高考数学易错知识点大全

合集下载

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳

高考数学易错点及重要知识点归纳高考数学是高中阶段各科中相对较难的一门科目,考试难度也相对较高,很容易让考生犯错,导致分数损失。

本文将总结高考数学易错点及重要知识点,并提供相应的解题技巧,希望考生能够避免犯错,取得好成绩。

一、易错点1.符号混淆这是数学中比较普遍的一个易错点,包括加减号、乘号、除号、左右括号等符号的混淆。

一旦出现符号混淆,就会直接导致答案错误或提高解题难度。

因此,考生在做题时要非常注意符号的正确使用。

2.大意误解有些考生在做题时,阅读理解出现失误,对题目的意思产生误解,从而造成答案错误。

所以一定要认真读题理解,分析问题。

尤其是碰到长篇阅读理解时,要先明确大意。

3.计算错误在数学中,很多题目难度相对较低,但往往因为一些简单的计算错误而导致错误答案。

这种错误需要我们在平时做题中多加注意和练习,对于那些需要计算的题目尤其重要。

4.公式错误在解决复杂问题时,我们往往会用到一些公式,不过使用公式时也有可能写错或理解不正确,导致答案错误。

因此,我们必须学会正确地运用公式。

5.转化错误在一些题目中,需要把题目中的信息转化为数学式子,但转化时有可能出现问题。

转化错误的解题方法很难想,因此,要认真仔细看题,并多加练习。

二、重要知识点1.根式根式是数学中常见的一类表达式,在高考数学中也经常出现。

根式的运算和化简需要考生细心认真对待。

2.平面几何平面几何中涉及到的知识点非常多,包括图形的基本性质、相邻角、对顶角、内角和、外角和、周长与面积等等。

考生需要熟记这些知识点,并掌握相应的解题技巧。

3.立体几何立体几何是高考数学中比较难的部分,需要考生掌握图形的三维空间形态,涉及到的知识点包括图形的表面积、体积、棱长、斜高等。

4.导数导数是高中数学中非常重要的一个概念,在高考数学中占有很大的分值和比重。

考生需要明确掌握导数的定义、运算法则等知识点,能够熟练地运用这些知识解决问题。

5.函数函数在高考数学中出现得非常频繁,考生需要掌握函数的概念、性质和运算法则,将它们应用到相应的问题中,解题思路要清晰、技巧到位。

高三数学易混淆知识点归纳

高三数学易混淆知识点归纳

高三数学易混淆知识点归纳高三数学是学生们备战高考的重要阶段,而数学作为一门理科学科,难免存在一些易混淆的知识点。

下面就是对高三数学中常见的易混淆知识点进行归纳总结,以帮助同学们更好地理解和掌握这些概念。

1. 函数与方程函数与方程是高中数学中最重要的基础概念之一,但是很多学生容易混淆它们之间的关系。

函数是一种映射关系,将自变量的值映射到唯一的因变量的值;而方程则是一个等式,由自变量和常数构成。

需要注意的是,函数可以通过方程表示,但方程不一定表示函数。

2. 三角函数的定义与性质在学习三角函数时,学生们常常会混淆三角函数的定义与性质。

三角函数的定义通过单位圆上的坐标来确定,例如正弦函数就是y 轴上的坐标值;而三角函数的性质涉及到周期性、奇偶性等特点,需要理解和记忆。

3. 平面向量与复数平面向量与复数都是数学中常见的概念,但容易被高三学生混淆。

平面向量是有大小和方向的量,可用箭头表示;而复数是由实部和虚部构成的,通常表示为a+bi的形式。

需要记住,平面向量与复数虽然在某些运算上相似,但本质上是不同的概念。

4. 排列与组合排列与组合是高中数学中的常见概念,也是高考中常考的内容。

排列是选取若干元素进行有序排列,考虑元素的顺序;而组合则是选取若干元素进行无序排列,不考虑元素的顺序。

需要确切理解排列与组合的差别,以避免混淆和错误。

5. 极限与连续极限和连续是高三数学中的重要概念,涉及到函数的趋势和取值。

极限是函数在某一点无限逼近的值,可以通过左右极限或函数的性质进行求解;而连续则是指函数在某一点上具有无间断的性质。

注意极限与连续的定义和判定条件,避免混淆和误解。

综上所述,高三数学易混淆的知识点主要包括函数与方程、三角函数的定义与性质、平面向量与复数、排列与组合以及极限与连续。

同学们在备考高考时应该加强对这些知识点的理解和掌握,注意它们之间的区别和细微差别。

只有通过充分的练习和掌握,才能顺利应对高考数学的各种问题,取得优异的成绩。

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结在____年的高考数学考试中,有一些知识点是考生容易失分的。

