光纤通信原理实验
光纤通信实验报告

光纤通信实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII光纤通信实验报告课程名称光纤通信实验实验一光源的P-I特性、光发射机消光比测试一、实验目的1、了解半导体激光器LD的P-I特性、光发射机消光比。
2、掌握光源P-I特性曲线、光发射机消光比的测试方法。
二、实验器材1、主控&信号源模块、2号、25号模块各一块2、23号模块(光功率计)一块3、FC/PC型光纤跳线、连接线若干4、万用表一个三、实验原理数字光发射机的指标包括:半导体光源的P -I 特性曲线测试、消光比(EXT )测试和平均光功率的测试。
1、半导体光源的P-I 特性I(mA)LD 半导体激光器P-I 曲线示意图半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。
在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。
激光器的电流与电压的关系类似于正向二极管的特性。
该实验就是对该线性关系进行测量,以验证P -I 的线性关系。
P -I 特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th 尽可能小,没有扭折点, P-I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
光纤通信实验报告

光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
光纤近代物理实验报告

一、实验目的1. 了解光纤的基本特性和工作原理。
2. 掌握光纤通信系统的基本组成和信号传输过程。
3. 通过实验,验证光纤通信系统在实际应用中的性能和效果。
二、实验原理光纤通信是一种利用光波在光纤中传输信息的通信方式。
其基本原理是利用光纤的低损耗、高带宽和抗干扰能力,将光信号传输到远距离。
1. 光纤的特性:光纤具有低损耗、高带宽、抗干扰、耐高温等优点。
光纤分为单模光纤和多模光纤,其中单模光纤传输距离远,但成本较高;多模光纤传输距离较短,但成本较低。
2. 光纤通信系统的组成:光纤通信系统主要由发射机、光纤、接收机和终端设备组成。
发射机将电信号转换为光信号,通过光纤传输,接收机将光信号转换为电信号,终端设备对信号进行处理。
3. 信号传输过程:信号传输过程主要包括信号调制、传输和接收。
调制是将电信号转换为光信号的过程;传输是将光信号通过光纤传输到接收端的过程;接收是将光信号转换为电信号的过程。
三、实验仪器1. 光纤通信实验装置2. 发射机3. 接收机4. 光纤5. 双踪示波器6. 光功率计四、实验内容1. 光纤传输特性测试(1)测量光纤的损耗:通过测量不同距离的光功率,计算光纤的损耗。
(2)测量光纤的带宽:通过改变输入信号的频率,测量光纤的带宽。
(3)测量光纤的反射损耗:通过测量光纤的反射系数,计算光纤的反射损耗。
2. 光纤通信系统性能测试(1)测试光纤通信系统的误码率:通过发送一定数量的误码,计算误码率。
(2)测试光纤通信系统的传输速率:通过测量传输数据的时间,计算传输速率。
(3)测试光纤通信系统的稳定性:通过长时间观察系统性能,判断系统的稳定性。
五、实验步骤1. 搭建光纤通信实验装置,连接好各部分设备。
2. 进行光纤传输特性测试,记录相关数据。
3. 进行光纤通信系统性能测试,记录相关数据。
4. 分析实验数据,得出结论。
六、实验结果与分析1. 光纤传输特性测试结果(1)光纤损耗:在1km距离内,光纤的损耗约为0.3dB/km。
华北电力大学科技学院光纤通信原理实验报告

科技学院课程设计(综合实验)报告( 2020-- 2021 年度第 2学期)名称:光纤通信原理综合实验院系:信息工程系班级:学号:学生姓名:指导教师:杨再旺王劭龙设计周数:1周成绩:日期:2021年6月实验名称实验一: LED的P-I 特性测量实验仪器光功率计、光纤、直流电流源、LED光源同组人实验目的测量数据,描画LED光源PI特性曲线,求出阈值电流实验原理半导体发光二极管的P-I特性曲线理论上是输出功率与注入电流成正比实验内容与步骤实验内容:使用光功率计和LED光源,在温度一定的情况下(保持实验室温度:20℃),通过改变直流电流来观察输出功率的变化,从而绘出P-I特性曲线。
实验步骤:1.用光纤把光功率计和激光器连接,通电。
