二次函数的应用《商品利润最大问题》

合集下载

二次函数与商品利润最大问题

二次函数与商品利润最大问题

初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a

当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,

x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。

实际问题与二次函数(二)-商品利润最大问题(课件)-2022-2023学年九年级数学上册(人教版)

实际问题与二次函数(二)-商品利润最大问题(课件)-2022-2023学年九年级数学上册(人教版)
解:(1)设每件商品涨价x元,每星期售出的利润为y元.则每星期少卖_____
没调整价格之前的
(60+x)(300-10x)
(300-10x)
件,实际卖出_________件,销售额为_______________元,买进商品需付
6000
利润是_____元.
40(300-10x)
(60+x)(300-10x)-40(300-10x)
为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方
式进行促销.经市场调查发现:当每吨售价每降低10元时,月销售量就会增加
7.5吨.综合考虑各种因素,每出售一吨建筑材料共需支付厂家和其他费用100
元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
(2)降价2.5元,即定价57.5元时,利润最大,最大利润是6125元.
由(1)(2)的讨论及现
在的销售情况Biblioteka 你知道应如何定价能使利润最大了吗?
当定价为65元时,能使利润最大,
最大利润是6250元.
例1.某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件
需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格
1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)
2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)
(2,-7)
2
1.二次函数y=2x2-8x+1图象的顶点坐标是________,当x=____时,y的最小
-7
值为____.
2.某旅行社要接团去外地旅游,经计算所获利润y(元)与旅行团人数x(人)

《实际问题与二次函数》(商品最大利润问题)

《实际问题与二次函数》(商品最大利润问题)

06
研究方法与展望
研究方法的优缺点分析
数学规划方法
数学规划是一种经典的优化方法,能够解决商品最大利润问题。优点是模型简单、易于理 解,缺点是求解速度较慢,且对某些复杂问题可能需要更多的计算资源。
人工智能方法
人工智能方法如神经网络、遗传算法等,能够自适应地求解问题。优点是求解速度较快, 缺点是模型复杂,不易于理解和调试。
构建二次函数模型
根据成本、售价和销量,利用二次函数构建 利润模型。
求最大利润
通过求导数,确定最大利润点,并求出最大 利润。
优化问题的提出与解决
• 优化问题:在商品利润问题中,如何调整售价、成本和销 量等因素,以最大化利润。
优化问题的提出与解决
解决步骤
1. 确定优化目标:明确要优化的目标,如最大化利润、最小化成本等。
混合方法
混合方法是将数学规划方法和人工智能方法结合起来,取长补短,综合利用各种方法的优 点。优点是求解速度快、精度高,缺点是需要更多的计算资源和时间。
研究方法在其他领域的应用前景
生产计划
在生产计划中,如何优化资源配置、提高生产效率是一个核心问题。商品最大利润问题可以转化为生产计划问题,因此研究方法在其他领域的应用前景广阔。
2. 分析影响因素:分析对利润产生影响的因素,如售价、成本、销量等 。
优化问题的提出与解决
3. 构建优化模型
根据影响因素和目标,构建优化模型。
4. 求解最优解
利用数学方法求解最优解,如求导数、使用优化算法等。
5. 实施优化方案
根据最优解调整售价、成本和销量等因素,以实现最大利润。
04
商品利润问题的实例分析
顶点
二次函数图像的最高点或最低点,其 坐标为(-b/2a,[4ac-b^2]/4a)。

《实际问题与二次函数》(商品最大利润问题)

《实际问题与二次函数》(商品最大利润问题)

《实际问题与二次函数》(商品最大利润问题)汇报人:日期:•引言•二次函数基础知识•商品利润问题建模目录•实际问题分析与解决策略•商品最大利润问题应用案例分析•总结与展望01引言本节将介绍如何利用二次函数解决实际问题,特别是商品最大利润问题。

