基于FPGA的数字频率计的设计

合集下载

基于FPGA的等精度数字频率计设计(修订版)

基于FPGA的等精度数字频率计设计(修订版)

基于FPGA的等精度数字频率计设计微电子学与固体电子学张嘉伟113114312目录摘要 (3)第一章课题背景 (4)第二章方案设计及原理 (4)1 多周期同步测频率测量原理 (4)2 设计实现 (6)2.1 FPGA程序设计 (6)2.2 DSP程序设计 (7)第三章主要模块的Verilog程序 (8)1 计数器 (8)2 除法器 (8)3 分频器 (11)4 BCD模块 (11)第四章仿真结果 (12)第五章设计总结 (13)参考文献 (13)摘要本文主要论述了利用FPGA进行测量频率计数,FPGA实施控制实现多功能频率计的设计过程。

该频率计利用等精度的设计方法,克服了基于传统测频原理的频率计的测量精度随被测信号频率的下降而降低的缺点。

等精度的测量方法不但具有较高的测量精度,而且在整个频率区域包成恒定的测试精度。

根据多周期同步测频率法的原则,选取了多周期同步测频法作为数字频率计的测量算法,提出了基于FPGA的数字频率计设计方案。

给出了该设计方案的实际测量效果,证明该设计方案切实可行,能达到较高的频率测量精度。

关键词:FPGA;等精度;频率计第一章课题背景随着大规模集成电路技术的发展及电子产品市场运作节奏的进一步加快,涉及诸如计算机应用、通信、智能仪表、医用设备、军事、民用电器等领域的现代电子设计技术已迈入一个全新的阶段。

专家预言,未来的电子技术时代将是EDA 的时代,PLD作为EDA技术的一项重要技术,是电子设计领域中最具活力和发展前途的一项技术,它的影响丝毫不亚于70年代单片机的发明和使用。

在电子测量技术中,频率测量是最基本的测量之一。

工程中很多测量,如用振弦式测量力、时间测量、速度测量、速度控制等,都设计到频率测量,或可归结为频率测量。

而常用的直接测量方法在使用中有较大的局限性,其测量精度随着被测信号频率的下降而降低,并且对被测信号的计数要产生±1个数字误差。

采用等精度频率测量方法具有测量精度保持恒定,不随所测信号的变化而变化;结合FPGA,具有集成度高、告诉和高可靠性的特点,是频率的测频范围可达到0.1Hz-50MHz,测频全域相对误差恒为百万分之一。

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计

沈 磊 , 善 化 ( 徽 理 工 大 学 电气 与信 息 工 程 学 院 , 徽 淮 南 2 2 0 ) 姚 安 安 3 0 1
S e e, o Sh n h a( e、 i I n fr t nE gn e igC l g , h i nv ri f h nLi Ya a — u El t dI omai n ie r ol e (r a a n o n e An u i s yo U e t
t n a t A of r ca f r Max pls Im a fc ur t a d i fa ED on s t o r wa e lto m + u I . nua t es i h r war lc r i uibo r。 wnla t e p o ed e t h P A s e ee ti cr t c c a d. do O ds “ f l r C ur o t e F G
现场 可 编 程 门 阵
图 1数 字频 率计 的原 理 框 图
片 F G (idPorm b a s Ⅱ 广 P AFe rga malG t a l e eA
列) 片上 , 个 系统 非 常 精 简 , 够 达 到 I 的 技术 指 标 。 芯 整 并能 川样 根
据 不 同 的需要 还 可以 重新 编 程 下载 , 行 升 级} 进 I 。
S in e& T c n l yAn u Hu ia 3 0 1 ce c e h oo . h i an n2 2 0 1 g
摘 要 : 硬件描 述语 言 V D 对 频率t 用 H L t 系统进 行设 计 , 此程序 在 E A软件平 台 M D pu I 上编 译仿 真后 , 作 lsI 制 出其 硬件 电路板 , 再将 程序 下载 到 F G P A模块 中实现 。 件设 计 中只需一 个下载 芯片 E 2 5 剩余 皆是输 入输 出部 硬 PC , 分, 包括 时钟 和数码 管驱动 以及发 光二檄 管 , 大大 地简化 了电 路结构 的复杂性 。 又提高 了电路 的稳 定性 。

基于FPGA的数字频率计实验报告(能测占空比)

基于FPGA的数字频率计实验报告(能测占空比)

基于FPGA的数字频率计设计学院:专业:班级:姓名:学号:审阅老师:评分:目录一、课程设计目的 (3)二、设计任务 (3)三、功能要求与技术指标 (3)四、数字频率计工作原理概述 (3)五.数字频率计实现方法 (4)六.结论与误差分析 (11)七.VHDL程序: (12)一、课程设计目的熟悉EDA工具,掌握用VHDL语言进行数字系统设计的基本方法和流程,提高工程实践能力。

二、设计任务设计一数字频率计,用VHDL语言描述,用QuartusII工具编译和综合,并在实验板上实现。

三、功能要求与技术指标1.基本功能要求(1)能够测量出方波的频率,其范围50Hz~50KHz。

(2)要求测量的频率绝对误差±5Hz。

(3)将测量出的频率以十进制格式在实验板上的4个数码管上显示。

(4)测量响应时间小于等于10秒。

以上(1)~(4)基本功能要求均需实现。

2.发挥部分(1)提高测量频率范围,如10Hz~100KHz或更高、更低频率,提高频率的测量绝对值误差,如达到±1Hz。

(2)可以设置量程分档显示,如X1档(显示范围1Hz~9999Hz),X10档(显示范围0.001KHz~9.999KHz),X100档(显示范围0.100KHz~999.9KHz)...可以自定义各档位的范围。

