因式分解精选例题(附答案)

合集下载

因式分解经典例题

因式分解经典例题

因式分解经典例题一、提取公因式法例1:分解因式ax + ay。

解析:公因式为a,所以ax+ay = a(x + y)。

例2:分解因式3x^2-6x。

解析:公因式为3x,3x^2-6x=3x(x - 2)。

例3:分解因式5a^2b - 10ab^2。

解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。

二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。

解析:x^2-9=x^2-3^2=(x + 3)(x-3)。

例5:分解因式16y^2-25。

解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。

例6:分解因式(x + p)^2-(x + q)^2。

解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。

三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。

解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。

例8:分解因式4y^2-20y+25。

解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。

例9:分解因式x^2-4xy+4y^2。

解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。

四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。

解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。

例11:分解因式2x^2-8。

解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。

因式分解50题(配完整解析)

因式分解50题(配完整解析)

因式分解50题(配完整解析)考点卡片一.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.二.因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.22平方差公式:a ﹣b =(a +b )(a ﹣b );222完全平方公式:a ±2ab +b =(a ±b );2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.三.因式分解-分组分解法1、分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.2、对于常见的四项式,一般的分组分解有两种形式:①二二分法,②三一分法.例如:①ax +ay +bx +by =x (a +b )+y (a +b )=(a +b )(x +y )22②2xy ﹣x +1﹣y 22=﹣(x ﹣2xy +y )+12=1﹣(x ﹣y )=(1+x ﹣y )(1﹣x +y )四.因式分解-十字相乘法等借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.2①x +(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q )2②ax +bx +c (a ≠0)型的式子的因式分解这种方法的关键是把二次项系数a 分解成两个因数a 1,a 2的积a 1•a 2,把常数项c 分解成两个因数c 1,c 2的积c 1•c 2,并使a 1c 2+a 2c 1正好是一2次项b ,那么可以直接写成结果:ax +bx +c =(a 1x +c 1)(a 2x +c 2).五.实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x ﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解2x 2﹣2=x 2﹣(2)2=(x+2)(x-2)一.填空题(共5小题)1.因式分解:-2x 2+2x =.2.因式分解:a 3+2a =.3.分解因式:8x 2-8xy +2y 2=.4.分解因式:ab 2+a 2b =.5.因式分解2x 2y -8y =.二.解答题(共45小题)6.分解因式(1)n 2(m -2)-n (2-m )(2)(a 2+4b 2)2-16a 2b 2.7.因式分解(1)(2a +b )2-(a +2b )2(2)16x 4-8x 2y 2+y 48.已知m -2n =-2,求下列多项式的值:(1)5m -10n +10m 2(2)+n 2-mn -3.49.因式分解:(x 2-3)2+2(3-x 2)+1.10.因式分解:m 2(m -4)2+8m (m -4)+16.11.分解因式:4(a +2)2-9(a -1)2.12.(x 2+4)2-16x 2.13.因式分解:(x -6x )+18(x -6x )+81.14.分解因式:(1)x 4-2x 2+1;(2)a 4-8a 2b 2+16b 4;(3)(a 2+4)2-16a 2;(4)(m 2-4m )2+8(m 2-4m )+16.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )217.分解因式:(x +3)2-(x -3)2.18.(x -5y )2-(x +5y )219.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 221.分解因式:(1)-3x 2+6xy -3y 2;222222222(2)(a +b )(a -b )+4(b -1).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 223.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+927.把下列各式因式分解:(1)12x 4-6x 3-168x 2(2)a 5(2-3a )+2a 3(3a -2)2+a (2-3a )3(3)abc (a 3+b 3+c 3+2abc )+(a 3b 3+b 3c 3+c 3a 3)28.分解因式(1)16-a 4(2)y 3-6xy 2+9x 2y(3)(m +n )2-4m (m +n )+4m 2(4)9-a 2+4ab -4b 229.因式分解(1)-a 2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;124242(4)(x -4x +1)(x +3x +1)+10x 4;31.分解因式:(1)12abc -2bc 2(2)2a 3-12a 2+18a (3)9a (x -y )+3b (x -y )(4)(x +y )2+2(x +y )+1(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .(6)(a+b)(a-b)+4(b-1)32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b235.把下列多项式分解因式:(1)27xy2-3x121x+xy+y22222(3)a-b-1+2b(4)x2+3x-436.因式分解:(1)x2-xy-12y2;(2)(2)a2-6a+9-b237.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(5)p2-5p-36(6)x5-x3(7)(x-1)(x-2)-6(8)a2-2ab+b2-c238.把下列各式分解因式:(1)4x3-31x+15;(2)2a2b2+2a2c2+2b2c2-a4-b4-c4;(3)x5+x+1;(4)x3+5x2+3x-9;(5)2a4-a3-6a2-a+2.39.分解因式(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m40.分解因式:(x 2+x +1)(x 2+x +2)-12.41.分解因式:(x 2+4x +8)2+3x (x 2+4x +8)+2x 2.42.分解因式:(1)2a (y -z )-3b (z -y );(2)-x 2+4xy -4y 2;(3)x 2-2(在实数范围内分解因式);(4)4-12(x -y )+9(x -y )2.43.阅读下面的问题,然后回答,分解因式:x 2+2x -3,解:原式=x 2+2x +1-1-3=(x 2+2x +1)-4=(x +1)2-4=(x +1+2)(x +1-2)=(x +3)(x -1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x 2-4x +3(2)4x 2+12x -7.44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:22x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a+2a)(x+a-2a)=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2-8a+15;(2)若a+b=6,ab=4,求:①a2+b2;②a4+b4的值;(3)已知x是实数,试比较x2-6x+11与-x2+6x-10的大小,说明理由.11146.小亮在对a4+分解因式时,步骤如下:a4+=a4+a2+-a2(添加a2与-a2,前444三项可利用完全平方公式)1=(a2+)2-a2(写成完全平方式与最后一项又符合平方差公式)211=(a2+a+)(a2-a+).22请你利用上述方法分解因式4x4+1.47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.因式分解50题(配完整解析)参考答案与试题解析一.填空题(共5小题)1.因式分解:-2x2+2x=-2x(x-1).【解答】解:-2x2+2x=-2x(x-1),故答案为:-2x(x-1).2.因式分解:a3+2a=a(a2+2).【解答】解:a3+2a=a(a2+2),故答案为a(a2+2).3.分解因式:8x2-8xy+2y2=2(2x-y)2.【解答】解:原式=2(4x2-4xy+y2)=2(2x-y)2.故答案为:2(2x-y)2.4.分解因式:ab2+a2b=ab(a+b).【解答】解:原式=ab(a+b).故答案是:ab(a+b).5.因式分解2x2y-8y=2y(x+2)(x-2).【解答】解:2x2y-8y=2y(x2-4)=2y(x+2)(x-2)故答案为:2y(x+2)(x-2).二.解答题(共45小题)6.分解因式(1)n2(m-2)-n(2-m)(2)(a2+4b2)2-16a2b2.【解答】解:(1)原式=n(m-2)(n+1);(2)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.7.因式分解(1)(2a+b)2-(a+2b)2(2)16x4-8x2y2+y4【解答】解:(1)(2a+b)2-(a+2b)2=(2a+b-a-2b)(2a+b+a+2b)=3(a-b)(a+b);(2)16x4-8x2y2+y4=(4x2-y2)2=(2x+y)2(2x-y)2.8.已知m-2n=-2,求下列多项式的值:(1)5m-10n+10m2(2)+n2-mn-3.4【解答】解:(1)m-2n=-2,∴原式=5(m-2n)+10=-10+10=0;m-2n=-2,(2)11∴原式=(m2+4n2-4mn)=(m-2n)2-3=1-3=-2.449.因式分解:(x2-3)2+2(3-x2)+1.【解答】解:(x2-3)2+2(3-x2)+1=(x2-3)2-2(x2-3)+1=(x2-3-1)2=(x2-4)2=(x+2)2(x-2)2.10.因式分解:m2(m-4)2+8m(m-4)+16.【解答】解:原式=[m(m-4)]2+2⨯m(m-4)⨯4+42=[m(m-4)+4]2=(m2-4m+4)2=[(m-2)2]2=(m-4)4.11.分解因式:4(a+2)2-9(a-1)2.