(文章)全等三角形中的探索题型
苏科版八年级数学上册《1章 全等三角形 1.3 探索三角形全等的条件 “ASA”》公开课教案_9
1.3 探索三角形全等的条件(4)预习目标1.经历探索三角形全等“角角边”条件的过程,体会通过操作、归纳获得数学结论的过程.2.掌握三角形全等的“角角边”条件,并能运用“角角边”判定两个三角形全等.3.能够进一步结合具体问题和情境进行有条理的思考和简单的推理证明.4.进一步学会文字语言、符号语言和图形语言的表达和相互转化.教材导读1、练一练已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.2、提问:你有什么发现?阅读教材P19~P20内容,回答下列问题:三角形全等的条件——“角角边”两_______分别相等且其中一组_______的对边相等的两个三角形全等(简写成“角角边”或“_______”).符号语言:如上图在△ABC和△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).热身练习1 .如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件___________;根据“AAS”,那么补充的条件为____________,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?做一做1、已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.变化一下怎么做?(1)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中∠A和∠A'的角平分线.求证:AD=A'D'.(2)已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'的BC和B'C'边上的中线.求证:AD=A'D'.小结这节课你学到了什么?课后作业1.如图,∠1=∠2,∠3=∠4,则图中全等的三角形有_____________________.2.如图,∠BAC=∠ABD,请你添加一个条件:_______,使OC=OD(填一个即可).3.如图,AD∥BC,∠A=90°,以点B为圆心,BC的长为半径作弧,交射线AD与点E,连接BE,过点C作CF ⊥BE,垂足为F.求证:AB=FC.4.如图,AC、BD互相平分于点O,过点O的直线分别交AB、CD于点E、F,那么OE 与OF相等吗?为什么?。
2019年中考数学《探索三角形全等的条件》专题练习含答案
探索三角形全等的条件(A卷)一、选择题:1、下列说法中正确的个数为 ( )(1)所有的等边三角形都全等 (2)两个三角形全等,它们的最大边是对应边(3)两个三角形全等,它们的对应角相等 (4)对应角相等的三角形是全等三角形A.1B.2C.3D.42、下列说法中,错误的是 ( )A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等3、在△ABC和△A′B′C′,如果满足条件( ),可得△ABC≌△A′B′C′。
A.AB=A′B′,AC=A′C′,∠B=∠B′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′4.如图1所示,已知AB=CD,AD=CB,AC、BD相交于O,则图中全等三角形有 ( )A.2对B.3对C.4对D.5对O (1)D CB A(2)EDCBA321(3)FEDCBA5、不能使两个直角三角形全等的条件是()A.一条直角边及其对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等6、如图2所示,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,结果AC=3cm,那么AE+DE=()A.2cmB.3cmC.4cmD.5cm7、如图3所示,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,则下面式子不能成立的是()A.DE=DCB.DE⊥ACC.∠CAB=30°D.∠EAF=∠ADF8、具备下列条件的两个三角形,可以证明它们全等的是()A.一边和这边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的叙边对应相等9.△ABC中,AC=5,中线AD=7,,则AB边的取值范围是()A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<1910.下列三角形中,能全等的是( )(1)一腰和顶角对应相等的两个等腰三角形; (2)一腰和一个角分别相等的两个等腰三角形;(3)有两边分别相等的两个直角三角形; (4)两条直角边对应相等的两个直角三角形。
6 探索全等三角形的条件(1)-边角边(SAS)(拓展提高)(解析版)
专题1.6 探索全等三角形的条件(1)-边角边(SAS )(拓展提高)一、单选题1.如图所示,在△ABC 中,∠ACB =90°,CD 平分∠ACB ,在BC 边上取点E ,使EC =AC ,连接DE ,若∠A =50°,则∠BDE 的度数是( )A .10°B .20°C .30°D .40°【答案】A 【分析】先由直角三角形的性质得∠B =90°﹣∠A =40°,再证△CDE ≌△CDA (S A S ),得∠CED =∠A =50°,然后由三角形的外角性质即可得出答案.【详解】∵∠ACB =90°,∠A =50°,∴∠B =90°﹣∠A =40°,∵CD 平分∠ACB ,∴∠ECD =∠ACD ,在△CDE 和△CDA 中,EC AC ECD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△CDA (S A S ),∴∠CED =∠A =50°,又∵∠CED =∠B +∠BDE ,∴∠BDE =∠CED ﹣∠B =50°﹣40°=10°,故选:A .【点睛】本题考查了全等三角形的判定与性质.2.如图所示,AD 是ABC ∆的边BC 上的中线,5AB =cm ,4=AD cm ,则边AC 的长度可能是( )A .3cmB .5cmC .14cmD .13cm【答案】B 【分析】延长AD 至M 使DM =AD ,连接CM ,根据SAS 得出≅ADB MDC ,得出AB =CM =4cm ,再根据三角形的三边关系得出AC 的范围,从而得出结论;【详解】解:延长AD 至M 使DM =AD ,连接CM ,∵AD 是ABC ∆的边BC 上的中线,∴BD =CD ,∵∠ADB =∠CDM ,∴≅ADB MDC ,∴MC =AB =5cm ,AD =DM =4cm ,在AMC 中,3<AC <13,故选:B【点睛】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC 长度的取值范围是解题的关键.3.