本文总结了一些最易失分的知识点,以帮助考生重点复习和弥补不足。

一、函数与方程1. 幂函数与指数函数的性质:考生容易混淆幂函数与指数函数的性质,例如幂函数的自变量和幂指数的关系、指数函数的定义域和值域等。

理解并区分这些性质对于解题至关重要。

2. 二次函数与一元二次方程:考生容易混淆二次函数和一元二次方程的相关性质,例如二次函数的图像和一元二次方程的解法、二次函数的顶点坐标和一元二次方程的根等。

弄清楚二次函数和一元二次方程之间的关系能够帮助考生更好地理解和解答相关题目。

3. 线性规划:线性规划是高考中的经典知识点,但考生在解决线性规划问题时常常出现误解。

容易出错的地方包括列出约束条件、确定目标函数、绘制解空间等。

因此,考生需要重点掌握线性规划的基本概念和解题方法。

二、数列与数列表达式1. 等差数列与等比数列:等差数列与等比数列是高考中常见的数学概念,但考生在解题过程中经常出现混淆或忽略的情况。

考生容易混淆等差数列的通项公式和前n项和公式,以及等比数列的通项公式和前n项和公式。

在解题过程中,考生要仔细区分这些概念并正确应用。

2. 递推数列与递归数列:递推数列和递归数列常常出现在高考中,但考生容易忽视或混淆它们之间的区别。

递推数列是指通过公式或规则来计算数列的下一项,而递归数列是指通过前一项或前几项计算数列的下一项。

考生需要清楚地了解递推数列和递归数列之间的关系,并能够正确应用。

三、平面几何与立体几何1. 向量的运算与性质:向量是几何中的重要工具,但考生常常在向量的运算和性质上出现困惑。

容易出错的地方包括向量的加法、减法和数量积的计算,以及向量的共线、垂直和平行性质的判断。

考生需要熟练掌握向量的运算规则和性质,以便准确地解答相关题目。

2. 图形的分析与判断:在平面几何和立体几何中,考生常常需要分析和判断图形的性质。

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点高考数学是很多学生头疼的问题,尤其是一些易丢分的知识点更是需要我们特别关注。

以下是高考数学中最易丢分的20个知识点:知识点一:函数的定义域和值域在理解函数的定义域和值域时,很多学生容易混淆,导致在选择答案时出现错误。

知识点二:直线与平面的交点在求直线与平面的交点时,很多学生容易出现计算错误或者解方程错误的情况。

知识点三:函数的奇偶性在判断函数的奇偶性时,很多学生容易忽视符号取值规律,从而出现判断错误的情况。

知识点四:平移、旋转和对称变换在进行平移、旋转和对称变换时,很多学生容易出现计算错误的情况,尤其是在计算坐标时容易混淆。

知识点五:函数的极值与最值在求函数的极值和最值时,很多学生容易出现求导错误、计算错误等问题。

知识点六:数列的通项公式在推导数列的通项公式时,很多学生容易出现计算错误或者漏项的情况。

知识点七:平方根和立方根的计算在进行平方根和立方根的计算时,很多学生容易出现计算错误的情况,尤其是多次开根时更容易出错。

知识点八:二次函数的图像在画出二次函数的图像时,很多学生容易忽略平移和缩放的特征,从而导致图像绘制错误。

知识点九:概率与统计在概率与统计中的概念理解和计算中,很多学生容易出现混淆和计算错误的情况。

知识点十:数列与函数的综合应用在数列与函数的综合应用题中,很多学生容易迷失在繁杂的信息中,导致无法理清思路。

知识点十一:复数的运算在进行复数的加减乘除运算时,很多学生容易出现计算错误或者混淆实部与虚部的概念。

知识点十二:立体几何题在解立体几何题时,很多学生容易出现计算错误或者对几何图形的性质理解不透彻的情况。

知识点十三:勾股定理和余弦定理在运用勾股定理和余弦定理解决三角形问题时,很多学生容易出现运算错误或者无法正确应用相应的定理。

知识点十四:解三角函数的方程在解三角函数的方程时,很多学生容易出现计算错误或者解方程错误的情况。

知识点十五:圆与圆的位置关系在判断圆与圆的位置关系时,很多学生容易出现计算错误或者判断错误的情况,尤其是在应用相切和相交的性质时更容易出错。

高三数学易错点整理

高三数学易错点整理

高三数学易错点整理【导语】高三数学复习很重要,想要在有间里复习好,需要掌控易错知识点,下面是作者给大家带来的高三数学易错点,期望对你有帮助。

高三数学易错点(一)1、遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A。

解含有参数的集合问题时,要特别注意当参数在某个范畴内取值时所给的集合多是空集这种情形。

2、忽视集合元素的三性致误集合中的元素具有肯定性、无序性、互异性,集合元素的三性中互异性对解题的影响,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

3、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判定,而“否命题”是对“若p,则q”情势的命题而言,既要否定条件也要否定结论。

4、充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A 的必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判定。

5、“或”“且”“非”知道不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。

求参数取值范畴的题目,也能够把“或”“且”“非”与集合的“并”“交”“补”对应起来进行知道,通过集合的运算求解。

6、函数的单调区间知道不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻觅解决问题的方法。

对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

7、判定函数奇偶性忽视定义域致误判定函数的奇偶性,第一要推敲函数的定义域,一个函数具有奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具有这个条件,函数一定是非奇非偶函数。