实际问题与二次函数本节将简要介绍商品利润问题的背景、意义和相关概念。

商品利润问题概述主题介绍商品利润是指销售商品所获得的收入减去成本后的净收益。

商品利润定义最大利润问题相关概念本节将探讨如何通过调整商品价格或产量来最大化利润。

本节将介绍与商品利润问题相关的概念,如成本、收入、边际成本、边际收入等。

030201商品利润问题概述02二次函数基础知识形如y = ax^2 + bx + c(a\neq0)的函数,称为二次函数。

其中x为自变量,y为因变量。

a为开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下。

二次函数定义二次函数的图像为抛物线。

抛物线的开口方向、对称轴、顶点坐标、与y轴的交点等性质与二次函数的系数有关。

二次函数图像与性质通过研究成本、售价、利润之间的关系,利用二次函数求出最大利润。

商品最大利润问题根据物理公式或规律,利用二次函数描述物体的运动轨迹。

物体运动轨迹如经济、工程、物理等领域中涉及到的二次函数问题。

其他应用场景二次函数的应用场景03商品利润问题建模商品成本与售价模型建立商品成本包括生产成本、运输成本、销售成本等。

商品售价受到市场需求、竞争状况、商品品质等多种因素影响。

建立模型商品售价与成本之间的关系可以用二次函数来表示,即售价=成本+利润。

利润是销售收入减去成本支出的净收益。

利润函数定义利润=售价×数量-成本利润计算方法在一定成本条件下,通过调整售价和数量,实现利润最大化。

利润最大化利润函数定义与计算方法通过二次函数来描述售价、数量和利润之间的关系,并找到使利润最大的售价和数量组合。

建立数学模型利用配方法或一元二次方程求解方法来求解最大利润问题。

二次函数的应用(利润最大化)

二次函数的应用(利润最大化)

二次函数的应用——最大利润问题一、教学目标知识与技能:1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数知识求出实际问题的最值,发展解决问题的能力。

过程与方法:经历销售过程中最大利润问题的探索过程,让学生认识数学与人类生活的密切联系及数学对人类历史发展的作用。

情感、态度与价值观体会数学与人类社会的密切联系,增进对数学的理解和学好数学的信心,认识到数学是解决实际问题和进行交流的重要工具。

二、教学重点和难点重点:1、探索销售中最大利润问题2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程(一)情景导入服装厂生产某品牌的T恤衫成本是每件10元,根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示每件降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?(二)巩固训练1.某旅社有客房120间,每间房的日租金为160元时,每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?2.某果园有100棵橙子树,平均每一棵树平均结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)果园增种多少棵橙子树时,果园橙子的总产量最多?(2)增种多少棵橙子树时,可以使果园橙子的总产量在60420个以上?(要求学生画出二次函数的图象,并根据图象回答问题)(三)变式训练1.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?2.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?3.某省有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)4.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。

二次函数应运题专题一(最大利润问题)

二次函数应运题专题一(最大利润问题)

二次函数应运题专题一(最大利润问题)最大利润问题这类问题只需围绕一点来求解,那就是总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y , 而自变量可能有两种情况:1)自变量x是所涨价多少,或降价多少2)自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为总利润=单件商品利润*销售数量这个等式中的单件利润里必然有个自变量x,销售数量里也必然有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式,所以如果在列表达式时发现单利润里没有x,或销售数量里没有x, 那恭喜你,此题0分!下面借助例题加以理解:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。

(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量所以按原价出售的话,则y=140*(100-80)=2800 元答案:(1)y=140*(100-80)=2800 (元)(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润这么想:因为降价,所以单利润会有变动,又因为进价不可能变,那降多少元,利润减少多少元,降价x元,利润就减少x元,所以单利润就减少x元,即单利润变为:(100-80-x)又想:因为降价卖的就多,那么数量怎么变?原来一天140件,降1元多卖10件,降x元就应该多卖10x件,所以数量就变为:(140+10x)(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值,重点难点:(5)现题目条件不变,若将降价后的销售价格设为自变量x,求因变量y与自变量x的关系式解析:原来的自变量是什么?是降低的价格,而现在是降后的售价自变量一变化,那么关系式就全变了,所以之前的一切关系都要作废但总利润=单利润*数量,这个关系是永远不变的!所以要找到y与x的关系,还是从此处出发这么想:单利润=售价-进价,进价是不变的,而售价现在变为x了,则单利润就是(x-80),而这时数量就变复杂了,这么想:数量变化依然是因为降价而造成的,始终有降价1元多卖10件这一关系,所以如果知道了降多少元,就必然知道多卖多少件,那么降了多少呢?最初的售价是100元,降价后的售价是x元,那么之间的差值就是所降的价格,即降价为(100-x),我们知道降1元多卖10件,现在降了(100-x),那么就应该多卖10*(100-x)件,注意这只是多买的,总共买的应该是原来卖的加上多卖的,即140+10*(100-x),所以数量就是[140+10*(100-x)]单利润知道了是(x-80),销售数量也知道了是[140+10*(100-x)]则总利润y=(x-80)* [140+10*(100-x)](一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