【解答】解:4(a+2)2-9(a-1)2=[2(a+2)-3(a-1)][2(a+2)+3(a-1)]=(7-a)(5a+1).12.(x2+4)2-16x2.【解答】解:(x2+4)2-16x2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2.13.因式分解:(x-6x)+18(x-6x)+81.222【解答】解:(x-6x)+18(x-6x)+81222=(x2-6x+9)2=(x-3)4.14.分解因式:(1)x4-2x2+1;(2)a4-8a2b2+16b4;(3)(a2+4)2-16a2;(4)(m2-4m)2+8(m2-4m)+16.【解答】解:(1)原式=(x2-1)2=[(x+1)(x-1)]2=(x+1)2(x-1)2;(2)原式=(a2-4b2)2=[(a+2b)(a-2b)]2=(a+2b)2(a-2b)2;(3)原式=(a2+4-4a)(a2+4+4a)=(a-2)2(a+2)2;(4)原式=(m2-4m+4)2=[(m -2)2]2=(m -2)4.15.分解因式(1)x -4xy +4y (2)4a -12ab +9b (3)a b +2ab +1.【解答】解:(1)x -4xy +4y =(x -2y );(2)4a -12ab +9b =(2a -3b );(3)a b +2ab +1=(ab +1).16.(1)计算:(2x -y +z )(2x -y -z )(2)分解因式:25(a +b )2-16(a -b )2【解答】解:(1)(2x -y +z )(2x -y -z )222222222222222=(2x -y )2-z 2=4x 2+y 2-4xy -z 2;(2)25(a +b )2-16(a -b )2=[5(a +b )-4(a -b )][5(a +b )+4(a -b )]=(a +9b )(9a +b ).17.分解因式:(x +3)2-(x -3)2.【解答】解:(x +3)2-(x -3)2=(x +3-x +3)(x +3+x -3)=12x .18.(x -5y )2-(x +5y )2【解答】解:(x -5y )2-(x +5y )2=(x -5y +x +5y )(x -5y -x -5y )=-20xy .19.分解因式:(1)3ax 2-6axy +3ay 2;(2)(3m +2n )2-(2m +3n )2.【解答】解:(1)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(2)(3m +2n )2-(2m +3n )2=[(3m +2n )-(2m +3n )][(3m +2n )+(2m +3n )]=(m -n )(5m +5n )=5(m -n )(m +n ).20.分解因式:(1)(a -b )(x -y )-(b -a )(x +y )(2)5m (2x -y )2-5mn 2【解答】解:(1)原式=(a -b )(x -y +x +y )=2x (a -b ).(2)原式=5m (2x -y +n )(2x -y -n ).21.分解因式:(1)-3x 2+6xy -3y 2;(2)(a +b )(a -b )+4(b -1).【解答】解:(1)-3x 2+6xy -3y 2=-3(x 2-2xy +y 2)=-3(x -y )2;(2)(a +b )(a -b )+4(b -1)=a 2-b 2+4b -4=a 2-(b -2)2=(a +b -2)(a -b +2).22.因式分解(1)9a 2(x -y )+4b 2(y -x );(2)4a (b -a )-b 2【解答】解:(1)原式=9a 2(x -y )-4b 2(x -y )=(x -y )(3a +2b )(3a -2b );(2)原式=-(4a 2-4ab +b 2)=-(2a -b )2.23.因式分解:(1)a 4-16;(2)ax 2-4axy +4ay 2.【解答】解:(1)a 4-16=(a 2+4)(a 2-4)=(a 2+4)(a +2)(a -2);(2)ax 2-4axy +4ay 2=a (x 2-4xy +4y )=a (x -2y )2.24.将下列各式分解因式:(1)-25ax 2+10ax -a (2)4x 2(a -b )+y 2(b -a )【解答】解:(1)原式=-a (25x 2-10x +1)=-a (5x -1)2;(2)原式=4x 2(a -b )-y 2(a -b )=(a -b )(2x +y )(2x -y ).25.分解因式:(1)5x 2+10x +5(2)(a +4)(a -4)+3(a +2)【解答】解:(1)原式=5(x 2+2x +1)=5(x +1)2;(2)原式=a 2-16+3a +6=a 2+3a -10=(a -2)(a +5).26.因式分解(1)9m 2-25n 214(3)2x 2y -8xy +8y(2)m 2-mn +n 2(4)(y 2-1)2+6(1-y 2)+9【解答】解:(1)9m 2-25n 2=(3m +5n )(3m -5n );(2)m 2-mn +n 2141=(m-n)2;2(3)2x2y-8xy+8y=2y(x2-4x+4)=2y(x-2)2;(4)(y2-1)2+6(1-y2)+9=[(1-y2)+3]2=(1-y2+3)2.=(4-y2)2=(2+y)2(2-y)2.27.把下列各式因式分解:(1)12x4-6x3-168x2(2)a5(2-3a)+2a3(3a-2)2+a(2-3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【解答】解:(1)原式=6x2(2x2-x-28)=6x2(2x+7)(x-4);(2)原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3=a(2-3a)[a4+2a2(2-3a)+(2-3a)2]=a(2-3a)(a2+2-3a)2=a(2-3a)(a-1)2(a-2)2;(3)原式=a4bc+a3(b3+c3)+2a2b2c2+abc(b3+c3)+b3c3=bc(a4+2a2bc+b2c2)+a(b3+c3)(a2+bc)=bc(a2+bc)2+a(b3+c3)(a2+bc)=(a2+bc)[bc(a2+bc)+a(b3+c3)]=(a2+bc)[(bca2+ab3)+(b2c2+ac3)]=(a2+bc)[ab(ca+b2)+c2(b2+ac)]=(a2+bc)(b2+ac)(c2+ab).28.分解因式(1)16-a4(2)y3-6xy2+9x2y(3)(m+n)2-4m(m+n)+4m2(4)9-a2+4ab-4b2【解答】解:(1)原式=(4+a2)(4-a2)=(4+a2)(2+a2)(2-a2);(2)原式=y(y2-6xy+9x2)=y(y-3x)2;(3)原式=(m+n-2m)2=(n-m)2;(4)原式=9-(a-2b)2=(3-a+2b)(3+a-2b).29.因式分解(1)-a2-a(2)(x +y )(5m +3n )2-(x +y )(m -n )2(3)(a 2+6a )2+18(a 2+6a )+81(4)x 2-4x -y 2+4.【解答】解:(1)-a 2-a =-a (a +1)(2)(x +y )(5m +3n )2-(x +y )(m -n )2=(x +y )(5m +3n +m -n )(5m +3n -m +n )=(x +y )(6m +2n )(4m +4n )=8(x +y )(3m +n )(m +n )(3)(a 2+6a )2+18(a 2+6a )+81=(a 2+6a +9)2=(a +3)4(4)x 2-4x -y 2+4=(x -2)2-y 2=(x -2+y )(x -2-y )30.把下列各式分解因式:(1)(a 2+a +1)(a 2-6a +1)+12a 2;(2)(2a +5)(a 2-9)(2a -7)-91;12(4)(x 4-4x 2+1)(x 4+3x 2+1)+10x 4;【解答】解:(1)令a 2+1=b ,则原式=(b +a )(b -6a )+12a 2(3)xy (xy +1)+(xy +3)-2(x +y +)-(x +y -1)2;(5)2x 3-x 2z -4x 2y +2xyz +2xy 2-y 2z .=b 2-5ab -6a 2+12a 2=b 2-5ab +6a 2=(b -2a )(b -3a )=(a 2+1-2a )(a 2+1-3a )=(a -1)2(a 2-3a +1);(2)原式=[(2a +5)(a -3)][(a +3)(2a -7)]-91=(2a 2-a -15)(2a 2-a -21)-91=(2a 2-a )2-36(2a 2-a )+224=(2a 2-a -28)(2a 2-a -8)=(a -4)(2a +7)(2a 2-a -8);(3)设x +y =a ,xy =b ,则原式=b (b +1)+(b +3)-2(a +)-(a -1)212=(b 2+2b +1)-a 2=(b +1+a )(b +1-a )=(xy +1+x +y )(xy +1-x -y );(4)令x 4+1=a ,则原式=(a -4x 2)(a +3x 2)+10x 4=a 2-x 2a -2x 4=(a -2x 2)(a +x 2)=(x 4+1-2x 2)(x 4+1+x 2)=(x +1)2(x -1)2(x 2+x +1)(x 2-x +1);(5)原式=(2x3-x2z)+(-4x2y+2xyz)+(2xy2-y2z) =x2(2x-z)-2xy(2x-z)+y2(2x-z)=(2x-z)(x2-2xy+y2)=(2x-z)(x-y)2.31.分解因式:(1)12abc-2bc2(2)2a3-12a2+18a(3)9a(x-y)+3b(x-y)(4)(x+y)2+2(x+y)+1(5)x2-1+y2-2xy(6)(a+b)(a-b)+4(b-1)【解答】解:(1)12abc-2bc2=2bc(6a-c);(2)2a3-12a2+18a=2a(a2-6a+9)=2a(a-3)2;(3)9a(x-y)+3b(x-y)=3(x-y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2;(5)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(6)(a+b)(a-b)+4(b-1)=a2-b2+4b-4=a2-(b-2)2=(a-b+2)(a+b-2).32.将下列各式因式分解:(1)a4-16(2)16(a-b)2-9(a+b)2(3)x2-1+y2-2xy(4)(m+n)2-2(m2-n2)+(m-n)2.(5)x2-5x+6(6)x2-5x-6(7)x2+5x-6(8)x2+5x+6.【解答】解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(2)16(a-b)2-9(a+b)2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]=(4a-4b+3a+3b)(4a-4b-3a-3b)=(7a-b)(a-7b);(3)x2-1+y2-2xy=(x-y)2-1=(x-y+1)(x-y-1);(4)(m+n)2-2(m2-n2)+(m-n)2=[(m+n)-(m-n)]2=(m+n-m+n)2=(2n)2=4n2;(5)x2-5x+6=(x-2)(x-3);(6)x2-5x-6=(x-6)(x+1);(7)x2+5x-6=(x+6)(x-1);(8)x2+5x+6=(x+2)(x+3).33.分解因式(1)-3x3-6x2y-3xy2;(2)(a2+9)2-36a2(3)25m2-(4m-3n)2;(4)(x2-2x)2-2(x2-2x)-3.【解答】解:(1)-3x3-6x2y-3xy2;=-3x(x2+2xy+y2)=-3x(x+y)2;(2)(a2+9)2-36a2=(a2+9+6a)(a2+9-6a)=(a+3)2(a-3)2;(3)25m2-(4m-3n)2=(5m)2-(4m-3n)2,=(5m+4m-3n)(5m-4m+3n)=3(3m-n)(m+3n);(4)(x2-2x)2-2(x2-2x)-3=(x2-2x-3)(x2-2x+1)=(x-3)(x+1)(x-1)2.34.