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【分析】由已知可得△ABC ≌△ADE ,故有∠BAC =∠DAE ,由∠EAB =120°及∠CAD =10°可求得∠AFB 的度数,进而得∠GFD 的度数,在△FGD 中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF 的度数.【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△ADE (SAS )∴∠BAC =∠DAE∵∠EAB =∠BAC +∠DAE +∠CAD =120°∴∠BAC =∠DAE ()112010552=⨯︒-︒=︒ ∴∠BAF =∠BAC +∠CAD =65°∴在△AFB 中,∠AFB =180°-∠B -∠BAF =90°∴∠GFD =90°在△FGD 中,∠EGF =∠D +∠GFD =115°故选:C【点睛】本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC 的度数.4.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等; ②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A.①②B.①③C.①③④D.①④⑤【答案】C【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.【详解】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.5.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3【答案】D 【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.6.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n +【答案】C 【分析】根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n 个图形中全等三角形的对数.【详解】解:∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .在△ABD 与△ACD 中,AB=AC ,∠BAD=∠CAD ,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.二、填空题7.如图所示,点O为AC的中点,也是BD的中点,那么AB与CD的关系是________.【答案】平行且相等【分析】只需要证明△AOB≌△COD,根据全等三角形的性质和平行线的判定定理即可得出结论.【详解】解:∵点O为AC的中点,也是BD的中点,∴AO=OC,BO=OD,又∵∠AOB=∠DOC,∴△AOB≌△COD(SAS)∴AB=CD,∠A=∠C,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【点睛】本题考查全等三角形的性质和判定,平行线的判定定理.掌握全等三角形的判定定理是解题关键.8.在ABC ∆中,AD 是BC 边上的中线,若7,5AB AC ==,则AD 长的取值范围是_________.【答案】16AD <<【分析】利用中线的性质,作辅助线AD=DE ,构造全等三角形()ADB EDC SAS ≅,再有全等三角形对应边相等的性质,解得7CE AB ==,最后由三角形三边关系解题即可.【详解】如图,AD 为BC 边上的中线,延长AD 至点E ,使得AD=DE在△ADB 和△EDC 中BD DC ADB CDE AD DE =⎧⎪∠=∠⎨⎪=⎩()ADB EDC SAS ∴≅7CE AB ∴==CE AC AE AC CE -<<+75275AD ∴-<<+16AD ∴<<故答案为:16AD <<.【点睛】本题考查三角形三边的关系,其中涉及全等三角形的判定与性质等知识,是重要考点,掌握相关知识、正确作出辅助线是解题的关键.9.如图,在ABC 中,,90AC BC ACB =∠=︒,点D 是BC 上的一点,过点B 作//BE AC ,使BE CD =,连接CE 与AD 相交于点G ,则AD 与CE 的关系是_______________.【答案】AD ⊥CE ,AD =CE【分析】证明△ACD ≌△CBE ,得到∠CAD =∠BCE ,AD =CE ,结合∠ACB =90°,可得∠CGD =90°,从而可得结果.【详解】解:由题意可知:∵∠ACB =90°,BE ∥AC ,∴∠ACB =∠EBC =90°,在Rt △ACD 和Rt △CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (SAS ),∴∠CAD =∠BCE ,AD =CE ,∵∠CAD +∠CDA =90°,∴∠CDA +∠BCE =90°,∴∠CGD =180°-(∠CDA +∠BCE )=90°,∴AD ⊥CE ,综上:AD ⊥CE ,AD =CE ,故答案为:AD ⊥CE ,AD =CE .【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明△ACD ≌△CBE ,得到角和线段之间的相等关系.10.如图,在ABC 中,90B ∠>︒,CD 为ACB ∠的角平分线,在AC 边上取点E ,使DE DB =,且90AED ∠>︒,若A x ∠=︒,ACB y ∠=︒,则AED =∠_______.(用x 、y 的代数式表示)【答案】180°-x°-y° 【分析】在AC 上截取CF =BC ,根据全等三角形的性质可得BD =DF =DE ,可得∠AED =∠ABC ,根据三角形的内角和可求解.【详解】解:如图,在AC 上截取CF =BC ,∵CD 为∠ACB 的角平分线,∴∠ACD =∠BCD ,∵CF =BC ,∠ACD =∠BCD ,CD =CD ,∴△BDC ≌△FDC (SAS ),∴∠ABC =∠CFD ,DF =BD ,∵BD =DE ,∴DE =DF ,∴∠DEF =∠DFE ,∴∠AED =∠CFD ,∵∠A =x°,∠ACB =y°,∴∠ABC =180°-∠A -∠ACB =180°-x°-y°,∴∠AED =∠DBC =180°-x°-y°,故答案为:180°-x°-y°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,添加恰当辅助线构造全等三角形是解本题的关键.11.