高考数学出错知识点

高考数学出错知识点

高考数学出错知识点近年来,随着高考数学难度的增加,考生对于数学出错知识点的关注也越来越高。

本文将详细介绍高考数学中常见的出错知识点,帮助广大考生避免犯错,取得好成绩。

一、函数知识点容易出错1.函数概念混淆:有些考生经常将函数的自变量和因变量搞混,这是一个常见的错误。

函数的自变量是指函数中的变量,而因变量则是由自变量决定的变量。

2.函数运算错误:在进行函数的加、减、乘、除等运算时,考生容易出错。

在进行函数运算时,需要正确对函数进行合并、分解等操作。

3.反函数的理解不准确:有关反函数的相关概念,考生容易混淆。

反函数是指一个函数f的逆函数,记为f的倒数。

考生在使用反函数时,需要注意区分正函数和反函数之间的关系。

二、概率与统计中容易出错的知识点1.概率的计算错误:在计算概率时,考生容易犯错。

计算概率时,需要根据事件的样本空间和样本点进行确定,而不是随意计算。

2.核心概念混淆:在统计学中,考生容易混淆样本均值和总体均值、样本方差和总体方差等概念。

考生需要明确这些概念的含义和计算方法。

3.抽样调查错误:在进行抽样调查时,考生经常犯错。

抽样调查需要满足一定的条件,而不是随意进行,否则会导致结果的不准确。

三、函数与方程中容易出错的知识点1.解方程错误:在解方程时,考生容易漏项、错项或者运算错误。

在解方程的过程中,要仔细检查每一步是否正确,保证解答的准确性。

2.函数的性质混淆:在讨论函数的增减性、单调性和最值等性质时,考生容易混淆。

对于函数的性质要有清晰的理解,并运用正确的方法来推导和分析。

3.函数图像认知错误:在绘制函数图像时,考生容易出错。

对于不同函数类型,考生应该熟悉其图像特点,并正确绘制。

四、几何中常见的出错知识点1.平行线与垂直线的判断错误:在判断平行线和垂直线时,考生容易混淆。

考生需要掌握判断平行线和垂直线的准确方法。

2.图形对称性分析错误:在分析图形的对称性时,考生容易出错。

对于不同类型的对称图形,考生需要准确判断其对称轴和对称点。

数学高考易错知识点

数学高考易错知识点

数学高考易错知识点数学作为高考的一门必考科目,对于很多学生来说,常常是备考的难点。

在高考数学中,存在着一些易错的知识点,这些知识点往往容易被忽视或者掌握不牢固。

本文将针对数学高考易错的知识点进行一一介绍,帮助同学们更好地备考。

一、函数的性质函数作为高考数学中的重要知识点,其性质是备考中的一个难点。

容易出错的地方主要体现在函数的定义域和值域的确定以及性质的运用上。

1.1 定义域和值域的确定在确定函数的定义域和值域时,需要注意对于分式函数、根式函数以及复合函数等特殊函数的处理。

当函数中含有根式时,需要注意根式内的值域限制。

而对于复合函数,要注意其组成部分的定义域的交集。

1.2 函数性质的运用在解决函数题目时,要善于利用函数的性质,常见的函数性质包括奇偶性、周期性以及单调性等。

在运用这些性质时,需要注意掌握并理解函数性质的定义以及运用的场景。

二、立体几何立体几何是高考数学中的重要考点,易错知识点主要涉及到立体的表面积、体积以及空间几何体的相互关系。

2.1 表面积和体积的计算在计算立体的表面积和体积时,需要注意确定各个面的形状和计算公式的正确运用。

常见的错误包括计算面积时忽略一些面、计算体积时将单位换算错误等。

2.2 几何体的相互关系在解决空间几何体相互关系的题目时,容易出错的地方主要是在于立体的投影、截面的确定以及空间几何体的重叠和包含关系的分析。

在解题过程中,需要运用立体几何的相关定理和公式,确保分析的准确性。

三、数列与数学归纳法数列作为高考数学中的基础知识点,易错的地方主要涉及到数列的递推公式、通项公式的确定以及数学归纳法的运用。

3.1 数列的递推公式与通项公式在求解数列的递推公式与通项公式时,需要注意计算的正确性和准确性。

易错的地方包括计算错误、递推公式的误用以及通项公式的错误推导等。

3.2 数学归纳法的应用数学归纳法在解题时常常被用到,通过归纳给定命题的真假来解决问题。

但在使用数学归纳法时,需要注意归纳假设的正确性和递推的准确性。

2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结

2024年历年高考数学易错知识点总结2024年的高考数学考试易错知识点总结如下:
1. 函数与方程:易错点包括函数的定义域与值域、函数的奇偶性、解方程时的取值范围、解不等式时的符号变化等。