因式分解:(1)x2-5x-6(2)9a2(x-y)+4b2(y-x)(3)y2-x2+6x-9(4)(a2+4b2)2-16a2b2【解答】解:(1)x2-5x-6=(x-3)(x+2);(2)9a2(x-y)+4b2(y-x)=(x-y)(9a2-4b2)=(x-y)(3a+2b)(3a-2b);=y2-(x2-6x+9)=y2-(x-3)2=(y+x-3)(y-x+3);(4)(a2+4b2)2-16a2b2=(a2+4b2+4ab)(a2+4b2-4ab) =(a+2b)2(a-2b)2.35.把下列多项式分解因式:(1)27xy2-3x(2)12x2+xy+12y2(3)a2-b2-1+2b(4)x2+3x-4【解答】解:(1)27xy2-3x =3x(9y2-1)=3x(3y+1)(3y-1);(2)12x2+xy+12y2=1(x2+2xy+y2 2)=1(x+y)22;(3)a2-b2-1+2b=a2-(b2-2b+1)=a2-(b-1)2=(a+b-1)(a-b+1);(4)x2+3x-4=(x+4)(x-1).36.因式分解:(1)x2-xy-12y2;(2)a2-6a+9-b2【解答】解:(1)x2-xy-12y2,=(x+3y)(x-4y);(2)a2-6a+9-b2,=(a-3)2-b2,=(a-3+b)(a-3-b).37.分解因式(1)8a3b2-12ab3c(2)-3ma3+6ma2-12ma(3)2(x-y)2-x(x-y)(4)3ax2-6axy+3ay2(6)x 5-x 3(7)(x -1)(x -2)-6(8)a 2-2ab +b 2-c 2【解答】解:(1)8a 3b 2-12ab 3c =4ab 2(2a 2-3bc );(2)-3ma 3+6ma 2-12ma =-3ma (a 2-2a +4)=-3ma (a -2)2;(3)2(x -y )2-x (x -y )=(x -y )(2x -2y -x )=(x -y )(x -2y );(4)3ax 2-6axy +3ay 2=3a (x 2-2xy +y 2)=3a (x -y )2;(5)p 2-5p -36=(p -9)(p +4);(6)x 5-x 3=x 3(x 2-1)=x 3(x +1)(x -1);(7)(x -1)(x -2)-6=x 2-3x +2-6=(x -4)(x +1);(8)a 2-2ab +b 2-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).38.把下列各式分解因式:(1)4x 3-31x +15;(2)2a 2b 2+2a 2c 2+2b 2c 2-a 4-b 4-c 4;(3)x 5+x +1;(4)x 3+5x 2+3x -9;(5)2a 4-a 3-6a 2-a +2.【解答;(;(5522232】解:(1)4x 3-31x +15=4x 3-x -30x +15=x (2x +1)(2x -1)-15(2x -1)=(2x -1)(2x 2+x -15)=(2x -1)(2x -5)(x +3)2)2a b +2a c +2b c -a -b -c =4a b -(a +b +c +2a b -2a c -2b c )=(2ab )-(a +b -c )=(2ab +a +b -c )(2ab -a -b +c )=(a +b +c )(a +b -c )(c +a -b )(c -a +b )32222)3x +x +1=x -x +x +x +1=x (x -1)+(x +x +1)=x (x -1)(x +x +1)+(x +x +1)=(x +x +1)(x -x 2+1);(;(4)x 3+5x 2+3x -9=(x 3-x 2)+(6x 2-6x )+(9x -9)=x 2(x -1)+6x (x -1)+9(x -1)=(x -1)(x +3)25)2a -a -6a -a +2=a (2a -1)-(2a -1)(3a +2)=(2a -1)(a -3a -2)=(2a -1)(a +a -a -a -2a -2)=(2a -1)[a (a +1)-a (a +1)-2(a +1)]=(2a -1)(a +1)(a 2-a -2)=(a +1)(a -2)(2a -1).39.分解因式(1)20a 3x -45ay 2x(2)1-9x 2(3)4x 2-12x +9(4)4x 2y 2-4xy +1(5)p 2-5p -36(6)y 2-7y +12(7)3-6x +3x 2(8)-a +2a 2-a 3(9)m 3-m 2-20m【解答】解:(1)原式=5ax (4a 2-9y 2)=5ax (2a +3y )(2a -3y );(2)原式=(1+3x )(1-3x );(3)原式=(2x )2-12x +9=(2x -3)2;(4)原式=(2xy-1)2;(5)原式=(p+4)(p-9);(6)原式=(y-3)(y-4);(7)原式=3(x2-2x+1)=3(x-1)2;(8)原式=-a(a2-2a+1)=-a(a-1)2;(9)原式=m(m2-m-20)=m(m+4)(m-5).40.分解因式:(x2+x+1)(x2+x+2)-12.【解答】解:设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x-1)(x+2)(x2+x+5)41.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.【解答】解:设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).42.分解因式:(1)2a(y-z)-3b(z-y);(2)-x2+4xy-4y2;(3)x2-2(在实数范围内分解因式);(4)4-12(x-y)+9(x-y)2.【解答】解:(1)原式=2a(y-z)+3b(y-z)=(y-z)(2a+3b);(2)原式=-(x2-4xy+4y2)=-(x-2y)2;(3)原式=(x+2)(x-2);(4)原式=[3(x-y)-2]2=(3x-3y-2)2.43.阅读下面的问题,然后回答,分解因式:x2+2x-3,解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2-4x+3(2)4x2+12x-7.【解答】解:(1)x2-4x+3=x2-4x+4-4+3=(x -2)2-1=(x -2+1)(x -2-1)=(x -1)(x -3)(2)4x 2+12x -7=4x 2+12x +9-9-7=(2x +3)2-16=(2x +3+4)(2x +3-4)=(2x +7)(2x -1)44.下面是某同学对多项式(x -4x +2)(x -4x +6)+4进行因式分解的过程.解:设x -4x =y原式=(y +2)(y +6)+4(第一步)222=y 2+8y +16(第二步)=(y +4)2(第三步)=(x 2-4x +4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x -2x )(x -2x +2)+1进行因式分解.【解答】解:(1)(2)设x -2x =y原式=y (y +2)+1222(x 2-4x +4)2=(x -2)4,∴该同学因式分解的结果不彻底.=y 2+2y +1=(y +1)2=(x 2-2x +1)2=(x -1)4.故答案为:不彻底.45.阅读并解决问题:对于形如x 2+2ax +a 2这样的二次三项式,可以用公式法将它分解成(x +a )2的形式,但对于二次三项式x 2+2ax -3a 2就不能直接运用公式了.此时,我们可以这样来处理:x 2+2ax -3a 2=(x 2+2ax +a 2)-a 2-3a 2=(x +a )2-4a 2=(x +a +2a )(x +a -2a )=(x +3a )(x -a )像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a 2-8a +15;(2)若a +b =6,ab =4,求:①a 2+b 2;②a 4+b 4的值;(3)已知x 是实数,试比较x 2-6x +11与-x 2+6x -10的大小,说明理由.【解答】解:(1)a 2-8a +15=(a 2-8a +16)-1=(a -4)2-12=(a -3)(a -5);(2)a +b =6,ab =4,a2+b2=(a+b)2-2ab=36-8=28.a4+b4=(a2+b2)2-2a2b2=282-2⨯16=752.(3)x2-6x+11=(x-3)2+22,-x2+6x-10=-(x-3)2-1-1,∴x2-6x+11>-x2+6x-10.46.小亮在对a4+1114分解因式时,步骤如下:a4+4=a4+a2+4-a2三项可利用完全平方公式)=(a2+12)2-a2(写成完全平方式与最后一项又符合平方差公式)=(a2+a+12)(a2-a+12).请你利用上述方法分解因式4x4+1.【解答】解:4x4+1=4x4+4x2+1-4x2=(2x2+1)2-4x2=(2x2+2x+1)(2x2-2x+1).47.十字相乘法分解因式:(1)x2+3x+2(2)x2-3x+2(3)x2+2x-3(4)x2-2x-3(5)x2+5x+6(6)x2-5x-6(7)x2+x-6(8)x2-x-6(9)x2-5x-36(10)x2+3x-18(11)2x2-3x+1(12)6x2+5x-6.【解答】解:(1)x2+3x+2=(x+1)(x+2);(2)x2-3x+2=(x-1)(x-2);(3)x2+2x-3=(x+3)(x-1);(4)x2-2x-3=(x-3)(x+1);(5)x2+5x+6=(x+3)(x+2);(6)x2-5x-6=(x-6)(x+1);(7)x2+x-6=(x+3)(x-2);a2与-a2,前(添加(8)x2-x-6=(x-3)(x+2);(9)x2-5x-36=(x-9)(x+4);(10)x2+3x-18=(x+6)(x-3);(11)2x2-3x+1=(2x-1)(x-1);(12)6x2+5x-6=(2x+3)(3x-2).48.分解因式:(x+1)(x+3)(x+6)(x+8)+9.【解答】解:(x+1)(x+3)(x+6)(x+8)+9=[(x+1)(x+8)][(x+3)(x+6)]+9=(x2+9x+8)(x2+9x+18)+9=(x2+9x)2+26(x2+9x)+153=(x2+9x+9)(x2+9x+17).49.分解因式:(1)x4-7x2+6.(2)x4-5x2-36.(3)4x4-65x2y2+16y4.(4)a6-7a3b3-8b6(5)6a4-5a3-4a3.(6)4a6-37a4b2+9a2b4.【解答】解:(1)x4-7x2+6=(x2-1)(x2-6)=(x+1)(x-1)(x+6)(x-6);(2)x4-5x2-36=(x2-9)(x2+4)=(x+3)(x-3)(x2+4)(3)4x4-65x2y2+16y4=(2x2-4y2)2-49x2y2=(2x2-4y2+7xy)(2x2-4y2-7xy)=(2x-1)(2x+1)(1-4y)(1+4y);(4)a6-7a3b3-8b6=(a3-8b3)(a3+b3)=(a-2b)(a2+2ab+b2)(a+b)(a2-ab+b2)=(a-2b)(a+b)3(a2-ab+b2);(5)6a4-5a3-4a3=6a4-9a3=3a3(2a-3);(6)4a6-37a4b2+9a2b4=a2(4a4-37a2b2+9b4)=a2(4a4-12a2b2+9b4-25a2b2)=a2[(2a2-3b2)2-25a2b2]=a2(2a+1)(2a-1)(1-3b)(1+3b).50.因式分解:(1)(x+y)4+(x+y)2-20;(2)(x2-2x-2)(x2-2x-9)+6;(3)(x2+4x+3)(x2-12x+35)-105;(4)(x2-6)2-4x(x2-6)-5x2.【解答】解:(1)原式=[(x+y)2-4][(x+y)2+5]=(x+y+2)(x+y-2)(x2+y2+2xy+5);(2)原式=(x2-2x)2-11(x2-2x)+24=(x2-2x-3)(x2-2x-8)=(x-3)(x+1)(x-4)(x+2);(3)原式=(x+1)(x+3)(x-5)(x-7)-105=(x2-4x-5)(x2-4x-21)-105=(x2-4x)2-26(x2-4x)=(x2-4x)(x2-4x-26)=x(x-4)(x2-4x-26)(4)原式=(x2-6-5x)(x2-6+x)=(x-6)(x+1)(x-2)(x+3).第21页(共21页)。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。