22.3.2二次函数求商品利润最大问题教案

22.3.2二次函数求商品利润最大问题教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。它在经济、工程等领域有着广泛的应用,尤其是在求解最值问题时。
2.案例分析:接下来,我们来看一个具体的案例。假设某商品的成本为固定值,售价与销售量之间存在二次关系,我们将通过构建二次函数模型来求解最大利润。
五、教学反思
在本次教学过程中,我发现学生们对于二次函数在实际问题中的应用表现出较高的兴趣。他们能够积极参与课堂讨论,提出自己的想法,这让我感到很欣慰。但同时,我也注意到在一些环节还存在一些问题,需要我在今后的教学中加以改进。
在导入新课环节,我通过提问方式引发学生思考,大家发言积极,但个别学生对问题的理解还不够深入。在今后的教学中,我应适当增加一些引导性的问题,帮助学生更好地理解问题本质。
5.强化数学运算能力:在求解最大利润过程中,培养学生准确、快速地进行数学运算的能力。
本节课将围绕以上核心素养目标,结合教材内容,帮助学生将理论知识与实际应用相结合,全面提升学生的数学素养函数的一般形式及其图像特点,明确二次函数在实际问题中的应用。
举例:二次函数y = ax^2 + bx + c,其中a、b、c为常数,a≠0。图像特点为抛物线,对称轴为x = -b/2a,顶点坐标为(-b/2a,(4ac-b^2)/4a)。
3.提高学生的口头表达能力和逻辑思维能力,使他们能够更好地展示自己的观点。
4.鼓励学生独立思考,培养他们的问题解决能力。
在新课讲授环节,我发现大部分学生能够跟上课堂节奏,但仍有部分学生对二次函数的一般形式和求解最值方法掌握不够牢固。针对这个问题,我打算在接下来的课程中,增加一些例题和练习,让学生在实际操作中加深对知识点的理解。

数学人教版九年级上册二次函数实际应用——最大利润问题

数学人教版九年级上册二次函数实际应用——最大利润问题

22.3.2二次函数与最大利润问题一、学习目标:(1)利用二次函数探索商品销售利润问题中的最大(小)值;(2)能够分析和表示实际问题中变量之间的二次函数关系。

二、重难点分析:掌握数形结合思想利用顶点坐标解决最大值(或最小值)问题的方法。

三、知识链接:单件利润= ____________—_____________总利润= ______________×_____________=_____________—______________四、典例精讲:例1、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?分析: 调整价格包括涨价和降价两种情况(分类讨论思想)涨价的情况:(1)设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。

每涨价1元,每星期少卖出10件,涨价x元时,则每星期少卖_________件,实际卖出__________件, 则单件利润为___________元,因此,所得利润为________________________________元。

解:思考:在降价的情况下,最大利润是多少?请你参考(1)的过程,自己得出答案。

降价的情况:(2)设每件降价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。

每降价1元,每星期多卖出20件,降价x元时,则每星期多卖_________件,实际卖出__________件, 则单件利润为___________元,因此,所得利润为_____________________________元。

五、归纳:利用二次函数求最大利润问题的五部曲(1)审清题意,找到变量之间的关系审(2)设变量设(3)列出函数解析式和自变量的取值范围. 列(4)在自变量的取值范围内,利用数形结合思想得函数图像增减性或公式法或配方法,求它的最大(小)值. 解(5)下结论作答答六、巩固练习(PK赛)1、某商店购进一批进价为20元的日用品,如果以售价30元卖出,那么半个月内可以售出400件.根据销售经验,售价每提高1元,销售量相应减少20件;售价提高多少元时,才能在半个月内获得最大利润?2、(变式)某商店购进一批进价为20元的日用品,如果以售价30元卖出,那么半个月内可以售出400件,根据销售经验,售价每提高1元,销售量相应减少20件,若厂家规定促销期间每件售价不得低于40元,售价提高多少元时,才能在半个月内获得最大利润?链接中考:某产品每件成本10元,试销阶段每件产品的销售价x(元)Array与产品的日销售量y(件)之间的关系如右表:若日销售量y(件)是销售价x(元)的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润w最大,每件产品的销售价应定为多少元?此时最大的销售利润是多少元?。

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。

二次函数的应用(利润问题)

二次函数的应用(利润问题)