2. 三角函数与三角恒等式:易错点包括三角函数的定义、基本的三角恒等式的熟练掌握、解三角方程时的值域判断等。

3. 平面几何与立体几何:易错点包括平面图形的面积计算、立体图形的体积计算、立方体、正方体、圆锥体等几何体的计算等。

4. 概率与统计:易错点包括概率计算中的排列组合、事件的独立性与互斥性、统计数据的分析与解读等。

5. 导数与微分:易错点包括导数的定义与性质、函数的最值与最值点的求解、曲线的切线与法线方程的求解等。

6. 数列与数列极限:易错点包括数列的通项公式的求解、等差数列与等比数列的性质及求和公式、数列极限的判断与计算等。

7. 矩阵与行列式:易错点包括矩阵的加减乘除、对角矩阵、单位矩阵与逆矩阵的求解、行列式的性质与计算等。

8. 模型与实际问题:易错点包括问题的分析与建模、转化为数学问题的能力、解答实际问题时的合理性判断等。

以上是2024年高考数学考试易错知识点的总结,考生可以针对这些知识点进行有针对性的复习和备考,提高解题的准确性和效率。

高三数学最容易出错的知识点

高三数学最容易出错的知识点

高三数学最容易出错的知识点高三数学是所有高中生必须面对的一门课程,无论对于理科还是文科生来说,都具有重要的意义。

然而,由于难度较大,很多学生在学习过程中经常容易出现错误。

下面就来探讨高三数学最容易出错的知识点。

一、函数方程求解在高三数学中,函数方程求解是一个难点,也是容易出错的地方。

在这个部分中,学生经常会遇到的问题是没有正确地理解什么是函数和方程。

函数是一种映射关系,而方程是函数等式的表达形式。

因此,学生要明确整个解题过程的目标是找到使方程成立的变量的值。

例如,对于一个一次函数方程y=ax+b,有的学生会错误地理解成求解y的取值范围,而不是求解x的值。

这样的错误会导致学生在解题过程中迷失方向,最终得出错误的答案。

二、导数与极值导数是高三数学中的重要概念,与函数的变化趋势密切相关。

在求导过程中,学生容易疏忽导数的定义和求解规则,从而产生错误的结果。

常见的错误包括对函数求导时未进行连续求导、未正确运用导数的运算性质和规则等。

另外,极值也是一个容易出错的知识点。

在求极值的过程中,学生往往存在以下问题:未注意判断驻点的一阶和二阶导数变化的关系、未对极大值和极小值的定义和判断准则有清晰的认识等。

这些小细节的疏忽会导致最终答案的错误。

三、概率统计概率统计是高三数学中的另一个易错知识点。

学生在计算概率时容易忽略事件间的关系、未理解概率的加法和乘法定理、使用错排列组合等。

此外,在解答概率问题时,学生还容易将条件概率与联合概率混淆,导致最终结果的不准确。

在统计部分,学生常常未能正确理解总体和样本的概念,以及如何通过样本推断总体。

此外,学生在进行数据分析时,也容易将平均值、方差和标准差等相关概念混淆,导致数据处理结果的错误。

四、向量与坐标系向量和坐标系是高三数学中的基础知识,学生在这方面容易出错。

在解题过程中,学生经常会将向量的顺序弄错,导致向量的计算结果错误。

此外,学生在进行向量的分解和合成时,容易忽略向量共线的判断条件,从而导致错误的计算结果。

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结

2024年高考数学最易失分知识点总结随着高考科目数学的改革,考试内容和考试形式都在不断变化,但是总体来说,高考数学的出题思路和考查点并未发生太大变化。

根据近年高考数学试题的分析,我们可以总结出一些容易导致失分的知识点。

下面是2024年高考数学最易失分的知识点总结:一、函数与方程1. 函数的定义和性质在考试中,常常会涉及到对函数的定义、函数的性质、函数图像的绘制等问题,这是学生容易出错的一个知识点。