提取公因式后,再算出括号内各项。

解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。

100道因式分解及答案例题

100道因式分解及答案例题

100道因式分解及答案例题(1)因式分解8-2x2=2(2-x)(2+x)(2)因式分解x4-1=(x-1)(x+1)(x^2+1)(3)因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)(4)因式分解4x2-12x+5=(2x-1)(2x-5)(5)因式分解21x2-31x-22=(21x+11)(x-2)(6)因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) (7)因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)(8)分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)(9)因式分解xy+6-2x-3y=(x-3)(y-2)(10)因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2(11)因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)(12)因式分解a4-9a2b2=a^2(a+3b)(a-3b)(13)因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) (14)因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) (15)因式分解a2-a-b2-b=(a+b)(a-b-1)(16)(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^ 2(17)因式分解(a+3)2-6(a+3)=(a+3)(a-3)(18)因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(19)16x2-81=(4x+9)(4x-9)(20)9x2-30x+25=(3x-5)^2(21)x2-7x-30=(x-10)(x+3)(22)因式分解x2-25=(x+5)(x-5)(23)因式分解x2-20x+100=(x-10)^2(24)因式分解x2+4x+3=(x+1)(x+3)(25)因式分解4x2-12x+5=(2x-1)(2x-5)(26)3ax2-6ax=3ax(x-2)(27)x(x+2)-x=x(x+1)(28)(3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (29)36x2-60x+25=(6x-5)^2(30)4x2+12x+9=(2x+3)^2(31)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (32)12x2-50x+8=2(6x-1)(x-4)(33)因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)(34)因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)(35)因式分解9x2-66x+121=(3x-11)^2(36)因式分解8-2x2=2(2+x)(2-x)(37)因式分解x2-x+14 =整数内无法分解(38)因式分解9x2-30x+25=(3x-5)^2(39)因式分解-20x2+9x+20=(-4x+5)(5x+4)(40)因式分解12x2-29x+15=(4x-3)(3x-5)(41)因式分解36x2+39x+9=3(3x+1)(4x+3)(42)因式分解21x2-31x-22=(21x+11)(x-2)(43)因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)(44)X3+7X2+X+7 = (X3+7X2)+(X+7) (分组)= X2(X+7)+(X+7) (在X3+7X2中提出X2)= (X2+1)(X+7) (提出X+7)(45)X3+3X2-5X-15= X3+3X2-(5X+15) (分组)= X2(X+3)-5(X+3) (在X3+3X2中提出X2,5X+15中提出5) = (X2-5)(X+3) (提出X+3)(46)a2b+ab2-ab=ab(a+b-1).(47)-7ab+14a2-49ab2=-7a(b-2a+7b2).(48)3(y-x)2+2(x-y)=(x-y)(3x-3y+2)(49)x(a-1)(a-2)-y(1-a)(2-a)=(a-1)(a-2)(x-y).(50)-a2+b2=(a+b)(_b-a_)(51)1-a4=(1+a)(1-a)(1+a2)(51)992-1012=-400(53)若a+b=1,x-y=2,则a2+2ab+b2-x+y=-1。

因式分解的四种方法(习题及答案)

因式分解的四种方法(习题及答案)

因式分解的四种方法(习题)例题示范例1:2222(1)2(1)(1)x y x y y -+-+-【思路分析】考虑因式分解顺序的口诀“一提二套三分四查”,观察式子里面有公因式2(1)y -,先提取,然后再利用公式法因式分解,分解完后要查一下是否分解彻底.【过程书写】222(1)(21)(1)(1)(1)y x x y y x -++=+-+=解:原式 巩固练习1.下列从左到右的变形,是因式分解的是()A .232393x y z x z y =⋅B .25(2)(3)1x x x x +-=-++C .22()a b ab ab a b +=+D .211x x x x ⎛⎫+=+ ⎪⎝⎭2.把代数式322363x x y xy -+因式分解,结果正确的是()A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .(3)x x y -D .23()x x y -3.因式分解:(1)22363a b ab ab +-;(2)()()y x y y x ---;解:原式=解:原式=(3)2441a a -+;(4)256x x -+;解:原式=解:原式=(5)2168()()x y x y --+-;(6)41x -;解:原式=解:原式=(7)222(1)4a a +-;(8)25210ab bc a ac --+;解:原式=解:原式=(9)223(2)3m x y mn --;(10)2ab ac bc b -+-;解:原式=解:原式=(11)2222a b a b -++;(12)2(2)(4)4x x x +++-;解:原式=解:原式=(13)321a a a +--;(14)2244a a b -+-;解:原式=解:原式=(15)222221a ab b a b ++--+;解:原式=(16)228x x --;(17)226a ab b --;解:原式=解:原式=(18)2231x x -+;(19)32412x x x --;解:原式=解:原式=(20)2()()2x y x y +++-;(21)(1)(2)6x x ---.解:原式=解:原式=思考小结在进行因式分解时,要观察式子特征,根据特征选择合适的方法:①若多项式各项都含有相同的因数或相同的字母,首先考虑__________________.②若多项式只含有符号相反的两项,且两项都能写成一个单项式的平方,则考虑利用____________________进行因式分解.③若多项式为二次三项式的结构,则通常要考虑____________或_______________.④若多项式项数较多,则考虑_______________.【参考答案】巩固练习1.C 2.D 3.(1)3ab (a +2b -1)(2)(x -y )(y +1)(3)2(21)a -(4)(x -2)(x -3)(5)(4-x +y )2(6)(x 2+1)(x +1)(x -1)(7)(a +1)2(a -1)2(8)(b -2a )(a -5c )(9)3m (2x -y +n )(2x -y -n )(10)(b -c )(a -b )(11)(a +b )(a -b +2)(12)2(x +1)(x +2)(13)2(1)(1)a a +-(14)(a -2+b )(a -2-b )(15)2(1)a b +-(16)(x -4)(x +2)(17)(a -3b )(a +2b )(18)(2x -1)(x -1)(19)x (x +2)(x -6)(20)(x +y -1)(x +y +2)(21)(x +1)(x -4)思考小结①提公因式②平方差公式③完全平方公式,十字相乘法④分组分解法。

100道因式分解及答案例题

100道因式分解及答案例题

100道因式分解及答案例题因式分解是代数中一项重要的运算,它可以将一个多项式表达式分解为多个乘积的形式。

在解决代数问题中,因式分解可以帮助我们更好地理解和处理多项式的结构。

本文将为您提供100道因式分解的例题及其答案,帮助您巩固和提高因式分解的能力。

1. 将多项式y^2 − y^2分解为两个乘积的形式。

解:y^2 − y^2 = (y + y)(y− y)2. 将多项式y^2 − 16分解为两个乘积的形式。

解:y^2 − 16 = (y + 4)(y− 4)3. 将多项式9y^2 − 16分解为两个乘积的形式。

解:9y^2 − 16 = (3y + 4)(3y− 4)4. 将多项式y^2 + 6y + 9分解为两个乘积的形式。

解:y^2 + 6y + 9 = (y + 3)(y + 3) 或(y + 3)^25. 将多项式y^2 − 7y + 12分解为两个乘积的形式。

解:y^2 − 7y + 12 = (y− 3)(y− 4)6. 将多项式4y^2 − 12y^2分解为两个乘积的形式。

解:4y^2 − 12y^2 = 4(y^2 − 3y^2) = 4(y + y√3)(y− y√3)7. 将多项式y^3 − 8分解为两个乘积的形式。

解:y^3 − 8 = (y− 2)(y^2 + 2y + 4)8. 将多项式y^4 − 16分解为两个乘积的形式。

解:y^4 − 16 = (y^2 − 4)(y^2 + 4) = (y + 2)(y− 2)(y^2 + 4)9. 将多项式y^3 + 1分解为两个乘积的形式。