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.【答案】=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.【答案】12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD==+=;故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 13.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.【答案】1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.14.如图,△P AB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△P AB与△PCD的面积之差为_____.【答案】10【分析】由“SAS”可证△APC≌△BPD,可得S△APC=S△BPD,由面积和差关系可求解.【详解】解:∵△P AB与△PCD均为等腰直角三角形,∴PC=PD,∠APB=∠CPD=90°,AP=BP,∴△APC≌△BPD(SAS),∴S△APC=S△BPD,∵S△APB﹣S△PCD=S△APC+S△ABC﹣(S△BPD﹣S△BCD),∴S△APB﹣S△PCD=S△BCD+S△ABC=10,故答案为:10.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△APC≌△BPD是本题的关键.三、解答题15.如图所示,AC BC ⊥,DC EC ⊥,垂足均为点C ,且AC BC =,EC DC =.求证:AE BD =.【答案】见解析【分析】根据SAS 证明ACE BCD △≌△即可.【详解】证明:∵AC BC ⊥,DC EC ⊥,∴90ACB ECD ∠=∠=︒∴ACB BCE ECD BCE ∠+∠=∠+∠即ACE BCD ∠=∠在ACE 和BCD △中AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩∴()SAS ACE BCD ≌△△ ∴AE BD =【点睛】此题主要考查了全等三角形的判定与性质,证明ACE BCD ∠=∠是解答此题的关键. 16.如图,点B ,E ,C ,F 在一条直线上,//,,AB DE AB DE BE CF ==.求证:A D ∠=∠.【答案】证明见解析【分析】根据平行得出B DEF ∠=∠,然后用“边角边”证明ABC DEF △≌△即可.【详解】证明:∵//AB DE ,∴B DEF ∠=∠.∵BE CF =,∴BE EC CF EC +=+.∴BC EF =.在ABC 和DEF 中,,,,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△.∴A D ∠=∠.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.17.如图,四边形ABCD 的对角线交于点O ,点E 、F 在AC 上,//DF BE ,且DF BE =,AE CF =.求证:AB CD =,且//AB CD .【答案】见解析【分析】根据已知条件可证得ABE CDF △≌△,从而由全等三角形的性质可得要证的结论.【详解】//DF BEBEO DFO ∴∠=∠AEB CFD ∴∠=∠又DF BE =∵,AE CF =ABE CDF ∴△≌△AB CD ∴=,BAE DCF ∠=∠//AB CD ∴【点睛】本题考查了三角形全等的的判定的性质,关键是得出AEB CFD ∠=∠.18.如图,BD ,CE 分别是ABC 的边AC 和AB 边上的高,点P 在BD 的延长线上,点Q 在CE 上,BP AC =,CQ AB =,请说明AQ 与AP 的关系.【答案】AP =AQ 且AP ⊥AQ【分析】由于BD AC ⊥,CE AB ⊥,可得ABD ACE ∠=∠,又由对应边的关系,进而得出ABP QCA ∆≅∆,即可得出AQ=AP .在此基础上,可证明90PAQ ∠=︒.【详解】解:证明:BD AC ⊥,CE AB ⊥(已知),90BEC BDC ∴∠=∠=︒,90ABD BAC ∴∠+∠=︒,90ACE BAC ∠+∠=︒(直角三角形两个锐角互余),ABD ACE ∴∠=∠(等角的余角相等),在ABP ∆和QCA ∆中,BP AC ABD ACE CQ AB =⎧⎪∠=∠⎨⎪=⎩()ABP QCA SAS ∴∆≅∆,∴=AP AQ .ABP QCA ∆≅∆,CAQ P ∴∠=∠,BD AC ⊥,即90P CAP ∠+∠=︒,90CAQ CAP ∴∠+∠=︒,即90QAP ∠=︒,AP AQ ∴⊥.【点睛】本题主要考查了全等三角形的判定及性质问题,能够熟练掌握并运用.19.平面上有ACD △与,BCE AD 与BE 相交于点,P AC 与BE 相交于点,M AD 与CE 相交于点N ,若,,AC BC CD CE ECD ACB ==∠=∠.(1)求证:≌ACD BCE ;(2)55,145ACE BCD ∠=︒∠=︒,求BPD ∠的度数.【答案】(1)证明见解析;(2)∠BPD =140°.【分析】(1)利用SAS 证明△ACD ≌△BCE 即可;(2)由全等三角形的性质可知:∠A =∠B ,再根据已知条件和四边形的内角和为360°,即可求出∠BPD 的度数.【详解】解:(1)证明:∵∠ACB =∠ECD ,∠ACE =∠ACE ,∴∠BCE =∠ACD ,在△ACD 和△BCE 中,AC BC BCE ACD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(2)∵△ACD ≌△BCE ,∴∠A =∠B ,∠BCE =∠ACD ,∴∠BCA =∠ECD ,∵∠ACE =55°,∠BCD =155°,∴∠BCA +∠ECD =100°,∴∠BCA =∠ECD =50°,∵∠ACE =55°,∴∠ACD =105°∴∠A +∠D =75°,∴∠B +∠D =75°,∵∠BCD =145°,∴∠BPD =360°-75°-145°=140°.【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.20.