2.保持温度为定值3.改变电流的数值观察功率计变化4.绘图实验数据:讨论与结论在老师指导下完成本次实验,在记录数据的时候由于机器灵敏度太高而测得的数据不是很准确,但是在误差允许的范围内画出了特性曲线,跟理论结果差不多。
实验名称实验二:光纤通信系统的码型变换、波分复用器的性能测量实验仪器光纤通信原理实验箱、示波器、光功率计,波分复用解复用器同组人实验目的记录CMI编译码波形记录测量波分复用解复用器插损和隔离度实验原理CMI编码原理:CMI编码的编码规则是:用交替的"11"和"00"两位表示基带中的一位"1";用"01"表示基带中的一位"0"。
波分复用器性能实验原理:光波分复用器是对光波波长进行分离与合成的光器件,其原理如图所示,其中的一个端口作为器件的输出/输入端,而N个端口作为器件的输入/输出端。
当作为对光波波长起合成作用的器件时,从N个端口各自注入不同波长的光信号,在一个端口处将获得按一定光波波长顺序分开的光波信号;当器件作为解复用器时,注入到入射端的各种光波信号,将分别根据其波长的不同,传输到对应的不同出射端口(N个端口之一).由以上分析可以知道,各端口可以作为输入端口,也可以作为输出端口.实 验 内容 与步骤CMI 编码:1.连接线路,连接示波器 2.分别观察记录原始波形、cmi 编码和译码后的波形。
光纤信号传输实验报告

光纤信号传输实验报告光纤信号传输实验报告引言:随着科技的不断进步,光纤通信作为一种高速、大容量、低损耗的传输方式,已经成为现代通信领域的重要组成部分。
本实验旨在通过搭建光纤传输系统,探究光纤信号传输的原理和性能。
一、实验目的本实验的主要目的有三点:1.了解光纤传输的基本原理和结构;2.掌握光纤传输系统的搭建和调试方法;3.研究光纤传输的性能指标,如传输距离、带宽等。
二、实验器材和原理1.实验器材:本实验所需的器材包括:光纤、光纤收发器、光源、光功率计、信号发生器等。
2.实验原理:光纤传输是利用光的全内反射原理,将信息通过光的折射和反射在光纤中传输的技术。
光纤由芯和包层组成,芯是光信号传输的主要通道,包层则用于保护和引导光信号。
光纤传输的基本原理是利用光的全内反射现象,当光线从光纤的一端入射时,当入射角小于临界角时,光线会发生全内反射,从而沿着光纤传输。
光纤传输的距离和传输质量受到多种因素的影响,如光纤的损耗、色散、衰减等。
三、实验步骤1.搭建光纤传输系统:首先,将光纤收发器分别连接到光源和光功率计上,然后将光纤的一端连接到光纤收发器的发射端,另一端连接到接收端。
接下来,将信号发生器连接到光源上,通过调节信号发生器的频率和幅度,产生不同的信号。
2.调试光纤传输系统:通过调节光源和光功率计之间的距离,观察光功率计的读数变化,确定最佳传输距离。
同时,通过调节信号发生器的参数,观察信号的传输质量,如是否出现失真、噪声等现象。
3.测量光纤传输性能:利用光功率计测量光纤传输系统的光功率损耗,通过改变传输距离和光纤的类型,比较不同条件下的光功率损耗情况。
此外,还可以利用频谱分析仪测量光纤传输的带宽,了解光纤传输系统的传输能力。
四、实验结果与分析通过实验,我们得到了以下结果:1.在调试光纤传输系统时,我们发现光功率计的读数随着光源和光功率计之间的距离增加而减小,当距离过远时,光功率计无法读取到信号,说明光纤传输存在传输距离限制。
光纤通信实验

实验地点:信息楼10314在实验过程中注意以下几点:1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。
2、光电器件是静电敏感器件,请不要用于触摸。
3、做完实验后请将光纤用相应的防尘帽罩住。
4、在使用信号连接导线时应捏住插头的头部进行插拔,切勿直接拽线。
5、不能带电进行信号连接导线的插拔!6、光纤器件属易损件,应轻拿轻放,插光纤的时候要先对准,用力要轻,切忌倾斜、用力过大或弯折。
7、实验完成后整理好设备、接线。
实验光接收机的动态范围及眼图观测一、实验目的1.了解光收端机动态范围的指标要求。
2.掌握光收端机眼图的观测方法。
二、实验内容1.了解光收端机眼图的观测方法。
2.用示波器观察眼图。
三、实验仪器1.光纤通信实验系统1台。
2.示波器1台。
3.万用表1部。
4.光纤跳线1根。
四、实验原理(一)动态范围在实际的光纤通信线路中,光接收机的输入光信号功率是固定不变的,当系统的中继距离较短时,光接收机的输入光功率就会增加。
