的绝对值是它的相反数;(绝对值等于它的相反数的数) 零的绝对值是零; 互为相反数的两个数的绝对值相等。(绝对值等于的两个数)
3、一个数的绝对值是非负数:|a| ≥ 0.
三、绝对值
校本6
校本6
四、有理数大小的比较
有理数大小比较法则:
一般情况下,数轴上表示的两个数,右边的数总比左边的数大.
五种情况: 1、两个正数比较:绝对值大的数大; 2、两个负数比较:绝对值大的数反而小; 3、一正一负比较:正数大于负数; 4、正数与零比较:正数都大于零; 5、负数与零比较:负数都小于零。
校本6
校本6
思考题
小明在课外书上看到一道习题:“若a表示一个有 理数,请比较a与-a的大小”,他觉得太简单了,马上 就得出了a> -a的结论,他做得对吗?
第一章 《有理数》的复习
一、 从自然数到有理数
有理数 有理数
整数
正整数 零
负整数
自然数(非负整数)
正分数 有限小数或无限
负有理数
正整数 正分数
负整数 负分数
非零数:正数和负数 非负数:正数和零 非正数:负数和零
非负整数:正整数和零 非正整数:负整数和零
校本6
校本6
二、 数轴
1、像这样规定了原点、正方向和单位长度的直线叫做数轴
2、相反数的概念:只有符号不同的两个数称互为相反数, 零的相反数是零。
3、在数轴上两个互为相反数表示的点一定位于原点的两侧, 并且到原点的距离相等。
4、+a表示求a本身;-a表示求a的相反数。
第二章 有理数的运算章末复习(1) 课件(共17张PPT)
因为每一个有理数都是由两部分构成:一是符号,二是绝对值。
因此确定符号是有理数运算不可缺少的一部分,所以我们对有理
数运算要养成先定符号,再求绝对值的好习惯。
——善于计算的高手,
往往是计算出过错的过来人
-(+2)=?
7.有理数加法的法则:
绝对值相加
加数
①同号两数相加,取______的符号,并把__________.
②异号两数相加,取________________的符号,并用
绝对值较大的加数
较大的绝对值减去较小的绝对值
______________________________.
这个数
③互为相反数的两个数相加得_____;一个数同0相加,仍得________.
>.
/m
当前情况
合理选择
“+、-” (1)性质符号:正号、负号
(2)运算符号:加号、减号;
4.计算:
(1)-10+(-8)÷(-4)-(-4)×(-3);
解:原式=-10+8÷4-12=-10+2-12=-20;
(2)4×(-3)×(-3)-5×(-2)×(-2)×(-2)+6;
解:原式=4×9-5×(-8)+6=36+40+6=82;
(1)两数相除,同号得正,异号得负,并把绝对值相除.
(2)0除以任何一个不等于0的数都得0.
(3)除以一个不等于0的数,等于乘以这个数的倒数.
1
a b a b 0 .
b
11.线段AB的长度
−5
−4
AB= 1个单位 =|-2−(-3)|=|−3−(−2)|
代数表达: AB=|a−b|
注意: 相反数是它本身的数是_____
0
2×(-1)=-2
因此确定符号是有理数运算不可缺少的一部分,所以我们对有理
数运算要养成先定符号,再求绝对值的好习惯。
——善于计算的高手,
往往是计算出过错的过来人
-(+2)=?
7.有理数加法的法则:
绝对值相加
加数
①同号两数相加,取______的符号,并把__________.
②异号两数相加,取________________的符号,并用
绝对值较大的加数
较大的绝对值减去较小的绝对值
______________________________.
这个数
③互为相反数的两个数相加得_____;一个数同0相加,仍得________.
>.
/m
当前情况
合理选择
“+、-” (1)性质符号:正号、负号
(2)运算符号:加号、减号;
4.计算:
(1)-10+(-8)÷(-4)-(-4)×(-3);
解:原式=-10+8÷4-12=-10+2-12=-20;
(2)4×(-3)×(-3)-5×(-2)×(-2)×(-2)+6;
解:原式=4×9-5×(-8)+6=36+40+6=82;
(1)两数相除,同号得正,异号得负,并把绝对值相除.
(2)0除以任何一个不等于0的数都得0.
(3)除以一个不等于0的数,等于乘以这个数的倒数.