一些常见的错误包括对函数的定义不够准确、不理解函数的性质、绘制函数图像时不符合函数的定义域等。

2. 一次函数与二次函数的性质一次函数和二次函数是高考数学中最常见的函数类型,对于这两类函数的性质要熟悉掌握。

一次函数涉及到直线的斜率和截距,二次函数涉及到抛物线的顶点、焦点、对称轴等概念。

不理解这些性质会导致在解题过程中出现偏差。

3. 求解方程求解方程是高考数学中的基本题型,要掌握各种方法和技巧。

一些常见的错误包括未注意解析解的存在性、对方程的变形不熟练、未注意特殊解的存在等。

二、几何与向量1. 平面几何基本定理和性质平面几何基本定理和性质是高考数学中的重点,要牢记各种定理和性质,并能熟练应用到解题中。

一些常见的错误包括对基本定理的不理解、应用错误的定理、判断条件不准确等。

2. 向量的运算求向量数量积、向量叉积等是高考数学中的重要内容,要熟练掌握向量运算的定义和性质。

一些常见的错误包括计算错误、向量的表示方法不准确等。

3. 圆与圆的位置关系圆与圆的位置关系是高考数学中的难点,涉及到圆的切线、切点、相交、内切、外切等问题。

一些常见的错误包括判断不准确、对位置关系的认识不准确等。

三、数列与数学归纳法1. 数列的概念和性质数列是高考数学中的重点内容,要掌握数列的概念、数列的通项公式、数列的性质等。

一些常见的错误包括对数列的概念不理解、对数列的通项公式使用不熟练等。

2. 数列的求和数列的求和是高考数学中的常见问题,要熟练掌握各种求和方法和技巧。

高考数学易错知识大全

高考数学易错知识大全

高考数学易错知识大全2020高考数学易错知识大全一混淆导数与单调性的关系致误错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。

规避绝招:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

2020高考数学易错知识大全二易错点:用错基本公式致误错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。