量程选择可以通过按键选择,也可以通过程序自动选择量程。

(3)若是方波能够测量方波的占空比,并通过数码管显示。

以上(1)~(3)发挥功能可选择实现其中的若干项。

四、数字频率计工作原理概述1.数字频率计简介在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

而数字频率计是采用数字电路制成的实现对周期性变化信号的频率的测量。

2.常用频率测量方法:方案一采用周期法。

通过测量待测信号的周期并求其倒数,需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生最大为±1个脉冲误差,并且测试精度与计数器中记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

基于FPGA的数字频率计设计

基于FPGA的数字频率计设计

基于FPGA的数字频率计设计摘要数字频率计是一种常用的电子测量仪器,在工程领域中广泛应用。

与传统的模拟频率计相比,数字频率计具有精度高、响应快、体积小等优点,在现代电子技术领域中广泛应用。

本文将介绍如何使用FPGA设计数字频率计,并通过示例演示FPGA的应用。

介绍数字频率计是一种将输入信号的频率转换成计数信号输出的电子工具,它可以测量频率、周期和时间间隔等参数。

频率计通常采用数字进制计数方式,其测量精度取决于计数器的精度和时钟频率。

在电子电路测试、无线通信、音频、视频等领域中,数字频率计起着至关重要的作用。

FPGA(Field Programmable Gate Array)是一种具有灵活性、可编程性和高速性的逻辑芯片,适用于数字电路的设计和实现。

与ASIC(Application-Specific Integrated Circuit)相比,FPGA具有短设计周期、可重构、低成本等特点。

在数字系统中,FPGA作为计数器的电子部件,使得数字频率计的设计变得更加灵活和简便。

FPGA数字频率计设计系统框图FPGA数字频率计的系统框图如下:FPGA数字频率计系统框图FPGA数字频率计系统框图如图所示,FPGA数字频率计的输入端连接到待测信号,经过放大和滤波处理后送入计数器中进行计数,计数器输出的计数值存储在FPGA的存储器中并进行处理,最终形成数字频率读数并显示在数码管上。

输入端FPGA数字频率计的输入端通常使用低噪声前置放大器和有限带宽滤波器的组合,以保证待测信号的准确度和稳定性。

实际设计中应根据待测信号的具体情况选择合适的放大系数和滤波器参数。

计数器数字频率计的计数器是FPGA实现的核心部件。

计数器根据输入端计数触发信号进行计数,并将计数器输出的计数值存储在FPGA的存储器中。

计数器的计数值越大,频率读数的分辨率就越高。

在FPGA中,计数器可以采用累加计数器或移位寄存器计算,具体实现取决于设计者的需求和性能要求。

基于 fpga 的数字频率计的设计与实现

基于 fpga 的数字频率计的设计与实现

基于 FPGA 的数字频率计的设计与实现随着现代科技的不断发展,我们对数字信号处理的需求也越来越高。

数字频率计作为一种用来测量信号频率的仪器,在许多领域有着广泛的应用,包括无线通信、雷达系统、声音处理等。

在这些应用中,精确、高速的频率测量常常是至关重要的。

而基于 FPGA 的数字频率计正是利用了 FPGA 高速并行处理的特点,能够实现高速、精确的频率计算,因此受到了广泛关注。

本文将从设计思路、硬件实现和软件调试三个方面,对基于 FPGA 的数字频率计的设计与实现进行详细讲解。

一、设计思路1.1 频率计原理数字频率计的基本原理是通过对信号进行数字化,然后用计数器来记录单位时间内信号的周期数,最后根据计数器的数值和单位时间来计算信号的频率。

在 FPGA 中,可以通过硬件逻辑来实现这一过程,从而实现高速的频率计算。

1.2 FPGA 的优势FPGA 作为一种可编程逻辑器件,具有并行处理能力强、时钟频率高、资源丰富等优点。

这些特点使得 FPGA 在数字频率计的实现中具有天然的优势,能够实现高速、精确的频率测量。

1.3 设计方案在设计数字频率计时,可以采用过采样的方法,即对输入信号进行过取样,得到更高精度的测量结果。

还可以结合 PLL 锁相环等技术,对输入信号进行同步、滤波处理,提高频率测量的准确性和稳定性。

二、硬件实现2.1 信号采集在 FPGA 中,通常采用外部 ADC 转换芯片来对输入信号进行模数转换。

通过合理的采样率和分辨率设置,可以保证对输入信号进行精确的数字化处理。

2.2 计数器设计频率计最关键的部分就是计数器的设计。

在 FPGA 中,可以利用计数器模块对输入信号进行计数,并将计数结果送入逻辑单元进行进一步的处理。

2.3 频率计算通过对计数结果进行适当的处理和归一化,可以得到最终的信号频率。

在这一过程中,需要注意处理溢出、误差校正等问题,以保证频率测量的准确性和稳定性。

三、软件调试3.1 FPGA 开发环境在进行基于 FPGA 的数字频率计设计时,可以选择常见的开发工具,例如 Xilinx Vivado 或 Quartus II 等。

基于FPGA的数字式频率计设计报告

基于FPGA的数字式频率计设计报告

湖南大学电气与信息工程学院本科生课程设计题目:数字频率计课程:电子技术综合设计专业:电子信息工程班级:1703指导老师:设计时间:目录一、选题 (1)二、要求 (1)三、方案原理 (3)四、框图 (4)五、单元电路说明 (6)1分频模块 (6)2 显示模块六、参考资料 (21)一、选题数字式频率计的VERILOG设计二、要求对输入FPGA开发板的一定频率的输入信号的频率进行测量,并通过LCD进行显示,并使可测量范围尽可能大,精度尽可能高三、方案原理(1)L CD显示原理本次设计中使用的是基于HD44780的LCD1602。