二次函数的应用——利润问题[例1]:求以下二次函数的最值:〔1〕求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.〔2〕求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,商品的进价为每件40元,如何定价才能使利润最大?解:设涨价〔或降价〕为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 那么:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y 〔元〕)20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y 〔元〕综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 那么:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?月 日解:设旅行团有x 人)30(≥x ,营业额为y 元, 那么:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y 〔元〕答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件本钱10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 假设日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.那么1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y 〔元〕答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)〞的设问中, “某某〞要设为自变量,“什么〞要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.〔2006十堰市〕市“健益〞超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x 〕存在如以下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益〞超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).x 〔元〕 15 20 30 … y 〔件〕 25 20 10 …解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P 〔元〕〔或通过配方,4500)35(202+--=x P ,也可求得最大值〕答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,那么具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大〞“最小〞).3.不管自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解〞或“无解〞)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m 4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一局部,如下图,假设命中篮圈中心,那么他与篮底的距离L 是 4.5米 .月 日解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x 〔不合题意,舍去〕5.在距离地面2m 高的某处把一物体以初速度V 0〔m/s 〕竖直向上抛出,•在不计空气阻力的情况下,其上升高度s 〔m 〕与抛出时间t 〔s 〕满足:S=V 0t-12gt 2〔其中g 是常数,通常取10m/s 2〕,假设V 0=10m/s ,那么该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天 在某段公路上行驶上,速度为V 〔km/h 〕的汽车的刹车距离S 〔m 〕可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.假设这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,那么应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 那么:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一局部,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),那么这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.〔2006年青岛市〕在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x 〔元/千克〕 … 25 242322…销售量y 〔千克〕… 2000 2500 3000 3500 …〔1〕在如图的直角坐标系内,作出各组有序数对〔x ,y 〕所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; 〔2〕假设樱桃进价为13元/千克,试求销售利润P 〔元〕与销售价x 〔元/千克〕之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:〔1〕由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点〔•25,2000〕,〔24,2500〕在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. 〔2〕P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量根本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.月 日∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元那么:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2021湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农〞优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,这种产品的本钱价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y 〔元〕(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x 〔不合题意,舍去〕252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2021河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元〕与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,〔万元〕均与满足一次函数关系.〔注:年利润=年销售额-全部费用〕〔1〕成果说明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润〔万元〕与之间的函数关系式;〔2〕成果说明,在乙地生产并销售吨时,〔为常数〕,且在乙地当年的最大年利润为35万元.试确定的值;〔3〕受资金、生产能力等多种因素的影响,某投资商方案第一年生产并销售该产品18吨,根据〔1〕,〔2〕中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:〔1〕甲地当年的年销售额为万元;.〔2〕在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.〔3〕在乙地区生产并销售时,年利润,将代入上式,得〔万元〕;将代入,得〔万元〕.,应选乙地.。

二次函数的实际应用之利润最大值、面积最值问题

二次函数的实际应用之利润最大值、面积最值问题

二次函数的实际应用——最大利润问题、面积最大(小)值问题一:最大利润问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 442(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=2.[例1]:某电子厂商投产一种新型电子厂品,每件制造成本为18 元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y= ﹣2x+100 .(利润= 售价﹣制造成本) (1 )写出每月的利润z (万元)与销售单价x (元)之间的函数关系式;(2 )当销售单价为多少元时,厂商每月能获得3502 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3 )根据相关部门规定,这种电子产品的销售单价不能高于32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?解:(1 )z= (x -18 )y= (x -18 )(-2x+100 )= -2x 2+136x-1800 , ∴z 与x 之间的函数解析式为z= -2x 2+136x-1800 ; (2 )由z=350 ,得350= -2x 2+136x -1800 , 解这个方程得x 1=25 ,x 2=43 所以,销售单价定为25 元或43 元,将z =-2x 2+136x-1800 配方,得z=-2 (x-34 )2+512 ,因此,当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元; (3 )结合(2 )及函数z=-2x 2+136x ﹣1800 的图象(如图所示)可知, 当25≤x ≤43时z ≥350 ,又由限价32 元,得25 ≤x ≤32 ,根据一次函数的性质,得y=-2x+100 中y 随x 的增大而减小, ∴当x=32 时,每月制造成本最低最低成本是18 ×(-2 ×32+100 )=648 (万元), 因此,所求每月最低制造成本为648 万元.[练习]:1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.[例2]: 市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x200001400202-+-=xx ∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39. 练习 2.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x (元),年销售量为y (万件),当35≤x <50时,y 与x 之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x (元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范),二、面积最大(最小)值问题实际问题中图形面积的最值问题分析思路为:(1)分析图形的成因(2)识别图形的形状(3)找出图形面积的计算方法(4)把计算中要用到的所有线段用未知数表示(5)把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围 (6)根据函数的性质以及自变量的取值范围求出面积的最值。