解:y^3 + 1 = (y + 1)(y^2 − y + 1)10. 将多项式4y^2 + 12y + 9分解为两个乘积的形式。

解:4y^2 + 12y + 9 = (2y + 3)(2y + 3) 或(2y + 3)^211. 将多项式y^4 − 81分解为两个乘积的形式。

解:y^4 − 81 = (y^2 − 9)(y^2 + 9) = (y− 3)(y + 3)(y^2 + 9)12. 将多项式y^3 − y^2 − 2y + 2分解为两个乘积的形式。

因式分解经典实例及解析50题(打印版)

因式分解经典实例及解析50题(打印版)

12.(分解因式):4小瓶—4十九—炉机+人2九
解:原式=4q2(m 一九)一炉(加一九)
=(4。2 —》2)(加—九)
=(2Q + b)(2α —
一九)
13.(分解因式):%(% - 2) -(y + l)(y - 1) 解:原式二%2 - 2% - V + 1 二(/ - 2% + 1) -y2 = (% — I)? — y2 =(% — 1 + y)(% - 1 - y)
10.(分解因式):/ 一 4孙+ 8y + 4y2 一轨 解:原式二(/ - 4%y + 4y2) + (8y - 4%) =(% — 2y7 — 4(% — 2y) =(% - 2y)(% - 2y - 4)
11.(分解因式):%4 - 2/ + %2 - 36 解:原式=%2(%2 一 2% + 1) - 36 =%2(χ - 1)2 — 36 = [%(% — 1) + 6] [%(% — 1) — 6] =(%2 — % + 6)(%2 _ % _ 6) =(%? — % + 6)(% — 3)(% + 2)
二.答案解析
L(分解因式):α% — b% + αy — by 解:原式=%(α - b) + y(α - b)
=(α-b)(% + y)
2.(分解因式):2mα — IOmb + 5献)一九Q 解:原式=2m(α — 5b)—九(G — 5b) =(2租 一 九)(Q _ 5b)
3.(分解因式):/ — %y + * - yz 解:原式二%(% - y) + z(% - y) 二(% + z)(% — y)

100道因式分解及答案例题

100道因式分解及答案例题

=(c+b)(c-a)(a+b)( 1 )因式分解 8-2x2=2(2-x)(2+x)( 2 )因式分解 x4-1=(x-1)(x+1)(x^2+1)(3)因式分解 x2+4x-xy-2y+4=(x+2)(x-y+2)(4)因式分解 4x2-12x+5=(2x-1)(2x-5)( 5 )因式分解 21x2-31x-22=(21x+11)(x-2)(6)因式分解 4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) ( 7)因式分解 9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)( 8 )分解因式 bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)(9)因式分解 xy+6-2x-3y=(x-3)(y-2)( 10)因式分解 x2(x-y)+y2(y-x)=(x+y)(x-y)^2( 11 )因式分解 2x2-(a-2b)x-ab=(2x-a)(x+b)( 12 )因式分解 a4-9a2b2=a^2(a+3b)(a-3b)( 13)因式分解 ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)( 14)因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)( 15 )因式分解 a2-a-b2-b=(a+b)(a-b-1)( 16 ) (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2( 17 )因式分解(a+3)2-6(a+3)=(a+3)(a-3)( 18 )因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) ( 19 ) 16x2-81=(4x+9)(4x-9)( 20 ) 9x2-30x+25=(3x-5)^2( 21 ) x2-7x-30=(x-10)(x+3)( 23 )因式分解 x2-20x+100=(x-10)^2( 24)因式分解 x2+4x+3=(x+1)(x+3)( 25 )因式分解 4x2-12x+5=(2x-1)(2x-5)( 26 ) 3ax2-6ax=3ax(x-2)( 27 ) x(x+2)-x=x(x+1)( 28 ) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) ( 29 ) 36x2-60x+25=(6x-5)^2( 30 ) 4x2+12x+9=(2x+3)^2( 31 ) x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1)( 32 ) 12x2-50x+8=2(6x-1)(x-4)( 33 )因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)( 34)因式分解 2ax2-3x+2ax-3= (x+1)(2ax-3)( 35 )因式分解 9x2-66x+121=(3x-11)^2( 37 )因式分解 x2-x+14 =整数内无法分解( 38 )因式分解 9x2-30x+25=(3x-5)^2( 39 )因式分解 -20x2+9x+20=(-4x+5)(5x+4) ( 40 )因式分解 12x2-29x+15=(4x-3)(3x-5)( 41 )因式分解 36x2+39x+9=3(3x+1)(4x+3) ( 42 )因式分解 21x2-31x-22=(21x+11)(x-2) ( 43 )因式分解 9x4-35x2-4=(9x^2+1)(x+2)(x-2) ( 44 ) X3+7X2+X+7 = (X3+7X2)+(X+7) (分组) = X2(X+7)+(X+7) ( 在 X3+7X2 中提出 X2)= (X2+1)(X+7) (提出 X+7)( 45 ) X3+3X2-5X-15= X3+3X2-(5X+15) (分组)= X2(X+3)-5(X+3) ( 在 X3+3X2 中提出 X2,5X+15 中提出 5) = (X2-5)(X+3) (提出 X+3)( 46 ) a2b+ab2-ab=ab(a+b-1).( 47 ) -7ab+14a2-49ab2=-7a(b-2a+7b2).( 48 ) 3(y-x)2+2(x-y)=(x-y)(3x-3y+2)( 49 ) x(a-1)(a-2)-y(1-a)(2-a)=(a-1)(a-2)(x-y).( 50 ) -a2+b2=(a+b)(_b-a_)( 51 ) 1-a4=(1+a)(1-a)(1+a2)( 51 ) 992-1012=-400( 53)若 a+b=1,x-y=2,则 a2+2ab+b2-x+y=-1。

因式分解的四种方法(习题及答案)

因式分解的四种方法(习题及答案)
思考小结 ①提公因式 ②平方差公式 ③完全平方公式,十字相乘法 ④分组分解法
(14) a2 4a 4 b2 ; 解:原式=
(15) a2 2ab b2 2a 2b 1; 解:原式=
(16) x2 2x 8 ; 解:原式=
(17) a2 ab 6b2 ; 解:原式=
(18) 2x2 3x 1 ; 解:原式=
(19) x3 4x2 12x ; 解:原式=
解:原式=
解:原式=
(3) 4a2 4a 1; 解:原式=
(4) x2 5x 6 ; 解:原式=
(5)16 8(x y) (x y)2 ; 解:原式=
(6) x4 1; 解:原式=
(7) (a2 1)2 4a2 ; 解:原式=
(8) ab 5bc 2a2 10ac ; 解:原式=
( y 1)( y 1)(x 1)2
巩固练习
1. 下列从左到右的变形,是因式分解的是( )
A. 9x2 y3z 3x2 z y3
B. x2 x 5 (x 2)(x 3) 1
C. a2b ab2 ab(a b)
D.
x2
1ቤተ መጻሕፍቲ ባይዱ

x

x

1 x

(9) 3m(2x y)2 3mn2 ; 解:原式=
(10) ab ac bc b2 ; 解:原式=
(11) a2 b2 2a 2b ; 解:原式=
(12) (x 2)(x 4) x2 4 ; 解:原式=
(13) a3 a2 a 1; 解:原式=
2. 把代数式 3x3 6x2 y 3xy2 因式分解,结果正确的是( )

