整数规划及分支定界法概要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解法概述
当人们开始接触整数规划问题时, 常会有如下两种初始想法: 因为可行方案数目有限,因此经过 一一比较后,总能求出最好方案, 例如,背包问题充其量有2n-1种方式; 连线问题充其量有n!种方式;实际 上这种方法是不可行。
设想计算机每秒能比较 1000000个方式,那么要比 较完20!(大于2*1018)种 方式,大约需要800年。比 较完260种方式,大约需要 360世纪。
先放弃变量的整数性要求,解一 个线性规划问题,然后用“四舍五 入”法取整数解,这种方法,只有 在变量的取值很大时,才有成功的 可能性,而当变量的取值较小时, 特别是0-1规划时,往往不能成功。
例3-3 求下列问题:
Max Z=3x1+13x2
s.t.2x1+9x2 40 11x1-8x2 82
D
I(2,4)
B(9.2,2.4)
X1 2 X2 3 X1 6 P X2
P1
P2 P3
X1
3
X1
X2 2
4
P4
7
X2
3
P5
假如放弃整数要求后,用单纯形法 求得最优解,恰好满足整数性要求, 则此解也是原整数规划的最优解。 以上描述了目前解整数规划问题的 两种基本途径。
分枝定界解法 (Branch and Bound Method) 原问题的松驰问题:任何整数规划 (IP),凡放弃某些约束条件(如整数 要求)后,所得到的问题(P) 都称为 (IP)的松驰问题。
解:如果令xi=1表示登山队员携 带物品i,xi=0表示登山队员不携 带物品i,则问题表示成0-1规划:
Max Z= 20x1+15x2 +18x3 +14x4 +8x5 +4x6 +10x7
s.t. 5x1 + 5x2 +2x3 +6x4 +12x5 +2x6 +4x7 25 xi=1或xi=0 i=1,2,….7
x1
假如把可行域分解成五个互不相交的子问题P1 P2 P3 P4 P5之和, P3 P5的定义域都是空集,而放弃 整数要求后P1最优解I(2,4),Z1=58 P2最优解 (6,3),Z2=57 P4最优解(98/11,2),Z4=52(8/11)
x2 5 4 3 2 P1 P2 P4 5 6 7 A8 9 10 x1 1 O 1 2 3 4
例3-2 背包问题( Knapsack Problem) 一个旅行者,为了准备旅行的必须用品,要 在背包内装一些最有用的东西,但有个数限 制,最多只能装b公斤的物品,而每件物品只 能整个携带,这样旅行者给每件物品规定了 一个“价值”以表示其有用的程度,如果共 有n件物品,第j件物品aj公斤,其价值为cj.问 题变成:在携带的物品总重量不超过b公斤 条件下,携带哪些物品,可使总价值最大?
第三章
整数规划
3-1 整数规划问题 整数规划是一类要求变量取整数值 的数学规划,可分成线性和非线性 两类。 根据变量的取值性质,又可以分 为全整数规划,混合整数规划,01整数规划等。
整数规划是数学规划中一 个较弱的分支,目前只能解 中等规模的线性整数规划问 题,而非线性整数规划问题, 还没有好的办法。
例 3-1 :一登山队员做登山准备, 他需要携带的物品有:食品,氧 气,冰镐,绳索,帐篷,照相机 和通讯设备,每种物品的重要性 系数和重量如下:假定登山队员 可携带最大重量为25公斤。
序号
1
2
3
4
5
6
7
物品 食品 氧气 冰镐 绳索 帐篷 相机 设备 重量 重要 系数 5 20 5 15 2 18 6 14 12 8 2 4 4 10
D
B(9.2,2.4)
假如能求出可行域的“整点凸包”(包 含所有整点的最小多边形OEFGHIJ),则 可在此凸包上求线性规划的解,即为原问 题的解。但求“整点凸包”十分困难。
x2 5 4 3 2 1 O 1 2 3 4 5
D J I
I(2,4)
H
G F 6 E 7 A8 9
B(9.2,2.4)
10
解:如果令xj=1表示携带物品j, xj=0表示不携带物品j,则问题表 示成0-1规划:
Max Z = Σcjxj s.t. Σajxj b
xj=0 或1
Baidu Nhomakorabea
数学模型 整数规划(IP)的一般数学模型: Max (min) Z = Σcjxj
s.t. Σaijxj bi(i=1,2,…m)
xj 0且部分或全部是整数
定界:把满足整数条件各分枝的最优目 标函数值作为上(max)(下(min))界, 用它来判断分枝是保留还是剪枝。 剪枝:把那些子问题的最优值与界值比 较,凡不优或不能更优的分枝全剪掉, 直到每个分枝都查清为止。
例5-6 用分枝定界法求解:
Max Z=4x1+3x2
s.t. 3x1+4x2 12
最通常的松驰问题是放弃变量 的整数性要求后,(P)为线性规 划问题。
分枝定界法步骤
一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
若松驰问题无可行解,则原整数 规划问题也无可行解,计算结束。
若松驰问题有最优解,但其各分量不全 是整数,则这个解不是原整数规划的最 优解,转下一步。 从不满足整数条件的基变量中任选 一 个xl进行分枝,它必须满足xl [xl ] 或xl [xl ] +1中的一个,把这两个约束条件加 进原问题中,形成两个互不相容的子问 题(两分法)。
4x1+2x2 9 x1,x2 0 且为整数
用单纯形法可解得相应的松驰问题的最 优解(6/5,21/10),Z=111/10为各 分枝的上界。
分枝:X1 1,x1 2
x2 4 3 2
P1
1 0
1
P2 2
3
4
x1
两个子问题:
(P1)Max Z=4x1+3x2
x1,x2 0,且取整数值
可行域OABD内整数点,放弃整数要求后,最 优解B(9.2,2.4) Z0=58.8,而原整数规划最 优解I(2,4) Z0=58,实际上B附近四个整点 (9,2)(10,2)(9,3)(10,3)都不是原规划最优解。
x2 5 4 3 2 1 O 1 2 3 4 5 6 7 A8 9 10 x1 I(2,4)
相关文档
最新文档