二次函数--(利润最大值问题)-顶点在范围内

二次函数--(利润最大值问题)-顶点在范围内

22.3(3.1)---(利润最大值问题)-顶点在范围内一.【知识要点】1.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?2.(绵阳2019年第21题本题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?3.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?4.(2019年绵阳期末第23题)某镇在国家“精准扶贫”的政策指引下,充分利用自身资源,大力种植蔬菜,增加收入.(1)该镇2016年蔬菜产量为50吨,2018年达到72吨。

运用二次函数解商品销售利润最大问题

运用二次函数解商品销售利润最大问题

运用二次函数解商品销售利润最大问题福建 周奕生商品怎么样销售才能使利润最大,这是商家老板最为关心的问题,也是近几年来中考命题的热点之一,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值解之.例1 某商店经营一种成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价定为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?解:(1)月销售量为:500-(55-50)×10=450(千克), 利润为(55-40)×450=6750(元); (2)仿(1)可得y=(x-40)〔500-(x-50)×10〕,整理,得:400001400102-+-=x x y ;(3)要使销售利润达到8000元,即y=8000, 故8000400001400102=-+-x x ,解之,得x=60或80.当x=60时,月销售量为400千克,所需成本16000元,与题意不符; 当x=80时,月销售量为200千克,所需成本为8000元. 故销售单价应定为每千克80元.请大家想一想:当每千克定价为多少元时,所获月利润最大?最大利润是多少?,此时所需成本是多少?例2 某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代品,并投入资金1500万元进行批量生产.已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围); (2)试写出z与x之间的函数关系式(不必写出x的取值范围);(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别是多少?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元.请你借助函数的大致图象说明,第二年的销售单价(元)应确定在什么范围内?解:(1)当销售单价定为x元时,年销售量减少101(x-100)万件, 故y=20-101(x-100)=-101x+30;(2)z=(30-101x)(x-40)-500-1500 =-2101x +34x-3200; (3)当x=160时, z=-101×2160+34×160-3200=-320, 反过来,当z=-320时, -2101x +34x-3200=-320, 整理,得2x -340x+28800=0, 解得1x =160,2x =180,故同样的年利润,销售单价还可以定为180元,当销售单价定为160元,即x=160时,年销售量y=-101x+30=14(万件);当销售单价定为180元,即x=180时,年销售量y=12(万件).(4)由z=-2101x +34x-3200=-()3101701012--x ,得 当x=170时,z最大值为-310,也就是说,当销售单价定为170元时,年获利最大,并且到第一年年底公司还差 310万元就可收回全部投资.第二年的销售单价定为x元时,年获利为:z=(30-101x)(x-40)-310=-2101x +34x-1510, 当z=1130时, -2101x +34x-1510=1130, 解得1x =120,2x =220. 又函数z=-2101x +34x-1510的图象如图所示,故由图象可知当120≤x≤220时,z≥1130.所以第二年的销售单价应定在不低于120元,且不高于220元之间.想一想:第二年的定价定为多少时,年利润最大?(2)在所给的坐标系中,根据(1)中的数据描出实数对(x,y)的对应点,并且写出y与x的一个函数关系式;(3)根据(2)中的关系写出P与x的函数关系式,并指出当销售单价x为多少元时,才能获得最大日销售利润?解:(1)由题意,得t和P的计算公式分别是:t=xy,P=t-ay,把x=35,y=57,P=285代入,得a=30,从而t=xy,P=xy-30y,显然,填写表格的关键是日销售量y.由x=40,t=1680,得1640=40y,y=42, 故日销售量的第一空填42;由x=50,P=240,得240=50y-30y,y=12, 故日销售量的第二空填12; 余者如表中的带下划线的数; (2)(x,y)的四个实数对是(35,57),(40,42),(45,27),(50,12),其对应点如图所示;观察这些点的位置可知它们在同一直线上,因此,y是x的一次函数,设y=kx+b, 把点(40,42)和(50,12)分别代入,得40425012k b k b +=⎧⎨+=⎩,解之,得k=-3,b=162, 所以,y=-3x+162;(3)因为P=xy-30y,y=-3x+162,所以,P=x(-3x+162)-30(-30x+162), 整理,得P=-32x +252x-4860, 当x=-()25223⨯-=42时,P最大值=432,故当销售单价x为42元,可获得最大日销售利润432元.例4 某蔬菜基地种植西红柿,由历年市场行情知,从2月1日起的200天内,西红柿市场售价P与上市时间t的关系用图甲的一条线段表示;西红柿的种植成本Q与上市时间t的关系用图乙中的抛物线表示.(其中,市场售价和种植成本的单位为:元/100千克,时间单位为:天)(1)写出图甲表示的市场售价P与时间t的函数关系式; (2)写出图乙表示的种植成本Q与时间t的函数关系式;(3)如果市场售价减去种植成本为纯收益,那么何时上市的西红柿纯收益最大(可借助配方或草图观察)?解:(1)从图甲中可见:当t=0时,P=300;当t=200时,P=100. 设P=kt+b,则图甲300200100b k b =⎧⎨+=⎩,解得k=-1,b=300, 故P=-t+300(0≤t≤200);(2)从图乙中可见:抛物线的顶点为(150,100),且经过点(50,150),故可设抛物线的解析式为Q=a()2150100t -+,把t=50,Q=150代入,得 150=10000a+100,a=1200, 故Q=1200()2150100t -+(0≤t≤200); (3)设t时刻的纯收益为S元,则 S=P-Q=(-t+300)-{1200()2150100t -+}, 整;理,得S=-120021252t t ++(0≤t≤200),即S=-1200()23251002t -+(元), 又0≤t≤200,故当t=100时,S最大值为3252(元).图乙。