因式分解经典练习100道及答案

因式分解经典练习100道及答案

因式分解经典练习100道及答案一、提取公因式(1)3332-4518ab c a b c(2)334434343++243024x y z x y z x y z(3)(94)(92)(1)(94)--+----x x x x(4)(83)(2)(83)(75)-+---m x m x(5)(51)(5)(51)(54)(51)(31)--++--++---m n m n m n(6)344c b c+630(7)(3)(52)(3)(51)(3)(93)---+--++-+x x x x x x(8)334+412ac a c(9)2443+x y ax y(10)(54)(95)(54)(21)(54)(35)x x x x x x+-+++--+++ (11)44324++142835x z x yz x yz(12)2342-a x y a xy1220(13)2423+2012a b c a bc(14)43242-+20520x y x y z xyz(15)(41)(31)(41)(84)---+-+a b a b(16)33-xz y4016(17)(41)(45)(41)(52)+++++m x m x(18)(94)(83)(55)(94)m n n m ----+-(19)2232718x y z xyz-(20)222242x z x y z+二、公式法(21)2249369849x y x -+-(22)22144600625a ab b -+(23)228114464m n m -+-(24)224001160841a ab b ++(25)22361529a b -(26)22x y-121289(27)2x-814(28)212136x-(29)22-+78428025a ab b(30)22-+m mn n48422025三、分组分解法(31)48321812--++xy x y(32)22----a c ab bc ca5435543033 (33)221+--ab a b(34)22+-+-7653043a c ab bc ca(35)22x y xy yz zx+--+3512443035 (36)35257050+--ax ay bx by (37)3287218xy x y-++-(38)20410020+--ax ay bx by (39)48564856-+-mx my nx ny (40)40408080--+xy x y(41)22x y xy yz zx-++-2430163542 (42)22---+x y xy yz zx2449144928 (43)8756-+-ax ay bx by(44)2216538216a b ab bc ca----(45)2212353541a c ab bc ca+-+-(46)81648ax ay bx by+--(47)227228271231a c ab bc ca-+-+(48)224220591221a b ab bc ca++++(49)221851249x z xy yz zx----(50)63362112mx my nx ny--+四、拆添项(51)424169x x -+(52)2216162455a b a b --++(53)22362524305x y x y --+-(54)2281161081632a b a b --++(55)222581609011m n m n ---+(56)422442125x x y y -+(57)226469627x y x y ----(58)42244910516x x y y -+(59)4225111x x -+(60)42246416149m m n n -+五、十字相乘法(61)22+-+++x xy y x y20196441824 (62)222+-+++x y z xy yz xz3621575841 (63)22---+x xy y x y251083528 (64)222x y z xy yz xz-+--+635826646 (65)22--+++x xy y x y24112847820 (66)22x xy y x y+--++4536831328 (67)22x xy y x y---++1612422127 (68)22++--+ 284715654128x xy y x y(69)22569359192m mn n m n ---+-(70)22491435145824p pq q p q --++-(71)2235692829296x xy y x y -++-+(72)2221401627206x xy y x y +++++(73)22921101576x xy y x y ++++-(74)22213723112x xy y x y --++-(75)22228216612329a b c ab bc ac+++--(76)2225421221218x y z xy yz xz+-+++(77)2225465602921a b c ab bc ac+-+--(78)222204912634932x y z xy yz xz++--+(79)2282620324930x xy y x y -++-+(80)2223018621328x y z xy yz xz-+--+六、双十字相乘法(81)2291481586x xy y x y ---++(82)2228152537512x xy y x y +-+++(83)22251418173627a b c ab bc ac+--+-(84)22104121284016x xy y x y +++++(85)2224652137x xy y x y-++-(86)22291216243224a b c ab bc ac+++++(87)22991024337a ab b a b ---++(88)222091943x xy y x y +++++(89)2236306242521x xy y x y -----(90)225272822368x xy y x y -+-++七、因式定理(91)33112x x --(92)322163a a a --+(93)321257360x x x +-+(94)3266132x x x --+(95)32331315x x x ---(96)321624196x x x --+(97)321037960x x x +--(98)324721x x x ++-(99)32472x x x ---(100)324x x -+因式分解经典练习100道答案一、提取公因式(1)2229(52)ab c bc a-(2)3336(454)x y z z xz y++ (3)(94)(103)x x---(4)(83)(67)m x---(5)(51)(98)m n--+(6)346(15)c b c+(7)(3)(2)x x--+(8)324(13)ac a c+(9)232()x y y ax+(10)(54)(89)x x+-+ (11)22337(245)x z x z xy yz++ (12)2224(35)a xy x a y-(13)2324(53)a bcb c+(14)32325(44)xy x y xy z z-+(15)(41)(53)a b-+(16)338(52)xz y-(17)(41)(97)m x++(18)(94)(138)m n--+ (19)29(32)xyz xyz-(20)222(2)x z z y+二、公式法(21)(767)(767)x y x y++-+ (22)2(1225)a b-(23)(98)(98)m n m n++-+ (24)2(2029)a b+(25)(1923)(1923)a b a b+-(26)(1117)(1117)x y x y+-(27)(92)(92)x x+-(28)(116)(116)x x+-(29)2(285)a b-(30)2(225)m n-三、分组分解法(31)2(83)(32)x y--+(32)(667)(95)a b c a c--+(33)(21)(1)a b-+(34)(6)(75)a c ab c---(35)(76)(525)x y x y z--+(36)5(2)(75)a b x y-+ (37)2(49)(41)x y---(38)4(5)(5)a b x y-+(39)8()(67)m n x y+-(40)40(2)(1)x y--(41)(467)(65)x y z x y+--(42)(677)(47)x y z x y++-(43)(7)(8)a b x y+-(44)(252)(8)a b c a b--+(45)(35)(47)a c ab c---(46)4(2)(2)a b x y-+(47)(94)(837)a c ab c-++(48)(74)(653)a b a b c+++(49)(3)(645)x z x y z+--(50)3(3)(74)m n x y--四、拆添项(51)22(223)(223)x x x x+---(52)(411)(45)a b a b+---(53)(655)(651)x y x y+--+(54)(948)(944)a b a b+---(55)(591)(5911)m n m n+---(56)2222(25)(25)x xy y x xy y+---(57)(83)(89)x y x y++--(58)2222(774)(774)x xy y x xy y+---(59)22(51)(51)x x x x+---(60)2222(877)(877)m mn n m mn n+---五、十字相乘法(61)(44)(566)x y x y-+++(62)(93)(475)x y z x y z+-++(63)(54)(527)x y x y-+-(64)(72)(954)x y z x y z++-+(65)(344)(875)x y x y-+++(66)(934)(527)x y x y--+-(67)(221)(827)x y x y--+-(68)(734)(457)x y x y+-+-(69)(752)(871)m n m n+--+(70)(776)(754)p q p q-++-(71)(743)(572)x y x y-+-+(72)(742)(343)x y x y++++(73)(356)(321)x y x y+++-(74)(24)(73)x y x y+--+(75)(473)(732)a b c a b c+-+-(76)(62)(926)x y z x y z+-++(77)(66)(95)a b c a b c+++-(78)(573)(474)x y z x y z-+-+(79)(456)(245)x y x y-+-+ (80)(563)(632)x y z x y z-+++六、双十字相乘法(81)(946)(21)x y x y+---(82)(453)(754)x y x y++-+(83)(26)(573)a b c a b c---+ (84)(534)(274)x y x y++++ (85)(831)(37)x y x y-+-(86)(364)(324)a b c a b c++++(87)(327)(351)a b a b+---(88)(51)(43)x y x y++++ (89)(667)(63)x y x y--++(90)(44)(572)x y x y----七、因式定理(91)2(2)(361)x x x-++ (92)2(3)(251)a a a-+-(93)(3)(34)(45)x x x+--(94)2(2)(661)x x x-+-(95)2(3)(365)x x x-++ (96)(2)(43)(41)x x x-+-(97)(3)(54)(25)x x x-++ (98)2(1)(41)x x+-(99)2(2)(41)x x x-++ (100)2(2)(22)x x x+-+。

因式分解经典题型(含详细答案)

因式分解经典题型(含详细答案)

因式分解经典题型【编著】黄勇权经典题型一:1、x3+2x2-12、4x2+4x-4y2+13、3x+xy-y-34、3x3+5x2-25、3x2y-3xy-6y6、x2-7x-607、3x2-2xy-8y28、x(y-2)-x2(2-y)9、x2+8xy-33y210、(x2+3x)4-8(x2+3x)2+16经典题型一:【答案】1、x32-1将2x2拆分成x2+x2=x3+x2+x2-1=(x3+x2)+(x2-1)=x2(x+1)+(x+1)(x-1)提取公因式(x+1)=(x+1)[x2+(x-1)]=(x+1)(x2+x-1)2、4x2+4x-4y2+1将-4y2与+1 位置互换=4x2+4x+1-4y2=(4x2+4x+1)-4y2=(2x+1)2-4y2=[(2x+1)+2y][(2x+1)-2y]=(2x+2y+1)(2x-2y+1)3、3x+xy-y-3将前两项结合,后两项结合=(3x+xy)+(-y-3)= x(3+y)-(y+3)提取公因式(y+3)=(y+3)(x-1)4、3x3+5x2-2将5x2拆分成3x2+2x2=3x3+3x2+2x2-2=(3x3+3x2)+(2x2-2)=3x2(x+1)+2(x2-1)=3x2(x+1)+2(x+1)(x-1)提取公因式(x+1)=(x+1)[3x2+2(x-1)]=(x+1)(3x2+2x-2)5、3x2y-3xy-6y将-6y拆分成-3y-3y=3x2y-3xy-3y-3y将3x2y与-3y结合,-3xy与-3y结合=(3x2y-3y)+(-3xy-3y)=3y(x2-1)-3y(x+1)=3y(x+1)(x-1)-3y(x+1)提取公因式3y(x+1)=3y(x+1)[(x-1)-1]=3y(x+1)(x-2)6、x2-7x-60用十字叉乘法,将-60拆分成-12与5的乘积X -12X 5=(x-12)(x+5)7、3x2-2xy-8y2【详细讲解十字叉乘法】用十字叉乘法,用逐一罗列(1)3x2只能拆分成3x与x的乘积,(2)-8y2,可拆分成①-8y与y的乘积②8y与-y的乘积③-4y与2y的乘积④4y与-2y的乘积逐一尝试,看哪一组结果是-2xy(1)3X -8yX y3xy-8xy=-5xy(结果不是-2xy,舍去)(2)3X yX -8y-24xy+xy=-23xy(结果不是-2xy,舍去)(3)3X 8yX -y-3xy+8xy=5xy(结果不是-2xy,舍去)(4)3X -yX 8y24xy-xy=23xy(结果不是-2xy,舍去)(5)3X -2yX 4y12xy-2xy=10xy(结果不是-2xy,舍去)(6)3X 4yX -2y-6xy+4xy=-2xy(结果是-2xy,符合题意)(7)3X 2yX -4y-12xy+2xy=-10xy(结果不是-2xy,舍去)(8)3X -4yX 2y6xy-4xy=2xy(结果不是-2xy,舍去)通过逐一尝试,第(6)就是我们要的答案,所以:3x2-2xy-8y2用十字叉乘法,3X 4yX -2y=(3x+4y)(x-2y)8、x(y-2)-x2(2-y)将(2-y)变为-(y-2)= x(y-2)+x2(y-2)提取公因式x(y-2)-2)(1+x)整理一下(y-2)、(1+x)的顺序= x(1+x)(y-2)9、x2+8xy-33y2用十字叉乘法X 11yX -3y=(x+11y)(x-3y)10、(x2+3x)4-8(x2+3x)2+16把(x2+3x)4看着(x2+3x)2看平方,把16 看着4的平方。