管脚定义图如下:要实现液晶显示功能有如下关键步骤:1.确定字符显示位置:要在液晶上的某个位置上显示某个字符,就是要向DDRAM的某个地址写入要显示的数据代码。

屏幕物理位置与DDRAM地址的对应关系如下:2.确定显示字符的内容:液晶要显示某个字符时,实质上就是显示该字符的字模, ,即向DDRAM里写数,数据与字模对照表如下:3.将数据写入LCD:执行以下步骤:清屏指令->功能设置指令->进入模式设置指令->显示开关控制指令->设定DDRAM地址指令->数据写入DDRAM指令,相关指令如下:液晶读数据时序:把数据写入液晶时序:由上图可知要保证液晶能正常显示,在E的下降沿时,数据要有效。

(2)频率测量原理利用分频模块获得一个1HZ的clk脉冲,同时设定一个计数脉冲,clk 脉冲作为时基,同时设定一个计数脉冲,每当clk脉冲跳变时,将计数寄存器中的数据送至显示寄存器,同时清零计数寄存器,并显示寄存器中的内容送至LCD显示模块,即可完成频率测量功能模块例化思路分频模块产生多种频率的信号供不同模块使用顶层文件脉冲计数count门控信号二-十进制转换模块LCD1602模块显示频率(最小单位1Hz)和占空比(最小单位0.1%)Clk_In,sysclkClk_GateClk_500Cnt7~Cnt0countClk_500。

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计

1200 引言电子技术中,频率是最基本的参数之一,且与许多电参量的测量方案、测量结果都有十分密切的关系。

数字频率计是电子测量与仪表技术最基础的电子仪器之一,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

与传统的频率计相比,数字频率计具有精度高、测量范围大、可靠性好等优点,是频率测量的重要手段之一。

1 设计方案工作原理1.1 系统方案1.1.1 宽带通道放大器方案一:OPA690固定增益直接放大。

由于待测信号频率范围广,电压范围大,故选用宽带运算放大器OPA69,5V双电源供电,对所有待测信号进行较大倍数的固定增益。

对于输入的正弦波信号,经过OPA690的固定增益,小信号得到放大,大信号削顶失真,所以均可达到后级滞回比较器电路的窗口电压。

方案二:基于VCA810的自动增益控制(AGC)。

AGC电路实时调整高带宽压控运算放大器VCA810的增益控制电压,通过负反馈使得放大后的信号幅度基本保持恒定。

尽管方案一中的OPA690是高速放大器,但是单级增益仅能满足本题基本部分的要求,而在放大高频段的小信号时,增益带宽积的限制使得该方案无法达到发挥部分在频率和幅度上的要求[1]。

方案二中采用VCA810与OPA690级联放大,并通过外围负反馈电路实现自动增益控制。

该方案不仅能够实现稳定可调的输出电压,而且可以解决高频小信号单级放大时的带宽问题。

故采用基于VCA810的自动增益控制方案。

1.1.2 脉冲整形电路因为输入脉冲信号幅度值不固定,当幅值较小时无法进入FPGA进行频率的测量,故采用轨至轨高速比较器TLV3501,响应时间为4.5ns,输出高电平5V,输出低电平0V,这样无需AGC放大即可进入FPGA进行频率测量。