北师版九年级数学下册4 二次函数的应用3 第2课时 商品利润最大问题

北师版九年级数学下册4 二次函数的应用3 第2课时 商品利润最大问题

2.4 二次函数的应用第2课时商品利润最大问题1.应用二次函数解决实际问题中的最值问题;(重点)2.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.(难点)一、情境导入某商店经营T恤衫,已知成批购进时单价是25元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是135元时,销售量是500件,而单价每降低10元,就可以多售出200件.请你帮忙分析,销售单价是多少时,可以获利最多?二、合作探究探究点一:商品利润最大问题【类型一】利用二次函数求实际问题中的最大利润某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元时,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?解析:(1)由销售单价为x元得到销售减少量,用240减去销售减少量得到y与x的函数关系式;(2)直接用销售单价乘以销售量等于14000,列方程求得销售单价;(3)设一个月内获得的利润为w元,根据题意得w=(x-40)(-4x+480),然后利用配方法求最值.解:(1)销售单价为x元,则销售量减少x-605×20,故销售量为y=240-x-605×20=-4x+480(x≥60);(2)根据题意可得x(-4x+480)=14000,解得x1=70,x2=50(不合题意,舍去),故当销售价为70元时,月销售额为14000元;(3)设一个月内获得的利润为w元,根据题意得w=(x-40)(-4x+480)=-4x2+640x-19200=-4(x-80)2+6400.当x=80时,w有最大值,最大值为6400.所以,当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.方法总结:先得到二次函数的顶点式y=a(x-h)2+k,当a<0,x=h时,y有最大值k;当a>0,x=h时,y有最小值k.变式训练:见《课堂内外》本课时练习“课堂达标训练”第7题某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.右面的二次函数图象(部分)刻画了该公司年初以来累积利润w(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和w 和销售时间t 之间的关系).根据图象提供的信息,解答下列问题:(1)由图象上已知的信息,求累积利润w (万元)与销售时间t (月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元.解析:(1)本题是通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出w 与t 之间的函数关系式;(2)把w =30代入累计利润w =12t 2-2t 的函数关系式里,求得月份;(3)分别将t =7,t =8代入函数解析w =12t 2-2t ,再把总利润相减就可得出.解:(1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为w =a (t -2)2-2.∵所求函数关系式的图象过(0,0),于是得a (0-2)2-2=0,解得a =12.∴函数关系式为w =12(t -2)2-2,即w =12t 2-2t .所以,累积利润w 与销售时间t 之间的函数关系式为w =12t 2-2t ;(2)把w =30代入w =12t 2-2t ,得12t 2-2t =30.解得t 1=10,t 2=-6(不合题意,舍去).所以,截止到10月末公司累积利润可达30万元;(3)把t =7代入关系式,得w =12×72-2×7=10.5,把t =8代入关系式,得w =12×82-2×8=16.16-10.5=5.5(万元).所以,第8个月公司所获利润是5.5万元.方法总结:此题主要考查了二次函数的性质在实际生活中的应用,首先要吃透题意,确定变量,建立函数模型,尤其是对本题图象中所给信息的理解是解决问题的关键.【类型二】 综合运用一次函数和二次函数求最大利润宿松超市以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销售量y (件)与售价x (元/件)之间的函数关系如图(20≤x ≤60).(1)求每天销售量y (件)与售价x (元/件)之间的函数关系式;(2)若该商品每天的利润为w (元),试确定w (元)与售价x (元/件)之间的函数关系式,并求售价x 为多少时,每天的利润w 最大,最大利润是多少?解析:(1)当20≤x ≤40时,设y =ax +b ,当40<x ≤60时,设y =mx +n ,利用待定系数法求一次函数解析式即可;(2)利用(1)中所求进而得出w (元)与售价x (元/件)的函数表达式,进而求出函数最值.解:(1)分两种情况:当20≤x ≤40时,设y =ax +b ,根据题意,得⎩⎪⎨⎪⎧20a +b =40,40a +b =60,解得⎩⎪⎨⎪⎧a =1,b =20,故y =x +20;当40<x ≤60时,设y =mx +n ,根据题意,得⎩⎪⎨⎪⎧40m +n =60,60m +n =20,解得⎩⎪⎨⎪⎧m =-2,n =140,故y =-2x +140.故每天销售量y (件)与售价x (元/件)之间的函数表达式是y =⎩⎪⎨⎪⎧x +20(20≤x ≤40),-2x +140(40<x ≤60); (2)w =错误!①当20≤x ≤40时,w =x 2-400,由于1>0,因而抛物线开口向上,且x >0时w 随x 的增大而增大,又20≤x ≤40,因此当x =40时,w 有最大值,w 最大值=402-400=1200;②当40<x ≤60时,w =-2x 2+180x -2800=-2(x -45)2+1250,由于-2<0,抛物线开口向下,又40<x ≤60,所以当x =45时,w 有最大值,w 最大值=1250.综上所述,当x =45时,w 最大值=1250. 所以,售价为45元/件时,每天的利润最大,最大利润是1250元.方法总结:一次函数与二次函数的综合应用问题主要解决的是图象与性质的问题或生活中的实际应用问题.变式训练:见《课堂内外》本课时练习“课后巩固提升” 第2题【类型三】 利用表格信息求最大利润某商店经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求出y 与x 的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x <50和50≤x ≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x <50时,y =(200-2x )(x +40-30)=-2x 2+180x +2000;当50≤x ≤90时,y =(200-2x )(90-30)=-120x +12000.综上所述,y =⎩⎪⎨⎪⎧-2x 2+180x +2000(1≤x <50),-120x +12000(50≤x ≤90); (2)当1≤x <50时,y =-2x 2+180x +2000,二次函数开口向下,对称轴为x =45,当x =45时,y 最大=-2×452+180×45+2000=6050;当50≤x ≤90时,y =-120x +12000,y 随x 的增大而减小,当x =50时,y 最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.三、板书设计商品利润最大问题1.利用二次函数求实际问题中的最大利润2.综合运用一次函数和二次函数求最大利润3.利用表格信息求最大利润本节课是在学习了二次函数的概念、图象及性质后,应用二次函数的最大值解决销售问题的最大利润问题.本节课的设计力求通过创设问题情境,有计划、有步骤地安排好思维序列,使学生的思维活动在“探索——发现”的过程中充分展开,力求使学生经历运用逻辑思维和非逻辑思维再创造的过程,整个教学过程突出知识的形成与发展的过程,让学生既获得了知识又发展了智力,同时提升了能力.。