(1)如图1,一扇窗户打开后,用窗钩AB将其固定,这里所运用的几何原理是:;(2)如图2,小河的旁边有一个甲村庄所示,现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:(3)如图3,在新修的小区中,有一条“Z”字形长廊ABCD,其中AB∥CD,在AB,BC,CD三段长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.【答案】(1)三角形具有稳定性;(2)见解析,垂线段最短;(3)合理,见解析【分析】(1)根据三角形的稳定性解答;(2)根据垂线段最短解答;(3)首先证明△MEB≌△MFC,根据全等三角形的性质可得ME=MF.【详解】解:(1)一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形具有稳定性;故答案为:三角形具有稳定性;(2)过甲向AB作垂线,如图2所示;运用的原理是:垂线段最短;故答案为:垂线段最短;(3)合理,∵AB ∥CD ,∴∠B =∠C ,∵点M 是BC 的中点,∴MB =MC ,在△MCF 和△MBE 中BE CF B C BM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MEB ≌△MFC (SAS ),∴ME =MF ,∴想知道M 与F 之间的距离,只需要测出线段ME 的长度.【点睛】此题主要考查了垂线段的性质,三角形的稳定性,以及全等三角形的应用,关键是掌握全等三角形判定定理,会用它证明对应边相等.。
判断三角形全等小论文
我也来探索判定三角形全等的条件一、问题的提出按照我们之前的想法,说明两个三角形全等,就是把它剪下来,拼一拼,比一比,看看它们是否会重合。
如果这两个三角形能重合,那么它们就是全等三角形。
可是,这个方法有一定的局限性。
如果老师让我们判断黑板上所画的两个三角形是否全等,难道我们要把它们割下来拼一拼吗?因此我对今天我们所学的《1.5三角形全等的判定》非常感兴趣。
在此基础上,我和几位同学也来谈谈如何探索判定三角形全等的条件。
二、思考与分析影响三角形的形状有两方面:内角的大小和边的长度。
因此我们认为肯定要从边和角这两方面去探索判定两个三角形全等的条件。
我们把所有的可能性归为三大类: ① 1个条件② 2个条件③ 3个条件接下来,我们就一个一个地探索以上哪类能判定三角形全等…… 三、问题的解决一、1个条件 ⑴ 只有一条边对应相等在一个三角形中,有三条边。
而这里只确定了一条边,那么另外两条边就有了很多种可能。
大家来看图①,在△ABC 和△DEF 中,已知BC=EF ,但是我们可以明显看出下面的两个三角形不全等的。
所以,只有一条边对应相等的两个三角形并不一定全等! ⑵ 只有一个角对应相等有买绘图套尺的同学都知道,一套尺子中,有两个三角板。
这两个三角形都只有1条边对应相等只有1个角对应相等只有2个角对应相等 只有2条边对应相等只有1条边和1个角对应相等只有1条边对应相等只有1个角对应相等图只有3条边对应相等只有3个角对应相等只有1条边和2个角对应相等只有2条边和1个角对应相等是直角三角形。
但是,我们会发现,它们两个根本不能完全重合在一起,那么说明这两个三角形虽然都有一个角等于90°,但是它们不是全等三角形。
例如图②,在△ABC 和△DEF 中,已知∠B=∠E=90°,但是,这两个三角形也不全等!所以,只有一个角相等的两个三角形不全等!总结上述,我们可以得出一个结论:只有一条边对应相等或只有一个角对应相等,那么两个三角形不一定全等!二、 2个条件⑴ 两条边对应相等如果两条边对应相等,第三条边也会有许多的可能。
探索三角形全等的条件
书山有路勤为径;学海无涯苦作舟
今天的努力是为了明天的幸福探索三角形全等的条件
以下是为您推荐的探索三角形全等的条件教案,希望本篇文章对您学习有所帮助。
探索三角形全等的条件
【学习目标】
1、掌握三角形全等的边角边”的条件。
并能利用这个条件判别两个三角形是否全等,解决一些简单的实际问题。
2、经历观察、实验、归纳、猜想,体会分析问题的方法,积累数学活动的经验。
并培养其探索创新的精神。
【重点难点】三角形全等的边角边”条件的探索及应用。
【课前预习】
1、如图,已知:AB 与CD 相交于点O,且△AOC ≌△BOD,请你能说出AC 与BD 的关系。
【新知导学】
1、如果两个三角形全等,那幺它们的对应边和对应角有什幺关系?
2、当两个三角形的6 个元素中只有1 组边或角相等时,它们全等吗?
3、当两个三角形的6 个元素中只有2 组边或角相等时,它们全等吗?
4、从三角形的6 个元素中任意选出其中的3 个元素,共有多少种不同的选法?
共有4 种情况:①、;②、;
③、;④、。
这节课我们将研究第一种情况:两边一角
5、做一做:。
三角形全等之类比探究-经典题型过关(含答案)
三角形全等之类比探究(导学案)知识过关1. 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主. 2. 解决类比探究问题的一般方法:(1)根据题干条件,结合_______________先解决第一问; (2)用解决_______的方法类比解决下一问,整体框架照搬.整体框架照搬包括_________________,________________,_________________. 3. 常见几何特征及做法:见中点,___________________________.➢ 典型题型1. 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时, 求证:①△ADC ≌△CEB ;②DE =AD +BE .(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD BE .(3)当直线MN 绕点C 旋转到图3的位置时,请直接写出DE ,AD ,BE 之间的数量关系.图1B NE CDM A图2ACDEMNB 图3ABC D EM N2. 如图1,四边形ABCD 是正方形,AB =BC ,∠B =∠BCD =90°,点E 是边BC 的中点,∠AEF =90°,EF 交正方形外角∠DCG 的 平分线CF 于点F .(1)求证:AE =EF (提示:在AB 上截取BH =BE ,连接HE ,构造全等三角形,经过推理使问题得到解决).(2)如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其他条件不变,那么结论“AE =EF ”仍然成立吗?说明理由.(3)如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”是否成立?说明理由.GABCDFE 图1E FDC BA G图2FDC A G图3图1M ADC E3. 以△ABC 的边AB ,AC 为直角边向外作等腰直角三角形ABE 和等腰直角三角形ACD ,∠BAE =∠CAD =90°,AB =AE ,AC =AD ,M 是边BC 的中点,连接AM ,DE .