1
a b a b 0 .
b
11.线段AB的长度
−5
−4
AB= 1个单位 =|-2−(-3)|=|−3−(−2)|
代数表达: AB=|a−b|
注意: 相反数是它本身的数是_____
0
2×(-1)=-2
人教版七年级数学上学期《有理数》复习课件
任何数同0相乘,都得0.
①几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
②几个数相乘,有一个因数为0, 积就为0.
用数学语言描述有理数乘法法则:
①同号相乘
若a>0,b>0,则 ab = + ︱a︱×︱b︱
若a<0,b<0,则 ab = +︱a︱×︱b︱
负分数
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数大
2)正数都大于0,负数都小于0; 正数大于一切负数
3)所有有理数都可以用数轴上 的点表示
1、使教育过程成为一种艺术的事业。 2、教师之为教,不在全盘授予,而在相机诱导。2021/10/222021/10/222021/10/2210/22/2021 4:26:18 PM 3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 5、教育是一个逐步发现自己无知的过程。 6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/222021/10/222021/10/2210/22/2021
二、有理数的运算
加、减、乘、除、乘方运算
一、有理数的基本概念
1.负数:在正数前面加“—”的数;
0既不是正数,也不是负数.
判断: 1)a一定是正数 × 2)-a一定是负数 × 3)-(-a)一定大于0 × 4)0是正整数 ×
2.有理数: 整数和分数统称有理数.
①几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
②几个数相乘,有一个因数为0, 积就为0.
用数学语言描述有理数乘法法则:
①同号相乘
若a>0,b>0,则 ab = + ︱a︱×︱b︱
若a<0,b<0,则 ab = +︱a︱×︱b︱
负分数
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数大
2)正数都大于0,负数都小于0; 正数大于一切负数
3)所有有理数都可以用数轴上 的点表示
1、使教育过程成为一种艺术的事业。 2、教师之为教,不在全盘授予,而在相机诱导。2021/10/222021/10/222021/10/2210/22/2021 4:26:18 PM 3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 5、教育是一个逐步发现自己无知的过程。 6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/222021/10/222021/10/2210/22/2021
二、有理数的运算
加、减、乘、除、乘方运算
一、有理数的基本概念
1.负数:在正数前面加“—”的数;
0既不是正数,也不是负数.
判断: 1)a一定是正数 × 2)-a一定是负数 × 3)-(-a)一定大于0 × 4)0是正整数 ×
2.有理数: 整数和分数统称有理数.
人教版七年级上册数学课件:第一章有理数复习(共98张PPT)
则a= ±5 ,b= -8 。
科学记数法、近似数
1. 把一个大于10的数记成a×10n的形式,其中a是整数 数位只有一位的数,这种记数法叫做科学记数法 .
2..与实际完全符合的数是准确数,接近实际但又与实际 数值有差别的数叫近似数。
3.精确度: 一个近似数四舍五入到哪一位,就称这个数
精确到哪一位.
2)0的相反数是0.
3)若a、b互为相反数,则a+b=0.
-4
4
-2 2
-4 -3 –2 –1 0 1 2 3 4
相反数
1、-5的相反数是 5 ; 2、-((-17))如的果相a反=数-是1-37,那;么-a=__1__3__;
(2)如果-x=-6,那么x=___6___; 3、 a+2的相反数是_-_(_a__+_2;)或-a-2
分数有:-3.14,- 2 , -(- 2 ), 1 ,- 1 5 924
正整数有:12,|-8|
非负整数集有
负分数有:-3.14,- 2 ,- 1 54
非负数有:12,0,-(- 2 ),|-8|, 1 92
数轴定义及性质
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1) 在数轴上表示的两个数,右边的数总比左边的数大;
(2)原式=(-3)+(-18)=-21 (3)原式=0 +(+3)= 3 (4)原式= (-3) +(+18)= 15
加减法可以统一成加法
把下式写成省略加号的和的形式,并把它读出来 (-3)+(-8)-(-6)+(-7)
解:原式=-3-8+6-7 读作“-3,-8,+6,-7的和 或负3减8加6减7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、数轴上A,B两点分别是 8.2,6 3 则A,B两点间的距离为( A ) 5
A、14.8 B、14.4 C、-1.9 D、1.9
二、做一做:
1、-4的倒数是
1 4
,相反数是 4
, 2 2 。
2、数轴上到原点的距离等于3的点所表示的数是 3。
3、最大的负整数是 -1 ,最小的正整数是 1 ,
绝对值最小的数是 0 ,最小的自然数 0 。
负数:
2
,4,1
1
4
,0.03
3
3
例2:求-3,0,+1.5的相反数,并把这 些数及其相反数表示在数轴上。 解:-3的相反数是3; 0的相反数是0;
+1.5的相反数是-1.5
-3 -1.5 1.5 3
●● ●●●
例3:填空题
原数 相反数 倒数
绝对值
2
2
5
2
5
5
2
5
0
0无
0
1
1
-3
1
3
3
3
例4:按要求写数:
min(
3 4
,2 3)Fra bibliotek=4、绝对值小于4的所有整是 0, 1, 2, 3,它们的和是--0----。
例7、若2a 4 3b 1 0,则a b的值是多少?