1.1.3 主控电路方案一:采用诸如MSP430、STM32等传统单片机作为主控芯片。

单片机在现实中与FPGA连接,建立并口通信,完成命令与数据的传输。

方案二:在FPGA内部利用逻辑单元搭建片内单片机Avalon,在片内将单片机和测量参数的数字电路系统连接,不连接外部接线[2]。

基于fpga的数字频率计设计

基于fpga的数字频率计设计

基于FPGA的数字频率计设计随着科学技术的不断进步,数字电子技术在各个领域都得到了广泛的应用。

其中,FPGA(现场可编程门阵列)作为一种灵活、可编程、可重构的数字电路设备,具有较高的性能和灵活性,被广泛应用于数字信号处理、通信、图像处理等各个领域。

本篇文章将介绍基于FPGA的数字频率计设计。

一、概述数字频率计是一种用于测量信号频率的设备,可以方便快速地获取信号的频率信息。

传统的数字频率计通常采用微处理器或专用集成电路来实现,但是这些方案在某些应用场景下存在着局限性。

使用FPGA来设计数字频率计,既可以充分利用FPGA的灵活性和并行性,又可以实现高性能和低功耗的设计。

二、基于FPGA的数字频率计设计原理基于FPGA的数字频率计主要通过计数器和时钟信号来实现。

其设计原理可以分为以下几个步骤:1. 时钟信号同步:通过FPGA内部的PLL(锁相环)模块,可以实现时钟信号的同步和稳定。

2. 信号输入:将待测信号输入FPGA,可以通过外部接口或模拟输入模块实现。

3. 计数器设计:利用FPGA内部的计数器模块,对输入信号进行计数,从而获取信号的频率信息。

4. 频率计算:根据计数器的计数值和时钟信号的周期,可以计算出输入信号的频率信息。

三、基于FPGA的数字频率计设计实现基于上述原理,可以利用FPGA内部的逻辑资源,设计出一个高性能的数字频率计。

具体实现步骤如下:1. 确定输入信号的接口:选择适合的输入接口,可以是数字信号接口、模拟信号接口或者通用IO口。

2. 设计计数器模块:根据待测信号的频率范围和精度要求,设计合适的计数器模块,可以结合FPGA的时钟管理模块实现高精度计数。

3. 编写频率计算算法:根据计数器得到的计数值和时钟信号的周期,设计频率计算算法,可以采用移位运算、累加运算等实现高效的频率计算。

4. 实现显示与输出:设计合适的显示模块和输出接口,将测得的频率信息在显示屏或者外部设备上进行输出。

四、基于FPGA的数字频率计设计应用基于FPGA的数字频率计设计可以广泛应用于各种领域,如通信、测控、仪器仪表等。

基于FPGA的数字频率计的设计课案

基于FPGA的数字频率计的设计课案

基于FPGA的数字频率计的设计学生专业:学生姓名:指导教师:摘要数字频率计是近代电子技术领域的重要测量工具之一,同时也是其它许多领域广泛应用的测量仪器。

它在规定的基准时间内把测量的脉冲数记录下来,换算成频率并以数字形式显示出来。

在许多测量方案以及测量结果中都会涉及到频率测量的相关问题,频率精确测量的重要性显而易见。

本设计在了解频率计的基本原理的基础上,基于直接测频法的测试手段,即在一定闸门时间内测量被测信号的脉冲个数;设计频率计的测量范围为1Hz-99.99MHz。

将设计分为六个模块,即顶层模块,分频模块,计数模块,单位选择模块,数码管位选模块,转换模块。

采用硬件描述语言Verilog HDL编写了各个模块的代码,并且利用Quartus II软件平台进行了功能的仿真,从而完成输入被测频率,通过选择不同档位,精确输出测量值,达到了预期目标。

关键词数字频率计;直接测频法;Verilog HDL;Quartus IIAbstractDigital frequency meter modern electronic technology is one of the important measurement tools and other areas widely used measuring instrument. It stipulated in the benchmark time to measure the number of pulses recording, the conversion into frequency and displayed in digital form. In many survey scheme and measurement results involve frequency measurements of related problems, the importance of accurate measurement of frequency is obvious.This design in understanding the basic principle of the frequency meter, on the basis of direct frequency measurement method based on the means testing, that is, in a certain gate time measurement of the measured signal pulse number; Design the frequency meter measuring range of 1 Hz-99.99 MHz. Will design is divided into six parts, a top-level module, points frequency modules, count module, the unit choose module, digital tube a chosen module, conversion module The hardware description language Verilog HDL write each module of the code, and make use of Quartus II software platform functions of the simulation. Then measured input frequency, by choosing different rank, precise output measured values, and reach the expected goal.Keywords Digital frequency plan;Direct frequency measurement method ;Verilog HDL;Quartus II目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题背景和意义 (1)1.2国内外发展情况 (1)第2章频率计测量原理及Verilog HDL概述 (3)2.1数字频率计测量原理 (3)2.1.1 直接计数测频法 (3)2.1.2 等精度测频法 (5)2.1.3 全同步测频法 (6)2.2Verilog HDL概述 (7)2.2.1 Verilog HDL介绍 (7)2.2.2 Verilog HDL程序开发流程 (8)2.3本章小结 (8)第3章数字频率计模块设计 (9)3.1数字频率计设计指标 (9)3.2数字频率计各个模块 (10)3.2.1 顶层模块fre_counter (10)3.2.2 分频模块clk_gen (12)3.2.3 计数模块count (14)3.2.4 单位控制模块count_4units (15)3.2.5 数码管位选模块led_sel (15)3.2.6 转换模块transform (17)3.3本章小结 (18)第4章数字频率计仿真 (19)4.1分频模块仿真波形 (19)4.2计数模块仿真波形 (19)4.3单位控制模块仿真波形 (20)4.4数码管位选模块 (20)4.5转换模块 (21)4.6本章小结 (21)第5章芯片介绍和管脚分配 (22)5.1FPGA芯片介绍 (22)5.2代码管脚分配图 (22)5.3顶层原理图效果图 (23)5.4本章小结 (23)结论 (24)致谢 (25)参考文献 (26)附录1程序源代码 (28)CONTENTSAbstract(Chinese) (I)Abstract(English) (II)Chapter 1 Introduction (1)1.1 Background and Significance (1)1.2 Domestic and foreign development (1)Chapter 2 Principle and Verilog HDL overview (3)2.1 Measuring principle (3)2.1.1 Direct count frequency measurement method (3)2.1.2 Precision frequency measurement method (5)2.1.3 With all BuCe frequency method (6)2.2 Verilog HDL overview (7)2.2.1 Verilog HDL introduction (7)2.2.2 Verilog HDL program development processes (8)2.3 Chapter summary (8)Chapter 3 Digital frequency plan module design (9)3.1 Digital frequency plan design index (9)3.2 Digital frequency plan each module (10)3.2.1 Fre_counter top-level module (10)3.2.2 Points clk_gen frequency modules (12)3.2.3 Count count module (14)3.2.4 The unit control module count_4units (15)3.2.5 Digital tube a choose led_sel module (15)3.2.6 Conversion module transform (17)3.3 Chapter summary (18)Chapter 4 Digital frequency plan simulation (19)4.1Points frequency modules simulation waveform (19)4.2 Count module simulation waveform (19)4.3 The unit control module simulation waveform (20)4.4 Digital tube a chosen module (20)4.5 Conversion module (21)4.6 Chapter summary (21)Chapter 5 Chip introduction and tube foot distribution (22)5.1 Introduced FPGA chip (22)5.2The code to pin assignment graph (22)5.3 Top principle diagram rendering (23)5.4 Chapter summary (23)Conclusion (24)Acknowledgement (25)References (26)Appendix 1 program (28)第1章绪论1.1课题背景和意义随着数字电路应用越来越广泛,传统的通用数字集成电路芯片已经很难满足系统功能的要求,而且随着系统复杂程度的不断增加,所需通用集成电路的数量呈爆炸性增长,使得电路板的体积迅速膨胀,系统可靠性难以保证[1]。