一个新建的线路,由于新器件和系统设计时考虑的富余度也会使光接收机的输入光功率增加。
为了保证系统的正常工作,对输入信号光功率的增加必须限制在一定的范围内,因为信号功率增加到某一数值时将对接收机性能产生不良影响。
在模拟通信系统中,输入信号过大将使放大器超载,输出信号失真,降低信噪比。
在数字通信系统中,当输入信号功率增加到某一数值时,将使系统出现误码。
应该指出,在 数字通信系统中,放大器输出信号的失真在测试时应与模拟系统区别开来。
为了保证数字通信系统的误码特性,光接收机的输入光信号只能在某一定范围内变化, 光接收机这种能适应输入信号在一定范围内变化的能力称为光接收机的动态范围,它可以表 示为:D = 10lg —max(dB )min 式中,Pmax 是光接收机在不误码条件下能接收的最大信号平均光功率;Pmin 是光接收 机的灵敏度,即最小可接收光功率。
一般来说,要求光接收机的动态范围大一点较好,但如 果要求过大则会给设备的生产带来一些困难。
光纤传输实验报告(共8篇)

光纤传输实验报告(共8篇)
1. 实验目的
通过本次实验,我们的目的是了解光纤传输的基本原理、结构和特点,并熟悉光纤通信系统的构成,掌握光纤传输实验的基本操作和注意事项。
2. 实验器材和材料
主要器材有:激光器、偏振器、光纤发射机、光纤接收机、光功率计、光纤、电缆等。
主要材料有:测试记录表格、实验手册等。
3. 实验原理
光纤传输是指利用光纤作为信号传输中介的通信方式。
光纤是一种用玻璃、塑料、石英等物质制成的细长、柔韧可弯曲的导光体,通过对光的全内反射来实现信号的传输。
在光纤传输中,激光作为载荷被发射机转换成光信号,经过光纤的传播和干扰、衰减和扩散、噪声和失真等影响后,到达接收机进行解码并转换为电信号输出。
4. 实验步骤
(1)接通设备并拟定实验计划:先接通激光器、光纤发射机和光纤接收机等设备,确定实验计划和实验要求。
(2)调整偏振器和测试光功率:首先需要调整偏振器并测量测试光功率,确保光信号的输出和传输。
(3)连接光纤并测试网络质量:将光纤连接到发射机或接收机并测试网络质量,计算信号的传输速度和误码率等参数。
(4)记录数据并分析结果:将实验过程中的数据记录下来,并进行数据分析和统计,得出结论并进行总结。
5. 实验注意事项
(1)实验操作时需严格遵守操作规程和安全规范,避免任何不必要的事故和安全隐患。
(2)实验时需认真检查设备连接,确保连接正确和稳定,以免出现信号的传输失败和误差。
(3)实验过程中需注意环境干扰和噪声干扰,以免影响实验结果和数据测量的准确性。
(4)实验结束后需及时关闭设备并整理实验器材、材料、记录表格等,保持实验室的整洁和安全。
光纤通信实验指导书含原理

实验1 电光、光电转换传输实验一、实验目的1.了解本实验系统的基本组成结构;2.初步了解完整光通信的基本组成结构;3.掌握光通信的通信原理。
二、实验仪器1.光纤通信实验箱2.20M双踪示波器3.FC-FC单模尾纤 1根4.信号连接线 2根三、基本原理本实验系统重要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接受两子部分,光信道又可分为光发射端机、光纤、光接受端机三个子部分。
实验系统基本组成结构(光通信)如下图所示:图1.2.1 实验系统基本组成结构在本实验系统中,电发射部分可以是M 序列,可以是各种线路编码(CMI 、5B6B 、5B1P 等),也可以是语音编码信号或者视频信号等,光信道可以是1550nmLD+单模光纤组成,可以是1310nm 激光/探测器组成,也可以是850nmLED+多模光纤(选配)组成。
本实验系统中提供的1550nmLD 光端机是一体化结构,光端机涉及光发射端机TX (集成了调制电路、自动功率控制电路、激光管、自动温度控制等),光接受端机RX (集成了光检测器、放大器、均衡和再生电路)。
其数字电信号的输入输出口,都由铜铆孔开放出来,可自行连接。
一体化数字光端机的结构示意图如下:图1.2.2 一体化数字光端机结构示意图四、实验环节1. 关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm 的光信道),注意收集好器件的防尘帽。
2. 打开系统电源,液晶菜单选择“码型变换实验—CMI 码PN ”。
确认,即在P101铆孔输出32KHZ 的15位m 序列。
3. 示波器测试P101铆孔波形,确认有相应的波形输出。