例8、若2a 4 3b 2a 1 0,则1 a b的值是多少? 3
6、利用绝对值比较有理数的大小:
将下列各数从小到大排 列: 0.25 , 2.3 , 0.15 , 0 , 2 , 3 , 1 , 0.05
第一章 复习课
一、知识要点
1、用正数、负数表示具有相反意义的量; 正数和负数的概念。
2、有理数的分类 正整数
自然数
整数
零
有理数
负整数
分数 正分数
负分数
2、规定 原点 、 正方向 和 单位长度 的直 线,叫做数轴,
如果两个数只有符号不同,那么我们称 这两个数 互为相反数 ,零的相反数 是 0。 在数轴上,表示互为相反数的两个数(零除外) 位于原点的 两侧 ,并且到原点 的距离相等
两个负数比较大小,绝对值
大 的数反而小。
例题讲解:
例1:下列给出的数,哪些是整数?哪些是分数?哪些是 正数?哪些是负数?
2 ,0.5,4,0,3.14,11 ,15,0.03, 3 ,2
3
3
4
解:整数:-4,0,+15,-2
分数: 2 ,0.5,3.14,11 ,0.03, 3
3
3
4
正数: 0.5,3.14,15, 3 ,2
322
五、倒数
乘积是1的两个数互为倒数。0没有倒数。
1
1、会求一个数的倒数:如2的倒数是___2___;
2
2 3
的倒数是___83___.
2、倒数是本身的数是___1_或__-1___.
3、a是一个负整数,且满足 4 a, 在数轴上表示a可能取的所有值。
超越自我
1、如图,圈中有6个数,按一定的规律填
一 、 选一选:
1、-3不是( C ) A、有理数 B、整数 C、自然数 D、负有理数 2、一个数的绝对值等于它的本身,这个数必定是( D ) A、0 B、负数 C、非正数 D、非负数 3、某人第一次向南走了40千米,第二次向北走了30千 米,第三次向北走了40千米,最后相当于这人( D )
A、向南走了110千米 B、向北走了50千米 C、向南走了30千米 D、向北走了30千米
(1)不大于
2
3 4
的最大整数;
(2)不大于
9 4
的最大整数;
(3)不小于-3.14的最小整数。
例5计算: (1) 100 10
(2)
2 5
11 3
例6:比较下列各对数的大小:
(1)-0.1与-2;
(2)
1 3
与3
实践应用
例7:课桌的高度比标准高度高2毫米,记作+2 毫米,那么比标准高度低3毫米,记作什么? 现在有5张课桌,量得它们的高度比标准高+1 毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若 规定课桌的高度比标准高度最高不能超过2毫 米,最低不能超过2毫米,就算合格,问上述5 张课桌中有几张合格?
入,后因不慎,一滴墨水涂掉了一个数,
你认为这个数是5或26 ,理由
是 后一个数比前一个。数大 一个自然数
86
11
15 20
2、min(a,b)表示a,b两数中的较小者, max(a,b)表示a,b两数中的较大者, 如min(-3,5)=-3,max(-3,5)=5,则
32 max
max(
2 3
,1),
在数轴上,一个数的绝对值就是表示这 个数的点到原点的 距离 。
正数的绝对值是 本身,负数的绝对值是 它的相反,数 零的绝对值是 0 。
3、有理数的大小比较法则 (1)利用数轴比较:在数轴上表示的两个数,右边的数 总比左边的数 大 。
推论:(于20)正。数都大于 负数 ,负数都小于 0 ,正数大
(3)两个正数比较大小,绝对值 大 的数大;