(1)如图1,在△ABC 中,当∠BAC =90°时,求AM 与DE 的数量关系和位置关系. (2)如图2,当△ABC 为一般三角形时,(1)中的结论是否成立?并说明理由.(3)如图3,若以△ABC 的边AB ,AC 为直角边向内作等腰直角三角形ABE 和等腰直角三角形ACD ,其他条件不变,(1)中的结论是否成立,并说明理由.4. (1)如图1,已知∠MAN =120°,AC 平分∠MAN ,∠ABC =∠ADC =90°,则能得到如下两个结论: ①DC =BC ;②AD +AB =AC .请你证明结论②.(2)如图2,把(1)中的条件“∠ABC =∠ADC =90°”改为“∠ABC +∠ADC =180°”,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)如图3,如果D 在AM 的反向延长线上,把(1)中的条件“∠ABC =∠ADC =90°”改为“∠ABC =∠ADC ”,其他条件不变,(1)中的结论是否仍然成立?若成立,请直接回答;若不成立,请直接写出你的结论.E D A M 图2B MCEA D图3A B CDMN图3图1NMDCBA B CDMN图2【参考答案】➢ 知识过关:解决类比探究问题的一般方法:(1)根据题干条件,结合分支条件先解决第一问;(2)用解决第(1)问的方法类比解决下一问,整体框架照搬. 整体框架照搬包括照搬字母,照搬辅助线, 照搬思路 . 常见几何特征及做法: 见中点, 考虑倍长中线 . ➢ 典型题型1. 证明:(1)如图,∵∠ACB =90° ∴∠1+∠2=90° ∵AD ⊥MN ,BE ⊥MN ∴∠ADC =∠CEB =90° ∴∠3+∠2=90° ∴∠1=∠3在△ADC 和△CEB 中∴△ADC ≌△CEB (AAS) ∴AD =CE ,DC =EB ∴DE =CE +DC=AD +BE (2)如图,∵∠ACB =90° ∴∠1+∠2=90° ∵AD ⊥MN ,BE ⊥MN ∴∠ADC =∠CEB =90° ∴∠CBE +∠2=90° ∴∠1=∠CBE 在△ADC 和△CEB 中∴△ADC ≌△CEB (AAS) ∴AD =CE ,DC =EB ∴DE =CE -DC=AD -BE13ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩1ADC CEB CBEAC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩321AM DC E NB321NM ED C BA(3)DE =BE -AD ,理由如下: 如图,∵∠ACB =90° ∴∠1+∠2=90° ∵AD ⊥MN ,BE ⊥MN ∴∠ADC =∠CEB =90° ∴∠3+∠2=90° ∴∠1=∠3在△ADC 和△CEB 中∴△ADC ≌△CEB (AAS) ∴AD =CE ,DC =EB ∴DE =DC -CE=BE -AD2. 解:(1)AE =EF ,理由如下:如图,在AB 上截取BH =BE ,连接HE .∵AB =BC ∴AH =EC ∵∠B =90° ∴∠1=∠2=45° ∴∠AHE =135° ∵∠BCD =90° ∴∠DCG =90° ∵CF 平分∠DCG ∴∠GCF =45° ∴∠ECF =135° ∴∠AHE =∠ECF ∵∠AEF =90°,∠B =90°∴∠AEB +∠3=90°,∠AEB +∠4=90° ∴∠3=∠4在△AHE 和△ECF 中∴△AHE ≌△ECF (ASA) ∴AE =EF(2)AE =EF 仍成立,理由如下:13ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩43AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩21B NM EDC A4321H GA B CDFE如图,在AB 上截取BH =BE ,连接HE .∵AB =BC ∴AH =EC ∵∠B =90° ∴∠1=∠2=45° ∴∠AHE =135° ∵∠BCD =90° ∴∠DCG =90° ∵CF 平分∠DCG ∴∠GCF =45° ∴∠ECF =135° ∴∠AHE =∠ECF ∵∠AEF =90°,∠B =90°∴∠AEB +∠3=90°,∠AEB +∠4=90° ∴∠3=∠4在△AHE 和△ECF 中∴△AHE ≌△ECF (ASA) ∴AE =EF(3)AE =EF 仍成立,理由如下:如图,延长BA 到H ,使BH =BE ,连接HE .∵AB =BC ∴AH =EC ∵∠B =90° ∴∠H =45° ∵∠BCD =90° ∴∠DCG =90° ∵CF 平分∠DCG ∴∠1=45° ∴∠H =∠1∵∠AEF =90°,∠B =90°∴∠AEB +∠3=90°,∠AEB +∠2=90° ∴∠2=∠3∵∠HAE +∠2=180°,∠CEF +∠3=180° ∴∠HAE =∠CEF 在△AHE 和△ECF 中43AH ECAHE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩H 4123E FDC BA G∴△AHE ≌△ECF (ASA) ∴AE =EF3. 解:(1)DE =2AM ,AM ⊥DE ,理由如下:如图,延长AM 到F ,使MF =AM ,连接BF ,延长MA 交DE 于G .∴AF =2AM ∵M 是BC 中点 ∴BM =CM在△BMF 和△CMA 中∴△BMF ≌△CMA (SAS) ∴FB =AC ,∠3=∠4 ∴BF ∥AC∴∠FBA +∠BAC =180° ∵∠BAE =∠CAD =90° ∴∠DAE +∠BAC =180° ∴∠FBA =∠DAE ∵AC =AD ∴BF =AD在△FBA 和△DAE 中∴△FBA ≌△DAE (SAS) ∴AF =ED ,∠5=∠6 ∴DE =2AM ∵∠BAE =90° ∴∠5+∠7=90° ∴∠6+∠7=90° ∴∠EGA =90° 即AM ⊥DE(2)(1)中的结论成立,理由如下:如图,延长AM 到F ,使MF =AM ,连接BF ,延长MA 交DE 于G .∴AF =2AM ∵M 是BC 中点1H AH ECHAE CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩12BM CM MF MA =⎧⎪∠=∠⎨⎪=⎩BF AD FBA DAE AB EA =⎧⎪∠=∠⎨⎪=⎩H123FDB AG∴BM =CM在△BMF 和△CMA 中∴△BMF ≌△CMA (SAS) ∴FB =AC ,∠3=∠4 ∴BF ∥AC∴∠FBA +∠BAC =180° ∵∠BAE =∠CAD =90° ∴∠DAE +∠BAC =180° ∴∠FBA =∠DAE ∵AC =AD ∴BF =AD在△FBA 和△DAE 中∴△FBA ≌△DAE (SAS) ∴AF =ED ,∠5=∠6 ∴DE =2AM ∵∠BAE =90° ∴∠5+∠7=90° ∴∠6+∠7=90° ∴∠EGA =90° 即AM ⊥DE(3)(1)中的结论成立,理由如下:如图,延长AM 到F ,使MF =AM ,交DE 于G ,连接BF .