因式分解题目及答案100道题

因式分解题目及答案100道题

因式分解题目及答案100道题题目1:若x^2+12x+27=0,则x的值是多少?答案:x=-3或x=9题目2:若a^2-35a+154=0,则a的值是多少?答案:a=9或a=17题目3:若2x^2-8x+5=0,则x的值是多少?答案:x=1或x=2.5题目4:若6x^2+17x+6=0,则x的值是多少?答案:x=-1或x=-3题目5:若4x^2+14x+7=0,则x的值是多少?答案:x=-1或x=-7/2题目6:若2x^2+13x+14=0,则x的值是多少?答案:x=-7或x=-2题目7:若6x^2+19x+8=0,则x的值是多少?答案:x=-1或x=-4/3题目8:若3x^2-13x-14=0,则x的值是多少?答案:x=2或x=7题目9:若4x^2-12x-21=0,则x的值是多少?答案:x=3或x=7/2题目10:若5x^2+35x+50=0,则x的值是多少?答案:x=-5或x=-10题目11:若3x^2-17x-18=0,则x的值是多少?答案:x=3或x=6题目12:若2x^2+14x+15=0,则x的值是多少?答案:x=-5或x=-3题目13:若4x^2-8x-30=0,则x的值是多少?答案:x=3或x=7/2题目14:若5x^2+20x+15=0,则x的值是多少?答案:x=-3或x=-3题目15:若x^2+15x+56=0,则x的值是多少?答案:x=-8或x=7题目16:若x^2+20x+100=0,则x的值是多少?答案:x=-10或x=-10题目17:若2x^2+18x+72=0,则x的值是多少?答案:x=-6或x=-8题目18:若3x^2+19x+90=0,则x的值是多少?答案:x=-3或x=-10题目19:若x^2+10x+24=0,则x的值是多少?答案:x=-4或x=-6题目20:若4x^2-16x-64=0,则x的值是多少?答案:x=4或x=8题目21:若7x^2+49x+56=0,则x的值是多少?答案:x=-7或x=-8题目22:若x^2-13x+36=0,则x的值是多少?答案:x=6或x=9题目23:若2x^2-23x+72=0,则x的值是多少?答案:x=6或x=12题目24:若5x^2+25x+50=0,则x的值是多少?答案:x=-5或x=-10题目25:若x^2+18x+81=0,则x的值是多少?答案:x=-9或x=-9题目26:若4x^2+20x+45=0,则x的值是多少?答案:x=-5或x=-5/2题目27:若3x^2+21x+66=0,则x的值是多少?答案:x=-3或x=-11题目28:若x^2-17x+60=0,则x的值是多少?答案:x=9或x=15题目29:若2x^2+15x+39=0,则x的值是多少?答案:x=-3或x=-9/2题目30:若4x^2-19x-72=0,则x的值是多少?答案:x=4或x=9题目31:若7x^2+35x+60=0,则x的值是多少?答案:x=-5或x=-8题目32:若x^2+12x+36=0,则x的值是多少?答案:x=-6或x=-6题目33:若2x^2-11x+30=0,则x的值是多少?答案:x=5或x=6题目34:若5x^2+20x+25=0,则x的值是多少?答案:x=-1或x=-5题目35:若x^2+18x+45=0,则x的值是多少?答案:x=-9或x=-5题目36:若3x^2+15x+54=0,则x的值是多少?答案:x=-3或x=-6题目37:若4x^2-24x-72=0,则x的值是多少?答案:x=6或x=9题目38:若x^2+21x+84=0,则x的值是多少?答案:x=-7或x=-12题目39:若2x^2+13x+30=0,则x的值是多少?答案:x=-5或x=-6题目40:若7x^2+28x+56=0,则x的值是多少?答案:x=-4或x=-8题目41:若5x^2-18x+45=0,则x的值是多少?答案:x=3或x=9题目42:若x^2-17x+80=0,则x的值是多少?答案:x=8或x=10题目43:若4x^2+24x+64=0,则x的值是多少?答案:x=-4或x=-8题目44:若3x^2-14x+36=0,则x的值是多少?答案:x=6或x=12题目45:若x^2+11x+30=0,则x的值是多少?答案:x=-5或x=-6题目46:若2x^2+19x+90=0,则x的值是多少?答案:x=-9或x=-10题目47:若6x^2-27x-90=0,则x的值是多少?答案:x=3或x=15题目48:若x^2+15x+54=0,则x的值是多少?答案:x=-6或x=-9题目49:若4x^2-21x-60=0,则x的值是多少?答案:x=3或x=15题目50:若5x^2+30x+75=0,则x的值是多少?答案:x=-5或x=-15题目51:若2x^2-12x-45=0,则x的值是多少?答案:x=5或x=15题目52:若x^2+20x+100=0,则x的值是多少?答案:x=-10或x=-20题目53:若3x^2-15x-60=0,则x的值是多少?答案:x=4或x=20题目54:若4x^2+18x+45=0,则x的值是多少?答案:x=-3或x=-9题目55:若5x^2-25x+90=0,则x的值是多少?答案:x=3或x=18题目56:若x^2+17x+72=0,则x的值是多少?答案:x=-8或x=-12题目57:若2x^2+11x+24=0,则x的值是多少?答案:x=-4或x=-6题目58:若3x^2-18x+54=0,则x的值是多少?答案:x=3或x=9题目59:若4x^2+21x-70=0,则x的值是多少?答案:x=-3或x=7题目60:若5x^2-30x+105=0,则x的值是多少?答案:x=3或x=21题目61:若x^2+19x+90=0,则x的值是多少?答案:x=-10或x=-9题目62:若2x^2-13x-42=0,则x的值是多少?答案:x=6或x=14题目63:若3x^2+22x+105=0,则x的值是多少?答案:x=-5或x=-15题目64:若4x^2-23x-72=0,则x的值是多少?答案:x=6或x=12题目65:若5x^2+25x+90=0,则x的值是多少?答案:x=-3或x=-18题目66:若x^2-20x-100=0,则x的值是多少?答案:x=10或x=20题目67:若2x^2+13x+36=0,则x的值是多少?答案:x=-6或x=-9题目68:若3x^2-16x-48=0,则x的值是多少?答案:x=4或x=12题目69:若4x^2+17x+45=0,则x的值是多少?答案:x=-3或x=-9题目70:若5x^2-28x+105=0,则x的值是多少?答案:x=5或x=21题目71:若x^2+18x+87=0,则x的值是多少?答案:x=-9或x=-11题目72:若2x^2-14x-45=0,则x的值是多少?答案:x=5或x=15题目73:若3x^2+20x+105=0,则x的值是多少?答案:x=-5或x=-17题目74:若4x^2-22x-84=0,则x的值是多少?答案:x=7或x=12题目75:若5x^2+24x+95=0,则x的值是多少?答案:x=-4或x=-19题目76:若x^2-21x-98=0,则x的值是多少?答案:x=7或x=14题目77:若2x^2+14x+35=0,则x的值是多少?答案:x=-7或x=-5题目78:若3x^2-17x-54=0,则x的值是多少?答案:x=3或x=9题目79:若4x^2+18x+63=0,则x的值是多少?答案:x=-3或x=-9题目80:若5x^2-26x+99=0,则x的值是多少?答案:x=4或x=19题目81:若x^2+20x+90=0,则x的值是多少?答案:x=-10或x=-9题目82:若2x^2-16x-48=0,则x的值是多少?答案:x=4或x=12题目83:若3x^2+18x+63=0,则x的值是多少?答案:x=-3或x=-9题目84:若4x^2-20x-80=0,则x的值是多少?答案:x=5或x=16题目85:若5x^2+22x+85=0,则x的值是多少?答案:x=-4或x=-17题目86:若x^2-22x-97=0,则x的值是多少?答案:x=7或x=13题目87:若2x^2+12x+25=0,则x的值是多少?答案:x=-5或x=-6题目88:若3x^2-15x-42=0,则x的值是多少?答案:x=3或x=14题目89:若4x^2+16x+48=0,则x的值是多少?答案:x=-4或x=-12题目90:若5x^2-24x+93=0,则x的值是多少?答案:x=3或x=19题目91:若x^2+18x+75=0,则x的值是多少?答案:x=-9或x=-8题目92:若2x^2-14x-35=0,则x的值是多少?答案:x=5或x=7题目93:若3x^2+17x+54=0,则x的值是多少?答案:x=-5或x=-9题目94:若4x^2-20x+82=0,则x的值是多少?答案:x=4或x=13题目95:若5x^2+26x-99=0,则x的值是多少?答案:x=-4或x=-19题目96:若x^2-20x+90=0,则x的值是多少?答案:x=9或x=10题目97:若2x^2+16x-48=0,则x的值是多少?答案:x=-6或x=-8题目98:若3x^2-18x+63=0,则x的值是多少?答案:x=3或x=9题目99:若4x^2+20x-80=0,则x的值是多少?答案:x=-5或x=-16题目100:若5x^2-22x-85=0,则x的值是多少?答案:x=4或x=17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解例题讲解及练习【例题精选】:(1)评析:先查各项系数(其它字母暂时不瞧),确定5,15,20得最大公因数就是5,确定系数就是5 ,再查各项就是否都有字母X,各项都有时,再确定X得最低次幂就是几,至此确认提取X2,同法确定提Y,最后确定提公因式5X2Y。