基于fpga的数字频率计的设计

基于fpga的数字频率计的设计

基于fpga的数字频率计的设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于FPGA的数字频率计的设计摘要本文介绍了一种基于FPGA的数字频率计的设计方法。

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计

基于FPGA的数字频率计的设计摘要:数字频率计(FREQ)是一种用于计算信号频率的设备。

本文提出了一种基于FPGA的数字频率计的设计方案,使用Verilog HDL实现了数字频率计,可以实现输入信号频率的测量和显示。

该数字频率计的设计具有快速响应、低延迟、高精度的特点,并且适用于各种频率范围的输入信号。

关键词:数字频率计;FPGA;Verilog HDL;测量;显示;精度1. 简介数字频率计是一种用于测量信号频率的设备,广泛应用于电子、通信、计算机等领域。

传统的频率计一般采用模拟电路实现,但其精度和速度有限,且易受到噪声和温度等因素的影响,难以应用于高精度和高速测量。

随着FPGA技术的不断发展,基于FPGA的数字频率计逐渐成为一种新的解决方案。

2. 设计方案本文提出了一种基于FPGA的数字频率计的设计方案,使用Verilog HDL实现了数字频率计,可以实现输入信号频率的测量和显示。

数字频率计的核心是计数器,通过计数器来测量输入信号的周期,并计算出信号的频率。

本设计方案采用了高速计数器的设计思路,具体步骤如下:(1) 输入信号经过芯片引脚电路,进入FPGA芯片。

(2) FPGA内置的输入输出模块将输入信号进行采样和滤波处理,得到纯净的数字信号。

(3) 数字信号经过计数器进行计数,计数值存储在计数器的寄存器中。

(4) 计数值经过时钟分频和计算,得到输入信号的周期和频率。

(5) 输入信号的频率通过显示模块在数码管或LCD显示屏上显示,同时可以通过按键或旋转编码器进行设置和控制。

3. 实验结果本设计方案采用ALTERA CYCLONE III系列FPGA芯片,频率范围从1Hz到50MHz,精度为0.01Hz。

实验结果表明,数字频率计响应速度快,延迟较低(约为100ns),精度高(误差小于0.1%),同时可以适应各种信号频率范围的测量。

4. 总结本文提出了一种基于FPGA的数字频率计的设计方案,采用了高速计数器的设计思路,具有快速响应、低延迟、高精度的特点,并且适用于各种频率范围的输入信号。

基于FPGA简易数字频率计设计

基于FPGA简易数字频率计设计

毕业设计基于FPGA的简易数字频率计设计学院:信息科学技术学院专业:姓名:指导老师:电子科学与技术黄锐填学号:职称:0601521013张应省黄相杰副教授助教中国·珠海二○一○年五月基于FPGA的简易数字频率计设计摘要本设计是基于FPGA的一个简易数字频率计,利用Verilog硬件描述语言设计实现了频率计内部功能模块,采用了等精度测量的方法,并结合NIOS软核CPU嵌入FPGA,构成SOPC 系统,利用NIOS软核对数据浮点运算处理,管理人机交换界面实时显示,跟传统FPGA+单片机的多芯片系统方案相比更加灵活,系统体积小和功耗小等优势,具备软硬件在系统可编程的功能。

本设计测量频率的方法采用的是等精度测量法,相比直接测频法和测周法有精度更高的特点。

前端信号输入调理采用宽带放大器AD811对微弱信号进行放大,经过比较器整形调理后,FPGA进行采用测量,系统实时性好,精度高。

关键词:等精度频率计 FPGA NIOS VerilogThe Design Of Simple Digital Frequency Meter Base On FPGAABSTRACTThe design is based on FPGA digital frequency of a simple plan, use V erilog hardware design realized the frequency of internal function module, the accuracy of the measurement method, etc NIOS and FPGA, soft nuclear CPU embedded systems, using the SOPC constitute NIOS soft check data management man-machine floating point calculations, exchange, with real-time display interface chip traditional FPGA + MCU solutions, system is much more flexible than small volume and low consumption, have advantages of hardware and software systems in programmable functions.This design method of measuring frequency by measuring method is compared with direct frequency measurement method, and the measuring accuracy of ZhouFaY ou characteristics. Front-end signal input by AD811 amplifier to recuperate broadband amplification, weak signal by comparator plastic, after using measurements on FPGA, system of good real-time, high precision.Key words:Equal precision Frequency counter FPGA NIOS Verilog目录摘要-------------------------------------------------- I ABSTRACT ------------------------------------------------- II1 概述 ----------------------------------------------- 12 系统方案分析及比较选择---------------------------------3 2.1方案构想----------------------------------------------- 32.2方案比较及选用依据:------------------------------------ 43 工作原理及其系统框图----------------------------------- 5 3.1计数式直接测频法 --------------------------------------- 5 3.2计数式直接测周期 --------------------------------------- 63.3等精度测量原理----------------------------------------- 74 硬件系统实现------------------------------------------ 10 4.1硬件系统原理图 --------------------------------------- 10 4.1.1放大电路的选择------------------------------------- 10 4.1.2 整形电路------------------------------------------ 13 4.2FPGA控制电路----------------------------------------- 15 4.2.1 FPGA芯片选型---------------------------------------- 15 4.2.2 FPGA最小系统搭建------------------------------------ 16 4.3FPGA内部模块------------------------------------------ 19 4.3.1系统总体框图----------------------------------------- 194.3.2 同步预置模块---------------------------------------- 20 4.3.3 频率计数模块、时间计数模块--------------------------- 214.3.4 数据输出模块,计数器清零模块------------------------- 215 软件系统实现------------------------------------------ 23 5.1主程序框图------------------------------------------- 23 5.2N IOS II软核------------------------------------------ 23 5.3.NIOS外部接口与内部介绍------------------------------ 24 5.3.1 nios软核原理框图---------------------------------- 24 5.3.2 nios软核外部接口---------------------------------- 246 遇到问题,分析问题,解决问题-------------------------- 25 6.1输入阻抗问题----------------------------------------- 25 6.2放大器选择问题 --------------------------------------- 257 电路抗干扰措施---------------------------------------- 268 系统指标测试------------------------------------------ 279 结束语------------------------------------------------ 28 参考文献------------------------------------------------- 29 附录1:FPGA硬件描述语言代码----------------------------- 30 附录2:NIOS C语言程序代码------------------------------- 33 谢辞---------------------------------------------------- 401 概述随着微电子技术和计算机技术的迅速发展,特别是单片微机和片上可编程系统的出现和发展,使传统的电子测量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化,形成一种完全突破传统概念的新一代测量仪器。