在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

2020高考数学易错知识大全三an,Sn关系不清致误错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

规避绝招:当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

2020高考数学易错知识大全四对等差、等比数列的性质理解错误错因分析:等差数列的前n项和在公差不为0时是关于n 的常数项为0的二次函数。

一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_是等差数列。

高考数学易失分知识点总结

高考数学易失分知识点总结

高考数学易失分知识点总结导语:高考是每个学生人生中的重要考试,数学作为其中一门重要科目,是很多学生认为难以应对的科目之一。

受制于时间限制以及对一些易失分知识点的不熟悉,很多学生在考试中容易犯错。

下面,我们将总结一些高考数学易失分的知识点,希望对广大考生有所帮助。

易失分知识点一:函数与方程1.函数与方程的概念混淆。

函数是一个或多个自变量与一个因变量之间的关系,例如y = f(x),而方程则是由字母以及数与运算符号构成的等式或不等式。

有些学生往往将函数与方程的概念混淆,导致理解和应用上的错误。

因此,在准备高考时,学生应该对函数和方程的概念进行明确的区分和理解。

2.函数图像的分析错误。

在解析几何中,函数的图像是一个非常重要的概念,可以通过图像直观地看到函数的性质和变化趋势。

然而,有些学生在解析函数图像时容易犯错,例如将函数图像的拐点、极值点或者当x趋近于正无穷时的情况分析错误。

易失分知识点二:三角函数与向量1.常用三角函数的应用错误。

在高考数学中,三角函数是经常出现的知识点之一。

例如,对于正弦函数的应用,很多学生容易混淆正弦值和角度的关系,导致计算错误。

因此,在考试准备中,建议学生通过大量的习题练习,熟悉和掌握三角函数的应用。

2.向量共线性的判断错误。

在向量的几何性质中,共线性是一个非常重要的概念。

有些学生往往在判断向量共线时容易犯错,例如对向量的平行性与共线性的区别不清楚。

因此,在学习向量的过程中,学生应该对共线向量和平行向量的概念进行深入的理解和区分。

易失分知识点三:几何与平面解析几何1.平行线与垂直线的判断错误。

在几何中,平行线和垂直线的判断是一个基本的几何常识。

然而,在高考中,有些学生在判断平行线和垂直线时容易犯错,例如错误地使用了平行线的判定条件,或者在平面解析几何中,使用了错误的判定式。

因此,在学习几何和平面解析几何时,学生要注意掌握平行线和垂直线的判定方法,多进行练习,加深理解。

2.坐标系的选择错误。

高三数学易失分知识点归纳

高三数学易失分知识点归纳

高三数学易失分知识点归纳在高中数学学习过程中,很多学生都会遇到一些易失分的知识点。

这些知识点可能因为概念理解不清晰、计算错误、解题思路不清晰等原因导致学生失分。

为了帮助同学们更好地掌握高三数学考试中的易失分知识点,下面将对其中几个重要的知识点进行归纳和解析。

1. 基础知识点1.1 几何与三角函数几何与三角函数是高中数学的基础,然而很多同学在理解相关概念时容易混淆或者记忆不牢固。

例如,对于周长和面积的概念,许多学生容易混淆或者计算错误。

另外,在三角函数中,正弦定理和余弦定理的应用也是容易出错的地方。

因此,同学们在备考中要反复温习这些基础知识点,并通过大量的练习巩固记忆。

1.2 计算和推导在高三数学考试中,计算和推导是非常常见的题型。

然而,很多学生在计算和推导过程中经常犯错。

例如,在解方程的过程中,容易出现计算错误或者忽略解的判断范围。

在求导求积分的题目中,很多同学容易出错,例如忘记运用链式法则或者移项计算错误等。

因此,同学们在做这类题目时一定要细心,将每一步的计算都仔细核对,避免不必要的失分。

2. 高阶知识点2.1 解析几何解析几何是高三数学考试中的一个重要知识点,也是易失分的重灾区之一。

在解析几何中,直线和曲线的方程、点的位置关系等都是比较考察的内容。

同学们在解这类题目时经常会出现误用公式、计算错误等问题。

因此,要提前掌握各种图形的性质和方程,多进行推导练习,并及时纠正错误,做到知其然更要知其所以然。

2.2 空间几何与立体几何在空间几何和立体几何领域,同学们也经常容易犯错。

例如,在立体几何中,求体积和表面积的计算容易混淆,或者在想象和绘制图形时失误。

因此,同学们在解决这类题目时要注重绘图、标记和计算的准确性,善于利用各种已知条件和几何关系进行解题。

3. 解题技巧和应试策略3.1 切忌草率行事在高三数学考试中,切忌草率行事。

即使遇到熟悉的题型,也要仔细审题,认真计算,不要因为着急或者粗心导致低级错误。

高考数学易混淆知识点总结

高考数学易混淆知识点总结

高考数学易混淆知识点总结数学作为高考的一门重要学科,在考试中往往是考生们的拦路虎之一。

有些知识点因为相近的概念或者类似的解题思路容易混淆,给考生们带来困扰。

下面我将总结一些高考数学中容易混淆的知识点,希望能够帮助考生们更好地备考。

1. 直线方程和平面方程在解题过程中,有时需要确定直线或平面的方程。

容易混淆的是直线的一般式方程、点斜式方程、两点式方程和斜截式方程的应用,以及平面的点法式方程和一般式方程的运用。

2. 平方根和立方根的运算平方根和立方根的运算是高考数学中的常见题型,特别是在有关方程的解题过程中。

容易混淆的是运算符号的优先级和平方根与立方根的交替运算。

3. 函数的图像和性质函数的图像和性质是高考数学中的重要内容,容易混淆的是常见函数的图像特点和性质,如线性函数、二次函数、指数函数、对数函数、三角函数等。

4. 解方程和不等式解方程和不等式是高考数学中的基础知识,但也是容易混淆的内容。

考生们在解方程和不等式时常常会混淆各种解法和求解的范围,特别是涉及分式方程和绝对值方程的解题。

5. 几何图形的性质几何图形的性质是高考数学中的重点和难点,容易混淆的是各种图形的特点和性质,如三角形的各种定理、圆的性质、多边形的性质等。

6. 数列与数列极限数列与数列极限是高考数学中的重要内容,容易混淆的是等差数列和等比数列的性质和求和公式,以及数列极限的性质和求解方法。

7. 概率与统计概率与统计是高考数学中的一大难点,容易混淆的是事件的概率计算、独立事件和非独立事件的概率计算,以及样本调查和数据分析的方法。

8. 向量与坐标向量与坐标是高考数学中的基础知识,容易混淆的是向量的加减法和数量积、向量的坐标表示和运算符号的优先级。

9. 平面向量与立体几何平面向量与立体几何是高考数学中的难点,容易混淆的是平面向量的共线定理和垂直定理,以及立体几何中的角度关系和体积计算。

10. 解析几何与三角函数解析几何与三角函数是高考数学中的重点,容易混淆的是解析几何中的直线方程和曲线方程的求解,以及三角函数中的基本公式和诱导公式的运用。

高考数学易混淆知识点总结

高考数学易混淆知识点总结

高考数学易混淆知识点总结数学是高考科目中一个相对容易失分的科目,很多学生在数学考试中容易混淆一些知识点,导致失分。

为了帮助大家更好地复习数学,我总结了一些容易混淆的知识点,希望对大家有所帮助。

一、代数知识点1. 二次函数与二次方程的区别二次函数是形如y=ax²+bx+c的函数,a≠0,其中a、b、c 是常数,x是自变量,y是因变量。