4. 用信号连接线连接P101、P203两铆孔,示波器A 通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度,最大不超过P204光接受输入光发射输出5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信原理实验
一、实验目的:
1、了解光纤通信系统的工作原理;
2、了解光纤通信的基本特点;
3、通过波分复用解复用器件(WDM)实现双波长单纤单向音频视频通信传输;
二、光纤通信的发展过程:
到了20世纪中页,出身上海的英藉华人高锟(K.C.Kao)博士,通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想。
他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传输。
并大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000分贝降低到20分贝/公里,从而有可能用于通信。
从此揭开了光纤通信的帷幕。
光纤通信的发展过程如表1所示。
三、光纤通信优点:
1.光波频率很高,光纤传输的频带很宽,故传输容量很大,理论上可通上亿门话路或上万套电视,可进行图像、数据、传真、控制等多种业务;目前的通信材料主要电缆、波导管、微波和光缆,电缆、波导管、微波和光缆通信容量的对比如表2所示。
可以看出光缆的通信容量远远大于其它的通信材料。
表2电缆、波导管、微波和光缆通信容量的对比
2.不受电磁干扰,保密性好;损耗小,中继距离远。
光纤是由非金属的石英介质材料构成的,它是绝缘体,不怕雷电和高压,不受电磁干扰,甚至包括太阳风暴也影响不到光纤通信,2000年6月8日的太阳风暴,差点使俄罗斯的一颗导航卫星失去方向。
太阳风暴还会造成人造卫星的短路,许多靠卫星传播的通信业务可能因此停顿。
1998 年5月,美国银河4号卫星因受太阳风暴影响而失灵,造成北美地区80%的寻呼机无法使用,金融服务陷入脱机状态,信用卡交易也中断了,有试验表明,在核爆炸发生时,地球上所有的电通信将中断,而唯有光通信几乎不受影响;光纤中传输的是频率很高的光波,而各种干扰的频率一般都比较低,所以它不能干扰频率比它高的多的光波。
打个比方说,光纤中的光波好比是在万丈高空飞行的飞机,任凭地上行驶的火车、汽车如何得多,也不会影响到它的飞行。
3.光纤材料来源丰富,可节约大量有色金属(如铜、铝),且直径小、重量轻。
相同话路的光缆要比电缆轻90%~95%(光缆重量仅为电缆重量的十分之一到二十分之一),而直径不到电缆的五分之一。
通21000话路的900对双绞线,其直径为3英寸,重量为8 吨/公里;通讯量为其十倍的光缆,直径仅0.5英寸,重量仅450磅/公里。
4.耐高温、高压、抗腐蚀,工作可靠等等优点就不一一罗列了。
四、光纤通信的原理:
光纤通信系统的工作原理如图1所示:
图1 光纤通信系统的工作原理
光纤通信系统主要由光发送、光传输、光接收三大部分组成。
光发送部分主要包括电端机、光发送机等部分。
电端机的作用是对来自信息源的电信号进行处理,如模数转换和多路复用等处理。
光发送机由驱动器和光源组成,其作用是把光端机送来的信号对光源进行调制,使光源产生与电信号相对应的光信号进入光纤。
光传输部分主要由光纤和光中继器组成。
光纤是光纤通信系统的主要组成部分,它的特性好坏将对光纤通信系统产生很大的影响。
光中继器的作用是对经过光纤传输后衰减了的光信号进行放大和再生,使之能够继续向前传输,达到长距离通信的目的。
光接收部分主要由光接收机和电端机构成。
光接收机含光检测器和放大器,从光纤中传输来的已调光波信号到达光检测器,由光检测器将光信号解调为相应的电信号,再经放大器后进入电端机。
此处的电端机实现发送部分的电端机相反的功能,如数模转换和光波解复用等处理。
五、数字光纤通信系统
按传输信号的类型分,光纤通信系统可分为模拟光纤通信系统和数字光纤通信系统。
模拟光纤通信系统将模拟信号不经过任何调制而直接去调制光源,它是光通信系统中设备最简单、成本最低的一种光纤通信系统。
但是,这种直接光强调制方式的光纤通信系统对光/电和电/光转换的线性度要求较高。
由于目前电光转换的光源及光电转换的光探测器只在小信号下工作才具有较好的线性度,对于大信号有较大的非线性失真,这使得模拟光纤通信只适用于小容量、短距离的光纤通信。
目前的光纤通信系统中绝大多数采用数字方式的光纤通信。