基于FPGA数字频率计的设计(毕设2)

基于FPGA数字频率计的设计(毕设2)

摘要摘要数字频率计是电子测量与仪表技术最基础的电子仪表之一,也是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

本文主要介绍一种以FPGA(Field Programmable Gate Array)为核心,基于硬件描述语言VHDL的数字频率计设计与实现。

并在EDA(电子设计自动化)工具的帮助下,用大规模可编程逻辑器件(FPGA/CPLD)实现数字频率计的设计原理及相关程序。

特点是:无论底层还是顶层文件均用VHDL语言编写,避免了用电路图形式设计时所引起的毛刺现象;改变了以往数字电路小规模多器件组合的设计方法,整个频率计设计在一块FPGA/CPLD芯片上,与用其他方法做成的频率计相比,体积更小,性能更可靠。

关键词:FPGA 频率计电子设计自动化目录目录摘要 (I)目录 (II)第一章绪论 (1)1.1课题研究背景 (1)1.2研究目的和意义 (1)第二章系统方案的设计 (2)2.1问题引入 (2)2.2设计目的 (2)2.3设计内容 (2)2.3.1数字频率计的基本原理 (2)2.3.2实际电路 (2)第三章系统硬件电路的设计 (5)3.1设计要求 (5)3.1.1所需仪器仪表 (5)3.2系统框图 (5)3.2.1电源与整流稳压电路 (5)3.2.2全波整流与波形整形电路 (5)3.2.3分频器 (6)3.2.4信号放大、波形整形电路 (6)3.2.5控制门 (7)3.2.6计数器 (7)3.2.7锁存器 (7)3.2.8显示译码器与数码管 (7)第四章软件设计 (8)4.1设计要求 (8)4.2模块及模块的功能 (8)第五章基于FPGA数字频率计的设计与仿真 (14)5.1同步测周期频率计的原理 (14)5.2数字频率计的VHDL实现 (14)5.3频率计的仿真验证 (15)第六章总结与展望 (16)致谢 (17)参考文献 (18)绪论第一章绪论1.1课题研究背景数字频率计是一种基础测量仪器,到目前为止已有30多年的历史,早起设计师们追求的目标主要是扩展测量范围,再加上提高测量的精度、稳定度等,这些也是人们衡量数字频率计的技术水平,决定数字频率计价格高低的主要依据。

基于FPGA的简易数字频率计

基于FPGA的简易数字频率计

基于FPGA的简易数字频率计第一篇:基于FPGA的简易数字频率计EDA 简易数字频计设计性实验 2008112020327 ** 电子信息科学与技术物电电工电子中心2009年5月绘制2008.6.10 湖北师范学院电工电子实验教学省级示范中心电子版实验报告简易数字频率计设计一.任务解析通过对选择题的分析,认为该简易数字频率计应该能达到以下要求:1.准确测出所给的方波信号的频率(1HZ以上的信号)。

2.在显示环节上,应能实现高位清零功能。

3.另外还有一个总的清零按键。

二.方案论证本实验中所做的频率计的原理图如上图所示。

即在一个1HZ时钟信号的控制下,在每个时钟的上升沿将计数器的数据送到缓冲器中保存起来,再送数码管中显示出来。

第2页,共11页湖北师范学院电工电子实验教学省级示范中心电子版实验报告在本实验中,用到过几中不同的方案,主要是在1HZ时钟信号的选择和计数器清零环节上:1.在实验设计过程中,考滤到两种1HZ时钟信号其波形如下图所对于上术的两种波形,可以调整各项参数来产生两种1HZ时钟信号。

最后通过实验的验证发现第二种波形对于控制缓冲器获得数据和控制计数器清零更易实现。

并且,用第二种波形做为时钟信号,可以在很短的高电平时间内对计数器清零,在低电平时间内让计数器计数,从面提高测量的精度。

而用第一种波形则不易实现这个过程。

2.在计数器的清零过程中,也有两个方案,分别是能通过缓冲器反回一个清零信号,另一个是在时钟的控制下进行清零。

最终通过实验发现,用时钟进行清零更易实现。

因为如果用缓冲器反回一个清零信号,有一个清零信号归位问题,即当缓冲器反回一个低电平清零信号时,计数器实现清零,但不好控制让缓器冲的清零信号又回到高电平,否则计数器就一直处于清零状态面不能正常计数了。

三.实验步骤通过上分析后,实验分为以下几步:1.1HZ时钟信号的产生(产生该信号的模块如下):module ones(clk,clkout);input clk;output clkout;parameter parameter N=24000000;n=24;第3页,共11页湖北师范学院电工电子实验教学省级示范中心电子版实验报告reg [n:0]cnt;reg clkout;always @(posedge clk)begin if(cnt==N)else end endmodule begin cnt=0;clkout=1;clkout=0;endend begin cnt=cnt+1;最终产生的信号的波形:2.计数模块。