二次函数的图像是抛物线。

二次方程是形如ax²+bx+c=0的方程,a≠0,其中a、b、c 是常数,x是未知数。

解二次方程就是找到方程的根,也就是方程的解。

混淆的原因:二次函数和二次方程的公式都带有x²,容易让人混淆。

解决方法:理解二次函数和二次方程的概念和特点,二次函数是一个函数关系,而二次方程是一个方程,要求找到方程的解。

2. 整式与多项式的区别整式是由有限个数的项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数。

多项式是特殊的整式,是由若干项用加法和减法连接起来的代数表达式,每一项的指数必须是非负整数,并且不能有分式以及根式。

混淆的原因:整式是多项式的一种特殊情况,容易被误认为整式就是多项式。

解决方法:了解整式和多项式的定义和概念,多项式是整式的一种常见形式。

3. 幂的混淆正整数次幂:a^n=a×a×...×a,其中a是底数,n是指数。

零次幂:a^0=1,其中a≠0。

负整数次幂:a^(-n)=1/(a^n),其中a≠0。

混淆的原因:容易混淆正整数次幂、零次幂和负整数次幂的概念。

解决方法:理解正整数次幂、零次幂和负整数次幂的定义和特点,注意在计算幂时要遵循相应的规律。

二、几何知识点1. 长度与面积的混淆长度是表示一条线段的大小,通常用单位长度来度量,如厘米、米等。

面积是表示一个平面图形大小的量,通常用单位面积来度量,如平方厘米、平方米等。

混淆的原因:长度和面积都是度量物体大小的量,容易混淆。

解决方法:理解长度和面积的概念和计算方法,注意在计算时要根据题目中的要求选择适当的计算方式。

数学高考知识点易错点

数学高考知识点易错点

数学高考知识点易错点数学是高考中的一门重要科目,也是考生们备考过程中的难点之一。

在数学的学习与考试中,总有一些知识点容易被忽略或者易错。

本文将重点讨论数学高考中的易错知识点,帮助考生们提高备考效果。

1.函数与方程在函数与方程的考点中,考生常常容易搞混混合运算、方程的根与解集等概念。

混合运算指的是同时含有加减乘除等多种运算符号的运算,考生容易在复杂的运算中出错。

方程的根与解集,根是指方程等号左右两边相等的解,而解集指的是方程的所有解的集合。

考生经常将根和解集混淆,导致答案错误。

2.立体几何在立体几何的考点中,考生较容易混淆面、棱和顶点的概念。

面是指由三个或三个以上点组成的平面,棱是指连接两个顶点的线段,顶点是指多个棱的交汇点。

考生在解题过程中要清楚地区分这些概念,以免出现错误答案。

3.概率与统计在概率与统计的考点中,考生常常容易混淆独立事件与互不相容事件的概念。

独立事件指的是两个或多个事件之间互不影响,一个事件的发生不会影响其他事件的发生概率。

而互不相容事件指的是两个事件不可能同时发生。

考生在解题中要注意判断事件的性质,确定事件之间的关系,避免在计算概率时出现错误。

4.导数与微分在导数与微分的考点中,考生容易混淆导数与微分的概念。

导数是函数在某一点的变化率,表示函数曲线在该点处的切线斜率。

而微分是函数在某一点的变化量,包括函数值的变化和自变量的变化。

考生在计算导数和微分时要注意准确理解这两个概念的不同,并注意计算的方法和公式。

5.三角函数在三角函数的考点中,考生常常容易混淆同角三角函数的比值和同边三角函数的比值。

同角三角函数是指角度相同的两个三角函数的值之比,同边三角函数是指同一直角三角形中的两个三角函数值之比。

考生在应用三角函数进行计算时要注意选择正确的比值,避免出现计算错误。

以上是数学高考中的一些易错知识点,希望考生们能够认真对待这些知识点,在备考过程中加以复习和理解。

通过系统地掌握这些易错知识点,考生们能够提高解题能力,避免在考试中犯错,取得理想的成绩。

高考数学18个易错知识点

高考数学18个易错知识点

高考数学18个易错知识点考试是每个考生都要面对的一场重要考试,而数学考试中总会有些易错的知识点让考生们头疼不已。

以下将介绍中的18个易错知识点,帮助考生们更好地备考和应对高考。

一、平方差公式平方差公式的应用非常广泛,但很多考生容易在运用时出错。

平方差公式的形式是:(a+b)(a-b)=a²-b²考生在运用平方差公式时,首先要将式子化简,再进行计算。

此外,还要注意运用平方差公式的时机和条件是否符合。

二、向量的坐标表示在向量的坐标表示中,很多考生容易出现弄反或漏写坐标的情况。

在使用向量的坐标表示时,要格外小心,确保坐标的正确性,避免计算错误。

三、三角函数的定义域和值域在求解三角函数的定义域和值域时,考生们往往会遗漏或混淆一些常见角度的范围。

因此在备考过程中,要重点掌握各个三角函数的定义域和值域,加强记忆和理解。

四、二次函数的图像二次函数的图像在中是重点和难点。

考生们容易在画图时弄错横坐标和纵坐标的方向,或者忽略关键点。

因此,在备考时,要细致入微地分析二次函数的特性和图像的绘制方法。

五、函数的奇偶性判断函数的奇偶性也是考试中的一道常见题型。

考生们容易在判断过程中出现计算错误或判断错误的情况。

因此,备考时要充分理解函数的奇偶性的定义和性质,多做例题进行巩固。

六、概率问题概率问题是高考中的常见题型,但很多考生在计算过程中容易出错。

在解决概率问题时,要注意列出概率空间和事件,并根据题目给出的条件进行计算,避免计算错误和逻辑错误。

七、直线的方程直线的方程是中的基本知识点,但很多考生在转换斜率和截距、利用已知点求方程等环节容易出错。

因此,在备考中要熟悉直线的各种方程形式,并能熟练地进行方程的转换和运算。

八、立体图形的体积和表面积立体图形的体积和表面积计算是中的重要内容,但很多考生容易计算错维度、忽略某些面或边等。

在备考过程中,要熟悉各种立体图形的计算公式,并注意问题的维度和条件。

九、逻辑推理与证明逻辑推理与证明是中的较难的内容,但也是容易得分的一部分。

高考数学易错知识点77条

高考数学易错知识点77条

高考数学易错知识点77条数学作为高考必考科目之一,是很多学生最头疼的科目之一。

在备考过程中,有些知识点常常容易出错,给学生带来很大的困扰。

本文总结了高考数学中的77个易错知识点,希望能够帮助同学们避免在考试中犯这些常见错误。

1. 几何中,不等式符号颠倒易错,例如:两个角度相等,结果却写成大于等于。

2. 不等式两边开根号时,符号方向要重新判断,不可直接套用。

3. 列方程时,变量的取值范围要根据实际情况来判断。

4. 对数运算中,底数小于等于1时,要特别注意题目给出的取值范围。

5. 使用二项式定理时,注意多项式的展开与合并,以及次数对应正确。

6. 高斯消元法的使用,要注意每一步运算的正确性,避免漏操作。

7. 复数运算时,虚数单位$i$的运算性质要熟练掌握,不能混淆。

8. 幂运算的注意力易集中在后面的指数运算上,前面的系数往往容易忘记运算。

9. 函数的最值问题,要考虑函数的定义域和导数的变化。

10. 斜率的计算中,经常容易将坐标差值写错,导致结果错误。

11. 弧长角度的转换问题,要根据圆周角等于360度的性质来计算。

12. 选用不同坐标系时,要小心坐标的转换和计算错误。

13. 有些二次函数问题中,关于对称轴和顶点的求解容易出错,需要重点关注。

14. 空间几何中的计算容易出现错误,要多进行图形辅助分析。

15. 根据题目给出的条件来选择有关三角函数的公式,不能一概而论。

16. 正弦定理和余弦定理的使用要谨慎,要注意选择正确的比例关系。

17. 分数的运算中,一定要注意约分和通分,避免结果不准确。