九年级数学上册期末复习二次函数商品利润最大问题

九年级数学上册期末复习二次函数商品利润最大问题

九年级数学上册期末复习二次函数商品利润最大问题1、某旅馆有30个房间供旅客住宿。

据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。

该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。

当房价定为每天多少时,该旅馆的利润最大?解:设每天的房价为60+5x元,则有x个房间空闲,已住宿了30-x个房间.∴度假村的利润y=(30-x)(60+5x)-20(30-x),其中0≤x≤30.∴y=(30-x)•5•(8+x)=5(240+22x-x²)=-5(x-11)²+1805.因此,当x=11时,y取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大。

2、最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。

某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。

经市场调查发现,该产品每天的销售量w (千克)与销售量x(元)有如下的关系:w=-2x+80。

设这种产品每天的销售利润为y(元)。

(1)求y与x之间的函数关系式;解:y=(x-20)w=(x-20)(-2x+80)=-2x²+120x-1600,∴y与x的函数关系式为:y=-2x²+120x-1600;(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?解:y=-2x²+120x-1600=-2(x-30)²+200,∴当x=30时,y有最大值200,∴当销售价定为30元/千克时,每天可获最大销售利润200元;(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?解:当y=150时,可得方程:-2(x-30)2+200=150,解这个方程,得x1=25,x2=35,(8分)根据题意,x2=35不合题意,应舍去,∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.3、与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的 销售量y(件)满足当x=130时,y=70,当x=150时,y=50,且y是x的一次 函数,为了获得最大利润S(元),每件产品的销售价应定为( A )
A.160元 B.180元
C.140元 D.200元
4.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生 产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=n2+15n-36,那么该企业一年中应停产的月份是( D )最大利润 Nhomakorabea问