基于FPGA的数字频率计设计

基于FPGA的数字频率计设计

基于FPGA的数字频率计设计-机电论文基于FPGA的数字频率计设计荆科科(郑州城市职业学院,河南新密452370)【摘要】设计是以FPGA为处理模块,以VHDL做为描述语言。

20MHz的晶振做为主时钟,外部两个按键分别是使能按键和复位按键,便于进行人工控制。

该设计通过直接测量的方法对被测信号的频率进行检测并显示。

详细介绍了系统的各个设计模块,并对调试过程进行说明。

该设计可以做成便携式手持设备用于测量手机中的实时时钟信号频率,还可以对音频信号的频率进行检测。

关键词FPGA;频率计;VHDL;模块设计;元件例化0引言频率计是根据其应用来设计的。

频率计数器最常见的应用是确定发射机和接收机的特性。

发射机的频率必须进行检验和校准,才能符合有关规章制度的要求。

频率计数器能对输出频率和一些关键的内部频率点(如本振)进行测量,查明无线电发射时候是否满足技术指标。

频率计数器的另一些应用包括计算机领域,在此领域中的数据通信、微处理器和显示器中都使用了高性能时钟。

对性能要求不高的应用领域包括对机电产品进行测量。

本设计采用FPGA作为控制核心,利用直接测量法对被测信号的频率进行测量显示。

1 设计要求1)设计4位十进制数字显示的频率计,其频率测量范围为10k—9999kHz;2)要求量程能够自动转换;3)当输入的信号小于10kHz时,输出显示全0;当输入的信号大于9999kHz 时,输出显示全F。

2设计原理本设计利用直接测量法进行测量计算,用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率,也就是周期性的被测信号在单位时间内变化的次数。

计数器是严格按照f=N/T的定义进行测频,其对应的测频原理方框图如图1所示。

工作时间波形如图2所示。

频率计的系统主要由被测信号、计数器电路、锁存器电路、时分复用、译码显示、时钟输入和分频电路组成2.1 整体设计思路本设计以频率为20MHz的晶振作为主时钟,在设计中,需要用到的信号有频率为5Hz的闸门信号,25Hz的按键消抖延时信号以及200Hz的数码管动态显示扫描信号;这三种信号由分频器产生。

毕业设计(论文)-基于FPGA的数字频率计的设计

毕业设计(论文)-基于FPGA的数字频率计的设计

摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得十分重要。

数字频率计是数字电路中的典型应用,是电子测量与仪表技术最基础的电子仪器之一,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

与传统的频率计相比,数字频率计具有精度高、测量范围大、可靠性好等优点。

是频率测量的重要手段之一。

该论文研究基于FPGA的数字频率计的设计,在QuartusII环境中,运用VHDL语言完成数字频率计的设计,并对设计进行综合、编译、仿真。

通过仿真分析,证明该频率计测量结果的正确性。

本文的主要介绍了数字频率计的基本内容和重要性,并对数字频率计的国内外研究现状进行了总结;数字频率计设计开发环境,并对FPGA、QuartusII、VHDL进行了详细介绍对开发流程详细说明;根据实际需要对数字频率计设计方法、方案进行了可行性比较,并对其实现的功能进行了具体要求,对设计模块进行了划分,并定义了每个模块所实现的功能;用VHDL语言编程,具体实现频率计各个模块的功能, 对数字频率计仿真并验证其功能。

关键词: FPGA;QuartusII;VHDL;频率计AbstractIn electronics,frequency is one of the most basic parameters.And it have a close relationship with many measurement program of electrical parameters and measurement results, so the measurement of frequency is very important.Digital frequency meter is a typical applications in digital circuit,and one of the most basic electronic devices in electronic measurement and instrumentation technology.Digital frequency meter is an indispensable measuring instruments for scientific research and production as computers, communications equipment, audio, video. Compared with the conventional frequency counter,digital frequency meter have a high accuracy, measurement range and a good reliability. It is one of important measure for frequency measurement:The thesis research in design of digital frequency meter,FPGA-based. VHDL language is used to complete the design of digital frequency meter in QuartusII,and completed thesis with composited, compiled, simulated. Through simulation and analysis, The results show that the accuracy of measure for the frequency. This article mainly introduces the importance and basic content of digital frequency meter, and current research is summarized .the main tasks and content of this design are summarized.Design and development environment of digital frequency meter are introduced.FPGA, QuartusII and VHDL are described in detail.According to the actual needs of the digital frequency meter, design method and design program are compared to achieve the functions of their specific requirements, and defines the functions of each module to achieve the function.Keywords : FPGA,QuartusII ,VHDL,digital frequency met目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景与意义 (1)1.2 课题目的 (1)1.3 技术指标 (1)第2章FPGA开发相关知识简介 (3)2.1 FPGA的介绍 (3)2.2 FPGA开发环境 (4)软件开发环境——Quartus II的介绍 (4)软件仿真环境——Modelsim的介绍 (5)2.3 硬件描述语言——Verilog HDL (6)2.4 FPGA开发流程 (8)本章小结 (11)第3章频率计的设计方案 (12)3.1 系统的总体设计 (12)3.1.1 设计思路 (12)频率计的基本原理 (12)3.2 数字频率计原理方框图 (13)本章小结 (13)第4章频率计的实现 (14)4.1 时钟信号分频模块的设计 (14)4.2 测频控制信号发生模块的设计 (15)4.3 十进制计数模块的设计 (16)4.4 八位十进制计数模块的设计 (18)4.5 三十二位锁存器模块的设计 (20)4.6 顶层模块的设计 (20)本章小结 (23)结论 (24)致谢 (25)参考文献 (26)附录1 译文 (27)附录2 英文参考资料 (30)第1章绪论1.1 课题背景与意义在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,频率的测量就显得尤为重要,而频率计的研究工作更具有重大的科研意义。