∴AF =2AM ∵M 是BC 中点 ∴BM =CM在△BMF 和△CMA 中∴△BMF ≌△CMA (SAS) ∴FB =AC ,∠FBM =∠ACM ∴BF ∥AC∴∠FBA +∠BAC =180°12BM CM MF MA =⎧⎪∠=∠⎨⎪=⎩BF AD FBA DAE AB EA =⎧⎪∠=∠⎨⎪=⎩BM CM BMF CMA MF MA =⎧⎪∠=∠⎨⎪=⎩FGD A EC MB∵∠BAE =∠CAD =90°∠BAC =∠BAE +∠CAD -∠DAE ∴∠DAE +∠BAC =180° ∴∠FBA =∠DAE ∵AC =AD ∴BF =AD在△FBA 和△DAE 中∴△FBA ≌△DAE (SAS) ∴AF =ED ,∠BAF =∠AED ∴DE =2AM ∵∠BAE =90° ∴∠BAF +∠EAF =90° ∴∠AED +∠EAF =90° ∴∠EGA =90° 即AM ⊥DE4. (1)证明:如图,在BN 上截取BE=AD .∵AC 平分∠DAB ,∠MAN =120° ∴∠1=∠2=60° 在△CDA 和△CBA 中∴△CDA ≌△CBA (AAS) ∴DC =BC ,AD =AB 在△CDA 和△CBE 中∴△CDA ≌△CBE (SAS) ∴AC =EC ∵∠2=60°∴AC=AE =BE+AB =AD+AB(2)成立,证明如下:如图,过C 作CG ⊥AM 于G ,CF ⊥AN 于F ,在BN 上截取BE=AD .BF AD FBA DAE AB EA =⎧⎪∠=∠⎨⎪=⎩12CDA CBA CA CA ∠=∠⎧⎪∠=∠⎨⎪=⎩DC BC CDA CBE AD EB =⎧⎪∠=∠⎨⎪=⎩21E图1NM DCB A∵CG ⊥AM ,CF ⊥AN ∴∵AC 平分∠DAB ,∠MAN =120° ∴∠1=∠2=60°,CG=CF ∵∠ABC +∠ADC =180° ∠CDG +∠ADC =180° ∠ABC +∠EBC =180°∴∠CDG =∠CBF ,∠ADC =∠EBC 在△CGD 和△CFB 中∴△CGD ≌△CFB (AAS ) ∴CD =CB在△CDA 和△CBE 中三角形全等之类比探究(实战演练)1. 在四边形ABCD 中,AB =AD ,∠BAD =90°,P 是直线CD 上一点,连接PA ,过点B ,D 作BE ⊥PA ,DF ⊥PA ,垂足分别为点E ,F .(1)如图1,请探究BE ,DF ,EF 这三条线段的数量关系.(2)若点P 在DC 的延长线上,如图2,则这三条线段又具有怎样的数量关系?(3)若点P 在CD 的延长线上,如图3,直接写出BE ,DF ,EF 这三条线段的数量关系.【参考答案】CGD CFB ∠=∠CDG CBF CGD CFB CG CF ∠=∠⎧⎪∠=∠⎨⎪=⎩CD CB ADC AD EB =⎧⎪∠=⎨⎪=⎩G FE A B C DMN图3图3图2图1PABCDEFP FED CBA PF EDCBA1. (1)EF=BE -DF ,证明略 (2)EF= DF -BE ,证明略 (3)EF=BE +DF 路线图:(AAS) 123ABE DAF AE DF BE AF EF AF AEBE DFEF AE AFDF BEEF AF AEDF BE↓==↓=-=-=-=-=+=+△≌△()()()三角形全等之类比探究(作业)➢ 例题示范例1:已知,在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,AD =AF ,∠DAF =90°,连接CF . (1)如图1,当点D 在线段BC 上时,求证:CF +CD =BC ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变,求CF ,BC ,CD 三条线段之间的关系.【思路分析】结合题目特征,本题为类比探究问题. 解决方法:(1)根据题目条件及(1)问中D 在线段BC 上,证明△ABD ≌△ACF ,就可以得出BD =CF ,结论可证.图2图1ABCDEFFED CBA图3AB CDF 图1FED CBA(2)用解决第(1)问的方法解决后续问题,方法上完全照搬.如图2,通过证明△ABD ≌△ACF ,就可以得出BD =CF ,进而得到BC +CD =CF ; 如图3,通过证明△ABD ≌△ACF ,就可以得出BD =CF ,进而得到BC +CF =CD . 【过程书写】证明:如图,∵∠DAF =90°,∠BAC =90° ∴∠BAD =∠CAF 在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAF (SAS ) ∴BD =CF ∵BD +CD =BC ∴CF +CD =BC (2)BC +CD =CF(3)BC +CF =CD ,理由如下: ∵∠DAF =90°,∠BAC =90° ∴∠BAD =∠CAF 在△BAD 和△CAF 中,∴△BAD ≌△CAF (SAS ) ∴BD =CF ∵BC +BD =CD ∴BC +CF =CD➢ 巩固练习1. 已知AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,BC =DE ,如图1.(1)求证:AC =CE .(2)若将△ECD 沿CB 方向平移至如图2的位置(C 1,C 2不重合),其余条件不变,结论AC 1=C 2E 还成立吗?请说明理由.(3)若将△ECD 沿CB 方向平移至如图3的位置(B ,C 2重合),其余条件不变,结论AC 1=C 2E 还成立吗?请说明理由.AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩图3图2图1A C DEEDAEDB (C 2)AC 2C 1C 1图3AB CDEF图2图1CE MN NM D C BA2. (1)【问题发现】小明学习中遇到这样一个问题:如图1,△ABC 是等边三角形,点D 为BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.