18. 在融合物理与数学的题目中,要注意单位的换算和计算。

19. 单位根的运算需要分类讨论,不能忽略各种情况的比较。

20. 复合函数求导时,要小心使用链式法则,不要漏掉中间步骤。

21. 不等式的证明题中,要明确所使用的定理,步骤合理且清晰。

22. 在几何变换中,不同变换的性质要熟记,不能搞混。

23. 数据统计中,要注意选择正确的统计指标和统计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学易错知识点大全为了帮助考生复习,查字典数学网整理了2019年高考数学易错知识点大全,请考生参考。

集合与简易逻辑易错点1遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B高三经典纠错笔记:数学A,就有B=A,B高三经典纠错笔记:数学A,B,三种情况,在解题中如果思维不够缜密就有可能忽视了B这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

易错点2忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

易错点3四种命题的结构不明致误错因分析:如果原命题是若A则B,则这个命题的逆命题是若B则A,否命题是若┐A则┐B,逆否命题是若┐B则┐A。

这里面有两组等价的命题,即原命题和它的逆否命题等价,否命题与逆命题等价。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对a,b都是偶数的否定应该是a,b不都是偶数,而不应该是a,b都是奇数。

易错点4充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=B成立,则A是B 的充分条件,B是A的必要条件;如果B=A成立,则A是B的必要条件,B是A的充分条件;如果AB,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

易错点5逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p=p真或q真,命题p=p假且q假(概括为一真即真);命题pq真p真且q真,pq假p假或q假(概括为一假即假);┐p真p假,┐p假p真(概括为一真一假)。

函数与导数易错点6求函数定义域忽视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。

对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

易错点7带有绝对值的函数单调性判断错误错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。

研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

易错点8求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

易错点9抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

易错点10函数零点定理使用不当致误错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

函数的零点有变号零点和不变号零点,对于不变号零点,函数的零点定理是无能为力的,在解决函数的零点时要注意这个问题。

易错点11混淆两类切线致误错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

因此求解曲线的切线问题时,首先要区分是什么类型的切线。

易错点12混淆导数与单调性的关系致误错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。

研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

易错点13导数与极值关系不清致误错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。

出现这些错误的原因是对导数与极值关系不清。

可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

数列易错点14用错基本公式致误错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。

在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

易错点15an,Sn关系不清致误错因分析:在数列问题中,数列的通项an与其前n项和Sn 之间存在关系:这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其分段的特点。

当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

易错点16对等差、等比数列的性质理解错误错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。

一般地,有结论若数列{an}的前N 项和Sn=an2+bn+c(a,b,cR),则数列{an}为等差数列的充要条件是c=0在等差数列中,Sm,S2m-Sm,S3m-S2m(mN*)是等差数列。

解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。

在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。

易错点17数列中的最值错误错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。

但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。

在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。

易错点18错位相减求和时项数处理不当致误错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。

基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:(1)原来数列的第一项;(2)一个等比数列的前(n-1)项的和;(3)原来数列的第n项乘以公比后在作差时出现的。

在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。

2019年高考数学易错知识点大全就分享到这里了,二轮复习关系到高考的成败,希望上文能帮助大家做好高考第二轮复习,请继续关注查字典数学网!要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

2019年高考第一轮复习备考专题已经新鲜出炉了,专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题,大家来一起看看吧~单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

相关文档
最新文档