基于FPGA的频率计设计

基于FPGA的频率计设计

1引言1.1课题研究背景和意义频率不管是在学习工作或是在工业生产中经常用到的一种物理量,频率也是和电压电流一样很常见的,例如温度、压力、流量、液位、PH值、振动、位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用数字频率计来测量,以提高精确度。

国际国内通用数字频率计的主要技术参数:足够宽的测量范围。

人们对频率测量的范围的追求是无止境的,在某些特殊的测试场合,要求频率计的测量范围足够宽,随着现代电子技术的发展,特别是高速芯片技术的发展,有些频率计数器能够直接测量。

高精度和高分辨率。

精度是指测量的准确程度,即仪器的读数接近实际信号频率的程度,精度越高测量越准确。

分辨率表明多么小的频率变化可能在仪器上显示出来。

最早的频率计使用纯模拟硬件电路搭建而成,后来发展到由数字硬件电路搭建,再到后来结合可编程器件。

所以频率计可以使用纯硬件实现法,也可以使用纯软件法,亦可使用软硬相结合的实现法。

传统的频率的测量范围,精度受到的限制比较大。

单片机的应用虽然改善了一些不良因素,但是单片机的工作频率也不是很高。

近些年来随着FPGA的发展,这些方面得到了改变。

同以往的可编程器件比较,FPGA的门数范围由几百门到几百万门,FPGA的集成度高,速度快,精度高。

1.2频率计的研究现状与发展趋势从以前的模拟器件设计数字频率计逐步转变为数字芯片设计数字频率计。

这样的转变使得频率计的设计更趋于自动化、智能化。

现在的电子产品主要是采用EDA技术和单片机技术作为核心控制系统,辅以外围电路,制成高端数字化产品。

频率计正是朝着这个方向发展。

在功能上从以前的仅实现单一频率测量扩展到还能测量周期、占空比、脉宽等各种参数指标。

数字技术的不断成熟,使得在一块很小的板子上制作大规模、多功能的电子产品变得非常的容易、方便。

当然,功能的实现是以强大的软件技术做后盾的。

以后的频率计等测量仪器将在编程语言的不断优化下,数字技术的不断完善下实现更多的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词:FPGA芯片、Verilog HDL语言、数字频率计、数字频率计原理图、Quartus II软件。
Abstract:The frequency meter with digital frequency meter is directly in the decimal to display the measured signal of the frequency of a measuring instrument. This design in CPLD device with Verilog HDL on its digital frequency meter frequency measurement system, to be able to use the decimal digital display measured the frequency of the signal, able to measure the sine wave, square wave, triangle wave and the frequency of the signal, but also to other a variety of physical quantity measurement. The advantages of small size, high reliability, low power consumption characteristics. Digital frequency plan is a computer, communication equipment, audio video in scientific research production field indispensable measuring instrument. Based on frequency measurement principle and FPGA design thought, this paper presents a new digital frequencymeasurement system, the design of the system Verilog HDL language, using the top-down design thought, system function will take according to the division of the step by step a hierarchical design method. In the specific implementation, with FPGA for central processor to be measured frequency signal sampling period, by calling the macro Quartus II module occupies emptiescompared calculation.
课 程 设 计 说 路设计
日期:2011年5月30日
摘要:频率计具有数字频率计是直接用十进制来显示被测信号频率的一种测量装置。本设计用Verilog HDL在CPLD器件上实现数字频率计测频系统,能够用十进制数码显示被测信号的频率,能够测量正弦波、方波、三角波等信号的频率,而且还能对其他多种物理量进行测量。具有体积小、可靠性高、功耗低的特点。数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。基于测频原理及FPGA的设计思想,给出了一种新型数字测频系统的设计方案,系统采用Verilog HDL语言,运用自顶向下的设计思想,采取将系统按功能逐层分割的层次化设计方法。在具体实现上,以FPGA为中央处理器对被测频率信号进行周期采样,通过调用Quartus II的宏功能模块进行占空比计算。
1.2
EDA技术的发展经历了一个由浅到深的过程。二十世纪70年代,随着中小集成电路的开发应用传统的手工制图设计印刷电路板和集成电路的方法已无法满足设计精度和效率的要求,因此工程师们开始进行二维平面图形的计算机辅助设计,以便解脱复杂 机械的版图设计工作,这就产生了第一带EDA工具。
到了80年代,为了适应电子产品在规模和制作上的需要,应用出现了计算机仿真和自动布线为核心技术的二代EDA技术。其特点是以软件工具为核心,通过这些软件完成产品开发的设计、分析、生产、测试等各项工作。
Keywords:the FPGA chip, Verilog HDL language, digital cymometer, the digital cymometer account principle diagram andQuartus IIsoftware.
1、
1.1EDA技术的介绍
EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。EDA技术是以计算机为工具,根据硬件描述语言HDL( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。
硬件描述语言HDL是相对于一般的计算机软件语言,如:C、PASCAL而言的。HDL语言使用与设计硬件电子系统的计算机语言,它能描述电子系统的逻辑功能、电路结构和连接方式。设计者可利用HDL程序来描述所希望的电路系统,规定器件结构特征和电路的行为方式;然后利用综合器和适配器将此程序编程能控制FPGA和CPLD部结构,并实现相应逻辑功能的的门级或更底层的结构网表文件或下载文件。目前,就FPGA/CPLD开发来说,比较常用和流行的HDL主要有ABEL-HDL、AHDL和VHDL。
相关文档
最新文档