小明发现,过点D 作DF ∥AC ,交AB 于点F ,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD 与DE 的数量关系:_______________;(2)【类比探究】如图2,当点D 是线段BC 上(除B ,C 外)任意一点时(其他条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论;(3)【拓展应用】如图3,当点D 在线段BC 的延长线上(其他条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论.3. 如图1所示,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点,连接AM ,AN ,MN . (1)求证:①BE =CD ;②△AMN 是等腰三角形.(2)在图1的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到如图2所示的图形.(1)中的两个结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.图3EDC BA图2E DCBA【参考答案】1. 证明略路线图:(AAS) A DCE ABC CDE AC CE∠=∠↓↓=△≌△ 提示:(1)AC=CE ,由垂直转互余可以得到∠A =∠DCE , 结合BC=DE 证明△ABC ≌△CDE ,得到对应边相等, 可以得到AC=CE .(2)成立,照搬第一问的字母、思路和过程可以得到AC 1=C 2E . (3)成立,照搬第一问的字母、思路和过程可以得到AC 1=C 2E . 2. 证明略D DF AC AB F 过点作∥,交于点路线图(AAS) BDF BF BD AF CD ADF DEC AD DE↓==↓↓=△为等边三角形,△≌△ 提示: (1)AD =DE(2)AD =DE 成立,根据△ABC 以及△BDF 是等边三角形,得到AF =DC ,再结合∠ADE =60°,倒角,得到∠DAF =∠EDC ,结合外角平分线,知∠DCE =∠AFD =120°,得到△ADF ≌ △DEC ,得到对应边相等,可得AD =DE .(3)成立,照搬第二问的字母、思路和过程可以得到AD =DE .图1F E DC B A3. 证明略路线图(SAS) (SAS) BAE CAD BE CD ABE ACD ABM ACN AM AN AMN ↓=∠=∠↓↓=↓△≌△,△≌△△是等腰三角形提示:(1)由已知条件先证明△BAE ≌△CAD (SAS),得到BE=CD ,结合第一次全等提供的条件证明△ABM ≌△ACN (SAS)得到AM=AN ,因而△AMN 是等腰三角形.(2)成立,照搬第一问的字母、思路和过程可以得到BE=CD ,△AMN 是等腰三角形.。
《三角形全等判定(综合探究)》教案 2022年 (省一等奖)
三角形全等的判定总课题全等三角形总课时数第 13 课时课题三角形全等的判定〔综合探究〕主备人课型新授时间教学目标1.理解三角形全等的判定,并会运用它们解决实际问题.2.经历探索三角形全等的四种判定方法的过程,能进行合情推理. 3.培养良好的几何思维,体会几何学的应用价值.教学重点运用四个判定三角形全等的方法.教学难点正确选择判定三角形全等的方法,充分应用“综合法〞进行表达.教学过程教学内容一、回忆反思【课堂演练】1.△ABC≌△A′B′C′,且∠A=48°,∠B=33°,A′B′=5cm,求∠C•′的度数与AB的长.【教师活动】操作投影仪,组织学生练习,请一位学生上台演示.【学生活动】先独立完成演练1,然后再与同伴交流,踊跃上台演示.解:在△ABC中,∠A+∠B+∠C=180°∴∠C=180°-〔∠A+∠B〕=99°∵△ABC≌△A′B′C′,∠C=∠C′,∴∠C′=99°,∴AB=A′B′=5cm.【评析】表示两个全等三角形时,要把对应顶点的字母写在对应位置上,这时解题就很方便.2.:如图1,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,连接AO,∠1=∠2.求证:∠B=∠C.【思路点拨】要证两个角相等,我们通常用的方法有:〔1〕两直线平行,同位角或内错角相等;〔2〕全等三角形对应角相等;〔3〕等腰三角形两底角相等〔待学〕.根据此题的图形,应考虑去证明三角形全等,由条件,可知AD=AE,∠1=•∠2,AO是公共边,叫△ADO≌△AEO,那么可得到OD=OE,∠AEO=∠ADO,∠EOA=∠DOA,•而要证∠B=∠C可以进一步考查△OBE≌△OCD,而由上可知OE=OD,∠BOE=∠COD〔对顶角〕,∠BEO=∠CDO〔等角的补角相等〕,那么可证得△OBF≌△OCD,事实上,得到∠AEO=∠AOD•之后,又有∠BOE=∠COD,由外角的关系,可得出∠B=∠C,这样更进一步简化了思路.【教师活动】操作投影仪,巡视、启发引导,关注“学困生〞,请学生上台演示,然后评点.图1【学生活动】小组合作交流,共同探讨,然后解答.【媒体使用】投影显示演练题2.【教学形式】分组合作,互相交流.【教师点评】在分析一道题目的条件时,尽量把条件分析透,如上题当证明△ADO≌△AEO之后,可以得到OD=OE,∠AEO=∠ADO,∠EOA=∠DOA,•这些结论虽然在进一步证明中并不一定都用到,但在分析时对图形中的等量及大小关系有了正确认识,有利于进一步思考.证明 在△AEO 与△ADO 中,AE=AD ,∠2=∠1,AO=AO ,∴△AEO ≌△ADO 〔SAS 〕,∴∠AEO=∠ADO .又∵∠AEO=∠EOB+∠B ,∠AOD=∠DOC+∠C .又∵∠EOB=∠DOC 〔对应角〕,∴∠B=∠C .3.如图2,∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE .求证:AD=AE .【思路点拨】欲证相等的两条线段AD 、AE 分别在△ABD 和△ACE 中,由于BD=CE ,•∠ABD=∠ACE ,因此要证明△ABD ≌△ACE ,•那么需证明∠BAD=•∠CAE ,•这由条件∠BAC=∠DAE 容易得到.【教师活动】操作投影仪:引导学生思考问题.【学生活动】分析、寻找证题思路,独立完成演练题3.证明:∵∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE在△ABD 和△ACE 中,∵BD=CE ,∠ABD=∠ACE ,∠BAD=∠CAE ,∴△ABD ≌△ACE 〔AAS 〕,∴AD=AE .【媒体使用】投影显示演练题3.【教学形式】讲练结合. 图2二、随堂练习1.如图3,点E 在AB 上,AC=AD ,∠CAB=∠DAB ,△ACE 与△ADE 全等吗?△ACB•与△ADB 呢?请说明理由.[答案:△ACE ≌△ADE ,△ACB ≌△ADB ,根据“SAS 〞.]图32.如图4,仪器ABCD 可以用来平分一个角,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们落在角的两边上,沿AC 画一条射线AE ,AE 就是∠PRQ 的平分线,你能说明其中道理吗? 小明的思考过程如下:AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩→△ABC ≌△ADC →∠QRE=∠PRE你能说出每一步的理由吗? 图43.如图5,斜拉桥的拉杆AB ,BC 的两端分别是A ,C ,它们到O 的距离相等,•将条件标注在图中,你能说明两条拉杆的长度相等吗?答案:相等,因为△ABO ≌△CBO 〔SAS 〕,从而AB=CB .三、布置作业图5课后反思[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