在数字光纤通信系统中,模拟信号经过采样、量化及编码后被转换成数字信号(如PCM信号),再经过光发送机输入到光纤,由光纤传输至接收器,最后由数模(D/A)转换器将数字信号转换成原始的模拟信号。
其原理框图如图2所示。
与模拟光纤通信相比,数字光纤通信具有传输稳定、抗干扰能力强、效率高等优点。
六、WDM的基本概念和系统基本构成
光波分复用(WDM:Wavelength Division Multipxing)技术,是在一根光纤中同时传输多波长光信号的一项技术。
其基本原理是在发送端将不同波长的光信号
组合复用,并耦合到光缆线路上的同一根光纤中进行传输;在接收端又将组合波长的光信号分解,并作进一步处理,恢复出原信号后送入不同的终端。
图2 数字光纤通信系统原理框图
WDM将光纤的可用波段分成若干小信道,每个信道对应一波长,使单波长传输变成多波长同时传输,从而大大增加光纤的传输容量,不同波长载有不同信号。
WDM系统的基本构成主要有两种形式:一是双纤单向传输;二是单纤双向传输。
前者在开发和应用方面比较广泛,但使用的光纤和线路放大器的数量要多;后者在设计和应用时必须考虑几个关键的系统因素,如抑制干扰、双向隔离和双向放大器等。
七、WDM的主要特点
1、增大传输带宽,提高传输容量
WDM技术充分利用光纤的巨大带宽资源(低损耗波段),使一根光纤的传输容量比单波长传输增加几倍至几十倍,从而降低成本,具有很大应用价值,在很大程度上解决了传输带宽问题。
2、传输多种不同类型信号
由于WDM技术使用的各信号波长彼此独立,因而可以传输特性完全不同的信号,完成各种通信业务的合成与分解,包括数字信号和模拟信号,以及准同步数字序列(PDH)信号和同步数字序列(SDH)信号,实现多媒体信号(视频、音频、数据、文字、图像等)的传输。
4、多种网络应用形式
根据不同的需求,WDM技术可有很多种应用形式,如长途干线网络、广播式分配网络、多路多址局域网络应用等。
5、扩充网络容量、减少投资
对已建光纤通信系统扩容方便,只要原系统的功率富余度较大,进一步增容不必大动。
不用敷设更多的光纤线路,也无须使用高速率的网络部分,只要更换光端机就可扩充网络容量。
6、组网灵活可靠
可在网络节点使用光分插复用器(OADM)直接上下光波长信号,或使用光交叉连接设备(OXC)对光波长直接进行交叉连接,组成具有高灵活性、高可靠性、高生存性的全光网络。
7、实用高效、性能优良
业已成熟的掺饵光纤放大器(EDFA)技术在特定的频带内,无须进行光电转换就可直接放大光波信号,这为高密度波分复用传输系统的应用提供了最佳扩展空间。
8、IP的传送通道
波分复用通道对数据格式是透明的,与信号速率及电调制方式无关。
通过增加一个附加波长即可引入想要的宽带新业务或新容量,如IP over WDM技术。
9、降低器件的超高速要求
随着传输速率的不断提高,许多光电器件的响应速度已明显不足。
使用WDM 技术可降低对一些器件在性能上的极高要求,同时又可实现大容量传输。
八、通过WDM实现双波长单纤单向音频视频通信传输
1、实验装置:
本实验仪器由光纤发射/接收仪、收音机、WDM、光纤跳线、摄像头、音箱及监视器等组成。
2、实验内容和步骤
构建WDM单向传输系统,用DWM实现单纤单向视频、音频传输。
图3双波长单纤单向波分复用通信系统
a、按上原理图将CCD摄像头的信号输出及收音机的信号输出分别连接到光纤通信发射端的1310nm和1550nm(任选)激光载波对应的信号输入端。
b、将WDM的1310nm/1550nm端分别接到波分复用与解复用盒子双光纤连接头上(双链接头一端),再用两根光纤跳线,一端分别连接光纤通信发射仪的1310nm和1550nm激光光源上,另一端分别连接WDM波分复用盒子上对应波长的接头上。
将WDM的合光端分别接到波分复用与解复用盒子单纤光纤连接头上,用跳线分别连接WDM的波分复用与解复用盒子单纤光纤连接头上,再用两根跳线,它们一端分别连接光纤通信接收仪的1310nm和1550nm光纤连接头上,另一端分别连接WDM波分解服用盒子上对应波长的连接头上。
c、光纤通信接收仪的1310nm信号输出接至监视器的视频输入;1550nm的信号输出接至的音箱上。
a、开启各部分的电源,观察监视器上的图像及倾听声音。
e、关机。
九、实验报告和内要求
1、简述光纤通信的原理。
2、测量波分复用解复用器件的隔离度、串扰及插入损耗。
3、简述用波分复用解复用器件(WDM)实现单纤单向视频、音频传输的原理及操作过程。