提取公因式后,再算出括号内各项。

解:=(2)评析:多项式得第一项系数为负数,应先提出负号,各项系数得最大公因数为3,且相同字母最低次得项就是X2Y解:===(3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中,y-x与x-y都可以做为公因式,但应避免负号过多得情况出现,所以应提取y-x解:原式=(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4)把分解因式评析:这个多项式有公因式2x3,应先提取公因式,剩余得多项式16y4-1具备平方差公式得形式解:=2=2=(5)(5)把分解因式评析:首先提取公因式xy2,剩下得多项式x6-y6可以瞧作用平方差公式分解,最后再运用立方与立方差公式分解。

对于x6-y6也可以变成先运用立方差公式分解,但比较麻烦。

解:=xy2(x6-y6)= xy2[]==(6)把分解因式评析:把(x+y)瞧作一个整体,那么这个多项式相当于(x+y)得二次三项式,并且为降幂排列,适合完全平方公式。

对于本例中得多项式切不可用乘法公式展开后再分解,而要注意观察分析,善于把(x+y)代换完全平方公式中得a,(6Z)换公式中得解:==(x+y-6z)2(7)(7)把分解因式评析:把x2-2y2与y2瞧作两个整体,那么这个多项式就就是关于x2-2y2与y2得二次三项式,但首末两项不就是有理数范围内得完全平方项,不能直接应用完全平方公式,但注意把首项系数提出后,括号里边实际上就就是一个完全平方式。

解:===(8)(8)分解因式a2-b2-2b-1评析:初瞧,前两项可用平方差公式分解。

采用“二、二”分组,原式=(a+b)(a-b)-(2b+1),此时无法继续分解。

再仔细瞧,后三项就是一个完全平方式,应采用“一、三”分组。

解:a2-b2-2b-1= a2-(b2-2b+1)=a2-(b+1)2=[a+(b+1)][a-(b+1)]=(a-b-1)(a+b+1) 一般来说,四项式“一、三”分解,最后要用“平方差”。

四项式“二、二”分组,只有前后两组出现公因式,才就是正确得分组方案。

(9)(9)把a2-ab+ac-bc分解因式解法一:a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c)解法二:a2-ab+ac-bc=(a2+ac)-(ab+bc)=a(a+c)-b(a+c) =(a-b)(a+c)(10)(10)把分解因式解法一:=)3yxy-x+=+yxyxx-xxy+x)(2(3))(()32(2-+=223()+解法二:=)x+-xxyxxy=-+--y-=+)3)32(2(2()(3)3xx2(2y32()x说明:例(2)与例(3)得解法一与解法二虽然分组不同,但却有着相同得内在联系,即两组中得对应系数成比例。

(2)题解法一1:1,解法二也就是1:1;(3)题解法一就是1:1,解法二就是2:(-3)(11) 分解因式评析:四项式一般先观察某三项就是否就是完全平方式。

如就是,就考虑“一、三”分组;不就是,就考虑“二、二”分组解法一:==解法二:==解法三:==(12)(12)分解因式(a-b)2-1-2c(a-b)+c2评析:本题将(a-b)瞧作一个整体,可观察出其中三项就是完全平方式,可以“一、三”分组解:(a-b)2-1-2c(a-b)+c2=[(a-b)2-2c(a-b)+c2]-1=[(a-b)-c]2-1=(a-b-c)2-1-(a-b-c+1)(a-b-c-1)(13)分解因式8a2-5ab-42b2 8a -21b解:8a2-5ab-42b2 a +2b=(8a-21b)(a+2b) -21ab+16ab=-5ab (14)(14)分解因式a6-10a3+16解:a6-10a3+16 a3 -2=( a3-2)( a3-8) a3-8=( a3-2)(a-2)(a2+2a+4) -8a3-2a3 =-10a3(15)(15)分解因式-x2+x+30解:-x2+x+30 (先提出负号) x +5=-( x2-x-30) x -6=-(x+5)(x-6) +5x-6x=-x(16)(16)分解因式12(x+y)2-8(x+y)-7解:12(x+y)2-8(x+y)-7 2(x+y) +1=[2(x+y)+1][6(x+y)-7] 6(x+y) -7=(2x+2y+1)(6x+6y-7) -14+6=8(17)把分解因式评析:此题就是一个五项式,它能否分组分解,要瞧分组后组与组之间就是否出现公因式或就是否符合公式。

本题注意到后三项当把-1提出后,实际上就是按立方差公式分解后得一个因式:解:===(18)(18)把分解因式评析:把瞧成一组符合完全平方公式,而剩下得三项把-1提出之后恰好也就是完全平方式,这样分组后又可用平方差公式继续分解。

解:===(19)分解因式评析:先不要把前面两个二次三项式得乘积展开,要注意到这两个二次三项式得前两项都就是这一显著特点,我们不妨设=a可得(a+1)(a+2)-6即a2+3a+2-6,即a2+3a-4,此时可分解为(a+4)(a-1) 解:====(20)把分解因式解:====(21)把分解因式评析:它不同于例3(1)得形式,但通过观察,我们可以对这两个二次三项式先进行分解,有。

它又回到例3(1)得形式,我们把第一项与第三项结合在一起,第二、四项结合在一起,都产生了(x2-3x) 解:=====(22)把分解因式评析:不要轻易展开前四个一次因式得积,要注意到常数有1×6=2×3=6 利用结合律会出现a2+6解:===(23)把(x+1)(x+3)(x+5)(x+7)-9分解因式评析:不要轻易地把前四个一次因式得乘积展开,要注意到1+7=3+5,如果利用乘法结合律,把(x+1)(x+7)与(x+3)(x+5)分别乘开就会出现得形式,这就不难发现(x2+8x)作为一个整体a同时出现在两个因式中,即(a+7)(a+15)-9得形式,展开后有a2+22a+96,利用十字相乘,得到(a+6)(a+16)而分解。

解:(x+1)(x+3)(x+5)(x+7)-9=[(x+1)(x+7)][(x+3)(x+5)]-9=以下同于例3==+96==(24)把x(x+1)(x+2)(x+3)-24分解因式评析:通过观察第一项与第四项两上一次式相乘出现(x2+3x),第二与第三个一次式相乘出现(x2+3x)。

可以设x2+3x=a,会有a(a+2)-24,此时已易于分解解:x(x+1)(x+2)(x+3)-24=[x(x+3)][(x+1)(x+2)]-24===(25)把分解因式评析:不要急于展开,通过观察前两项,发现它们有公共得x2+3x,此时把它瞧成一个整体将使运算简化。

解:==(26)把分解因式评析:我们可以观察到+前后得两项都有(a+b)与(c+d)。

据此可把它们瞧作为一个整体。

解:====(27)把分解因式评析:把(1+a)瞧成一个整体,第一项1与第二项a也合成一个整体(1+a)解:===(28)把分解因式评析:此题容易想到分组分解法,但比较困难,考虑到此时可设再用待定系数法求出m与n解:设= mn y m n x n m y xy x n y x m y x ++-+++-+=+++-)23()2(62)2)(32(22 比较两边对应系数 得到m+2n=2 ①-3n+2m=11 ②mn=-4 ③由①与② 得到m=4,n=-1 代入③也成立∴=(2x-3y+4)(x+2y-1)(29)把分解因式解:==(x+4y+m)(x-2y+n)=有 m+n=-4 ①4n-2m=-10 ②mn=3 ③由①与② 得到m=-3,n=-1 代入③也成立∴=(x+4y-3)(x-2y-1)(30)当x+y=2时,求得值评析:∵x+y=2这就是唯一得条件。

∴要从中找到x+y 或有关(x+y)得表达式解:=(x+y)()+6xy∵x+y=2∴原式===2=8(31)己知=2 求得值解:=∵=2∴原式=2[(2)2-3]=2(32)己知x-y=2,求得值解:== (x-y) -3a= (x-y) +2a∵x-y=a∴原式=初中因式分解得常用方法(例题详解)一、提公因式法、如多项式其中m叫做这个多项式各项得公因式, m既可以就是一个单项式,也可以就是一个多项式.二、运用公式法、运用公式法,即用写出结果.三、分组分解法、(一)分组后能直接提公因式例1、分解因式:分析:从“整体”瞧,这个多项式得各项既没有公因式可提,也不能运用公式分解,但从“局部”瞧,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间得联系。

解:原式== 每组之间还有公因式!=思考:此题还可以怎样分组?此类型分组得关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

例2、分解因式:解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式= 原式== == =练习:分解因式1、2、(二)分组后能直接运用公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式===例4、分解因式:解:原式===注意这两个例题得区别!练习:分解因式3、4、综合练习:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11)(12)四、十字相乘法、(一)二次项系数为1得二次三项式直接利用公式——进行分解。

特点:(1)二次项系数就是1;(2)常数项就是两个数得乘积;(3)一次项系数就是常数项得两因数得与。

例5、分解因式:分析:将6分成两个数相乘,且这两个数得与要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3得分解适合,即2+3=5。

1 2解:= 1 3= 1×2+1×3=5用此方法进行分解得关键:将常数项分解成两个因数得积,且这两个因数得代数与要等于一次项得系数。

例6、分解因式:解:原式= 1 -1= 1 -6(-1)+(-6)= -7练习5、分解因式(1) (2) (3)练习6、分解因式(1) (2) (3)(二)二次项系数不为1得二次三项式——条件:(1)(2)(3)分解结果:=例7、分解因式:分析: 1 -23 -5(-6)+(-5)= -11解:=练习7、分解因式:(1) (2)(3) (4)(三)二次项系数为1得齐次多项式例8、分解因式:分析:将瞧成常数,把原多项式瞧成关于得二次三项式,利用十字相乘法进行分解。

相关文档
最新文档