确 定 自变 量 的 涨价:要保证销售量≥0; 取 值 范 围 降件:要保证单件利润≥0.
∴当x=10时,y值最大,最大值为25. 即销售单价定为10元时,销售利润最 大,为25元;
y 16
O 57
x
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
(2)由对称性知y=16时,x=7和13. 故销售单价在7 ≤x ≤13时,利润不低于16元.
课堂小结
建立函数关


总利润=单件利润×销售量或总 利润=总售价-总成本.
第二章 二次函数
2.4 二次函数的应用
第2课时 商品利润最大问题
学习目标
1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)
讲授新课
利润问题中的数量关系
探究交流 某商品现在的售价为每件60元,每星期可卖出300件,
y=(160+10x)(120-6x)
=-60(x-2)2+19440.
∵x≥0,且120-6x>0,
∴0≤x<20.
当x=2时,y有最大值,且y最大=19440.
这时每间客房的日租金为160+10×2=180(元).
答:每间客房的日租金提高到180元时,客房日租金的总收入 最高,最大收入为19440.
例2 某旅馆有客房120间,每间房的日租金为160元,每天都客满.经市场调查,如 果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间 客房的日租金提高到多少元时,客房日租金的总收入最高?最高总收入是多少?
解:设每间客房的日租金提高10x元,则每天客房出租数会 减少6x间,则
当堂练习
1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元 (20 ≤x ≤30)出售,可卖出(600-20x)件,为使利润最大,则每件售 价应定为 25 元.
2.进价为80元的某衬衣定价为100元时,每月可卖出2000件,价格每上涨1 元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价 x(元)之间的函数关系式为 y=2000-5(x-100) .每月利润w(元)与衬衣售价 x(元)之间的函数关系式为 w=[2000-5(x-100)](x-80). (以上关系式只列式不化简).
涨价销售 ①每件涨价x元,则每星期售出商品的利润y元,填空:
正常销售 涨价销售
单件利润(元)
20 20+x
销售量(件)
300 300-10x
建立函数关系式:y=(20+x)(300-10x), 即:y=-10x2+100x+6000.
每星期利润(元)
6000 y=(20+x)(300-10x)
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,
故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30. ③涨价多少元时,利润最大,最大利润是多少?
y=-10x2+100x+6000, 当 x 100 时 ,5y=-10×52+100×5+6000=6250.
2 (10)
即涨价5元时,最大利润是6250元.
例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查 反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18 件,已知商品的进价为每件40元,如何定价才能使利润最大?
营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x
≥0,因此自变量的取值范围是0 ≤x ≤20.
③降价多少元时,利润最大,是多少?
即:y=-18x2+60x+6000,
当 x 60 时,5
y 18 (5)2 60 5 6000 6050.
2 (18) 3
3
A.1月,2月 C.3月,12月
B.1月,2月,3月 D.1月,2月,3月,12月
5. 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系: y=ax2+bx-75.其图象如图. (1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是 多少元?
解:(1)由题中条件可求y=-x2+20x-75 ∵-1<0,对称轴x=10,
已知商品的进价为每件40元,则每星期销售额是 6000 元, 销售利润 18000 元.
数量关系
(1)销售额= 售价×销售量; (2)利润= 销售额-总成本=单件利润×销售量; (3)单件利润=售价-进价.
如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查 反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18 件,已知商品的进价为每件40元,如何定价才能使利润最大?
3
即降价 5 元时,最大利润是6050元.
3
由知(道1)应综(2该合)如的可何讨知定论,价及应能现定使在价利的65润销元最售时大情,了况才吗,能你?使利 润最大。
知识要点
求解最大利润问题的一般步骤 (1)建立利润与价格之间的函数关系式: 运用“总利润=总售价-总成本”或“总利润=单件利润 ×销售量” (2)结合实际意义,确定自变量的取值范围; (3)在自变量的取值范围内确定最大利润: 可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简 图和性质求出.
降价销售
①每件降价x元,则每星期售出商品的利润y元,填空:
单件利润(元)
销售量(件)
每星期利润(元)
正常销售 降价销售
20
300
6000
20-x
300+18x
y=(20-x)(300+18x)
建立函数关系式:y=(20-x)(300+18x), 即:y=-18x2+60x+6000.
②自变量x的取值范围如何确定?
相关文档
最新文档