人教版-数学-八年级上册-连线中考全等三角形创新题型
初中-数学-打印版连线中考全等三角形创新题型在新课程理念的催生下,近年中考在题型设计上不断推陈出新。
为能更好地与中考接轨,本文就与中考全等三角形问题中有关的创新题展示如下,以期抛砖引玉。
一、条件探索题例1.如图1,AB 、CD 相交于点O ,AB=CD ,试添加一个条件使得△AOD≌△COB,你添加的条件是 (只需写一个).解析:由对顶角相等,得∠AOD=∠COB,若加条件AO=CO ,则由AB=CD ,可得AB -AO= CD -CO ,即BO=DO .由“SAS”得△AOD≌△COB.同理,也可以加条件BO=DO .如果连接DB ,那么可加条件AD=CB ,先说明△ADB≌△CBD,得∠A=∠C ,再得出△AOD≌△COB.所以应填AO=CO ,或BO=DO ,或AD=CB 等.评注:解答条件开放型试题,需要执果索因,逆向推理,逐步探求结论成立的条件.解决这类题时,要注意挖掘图形中的隐含条件,如对顶角、公共角、公共边等.这类题的答案往往不唯一,只要合理即可.二、结论探索题例2.如图2,在Rt ABC △与Rt ABD △中,90ABC BAD ∠=∠=, AD BC AC BD =,,相交于点G ,过点A 作AE DB ∥交CB 的延长线于点E ,过点B 作BF CA ∥交DA 的延长线于点F AE BF ,,相交于点H .图中有若干对三角形是全等的,请你任选一对说明全等的理由(不添加任何辅助线).解析:由题意可得,ABE △和ABF △都是直角三角形,它们与Rt ABC △和Rt ABD △互相都是全等三角形,下面说明ABC △≌BAD △.因为AD BC =(已知),90ABC BAD ∠=∠=(已知),BA AB =(公共边), 所以ABC △≌BAD △(SAS ).评注:解答结论开放型试题的关键是执因索果,但在解题思路和推导深入度不同的情况下,所得答案往往不同,即答案具有不确定性.三、综合探索题D GC BHF A图2 D B CA O 图1 图3初中-数学-打印版 例3.如图3,AC 交BD 于点O ,请你从下面三项中选出两个作为条件,另一个为结论,写出一句正确的话,并说明正确的理由.①OA=OC,②OB=OD,③AB∥DC.解析:由题意得,给出的三项中,任意选两项作为条件,另一项作为结论写出的句子都是正确的.如“AC 交BD 于点O ,若①OA=OC,②OB=OD,则③AB∥DC.”这是正确的.又如“AC 交BD 于点O ,若①OA=OC,③AB∥DC,则②OB=OD.”这也是正确的,理由如下.因为AB∥DC(已知),所以∠A=∠C(两直线平行,内错角相等).又OA=OC (已知),∠AOB=∠COD(对顶角相等),所以△AOB≌△COD(ASA ).所以OB=OD (全等三角形的对应边相等).评注:条件和结论都开放的综合开放型试题,解题的方法是要充分利用所学的数学知识,通过观察、分析、综合、判断、推理等活动来探索、完善并进行证明.四、条件组合题例4.如图4,在△ABC 和△DEF 中,D 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB=DE ,②AC=DF ,③∠ABC=∠DEF,④BE=CF .已知:求证:证明: 分析:根据三角形全等的条件和三角形全等的特征,本题有以下两种组合方式:组合一:条件:①②④,组合二:条件:①③④,结论:②,特别要注意若以①②③或②③④为条件组合,此时属于SSA 的对应关系,则不能证明△ABC≌△DEF,也得不到相关结论.评注:这种题型是近几年来的中考题的新亮点,它通过“一题多变”与“一题多解”来考察学生的发散思维能力.五、猜想验证题例5.如图5,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形. (1)除已知相等的边以外,请你猜想还有哪些相等线段, FED CBA图5 F E DC B A 图4初中-数学-打印版 并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.分析:(1)猜想:AF=BD=CE ,AE=BF=CD .由已知条件,只要证明:△AFE≌△BDF≌△CED 即可.(2)这些线段可以看成是经过平移、旋转而得到的,如AE 与BF 绕着A 点顺时针旋转600,再沿着AB 方向平移使A 点至F 即可得BF ,其余类同.评注:本题是一道具有挑战性的探索、猜想、验证、证明的试题,它与几何中图形的全等、图形的变换融合在一起,只要同学们认真观察、认真判断,问题就不难得到解决.六、拼图证明题例6.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B 、F 、C 、D 在同一条直线上.(1)求证AB⊥ED;(2)若PB=BC ,请找出图中与此条件有关的一对..全等三角形,并给予证明.分析:(1)由已知的剪、拼图过程(将长方形沿对角线剪开),显然有△ABC≌△DEF,故∠A=∠D;又∠ANP=∠DNC,因而不难得到∠APN=∠DCN=900,即AB⊥ED.(2)若在增加PB=BC 这个条件,再认真观察图形,就不难得到△PNA≌△CND、△PEM≌△FMB.评注:本题的意图是让同学们在剪、拼图形的背景下,积极参与图形的变化过程,并在图形的变化过程中来探究图形之间的关系,用来考察学生的创新精神与能力.七、应用型例7.如图7,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0图6初中-数学-打印版 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB △''A OB 的理由是( )A. 边角边B.角边角C.边边边D.角角边评注:新的数学课程标准加强了数学知识的实践与综合应用,从各地的中考应用题可以看出,它已不再局限于传统而古老的列方程(组)解应用题这类题目,而是呈现了建模方式多元化的新特点,几何应用题就是其中之一。
全等三角形经典题型
全等三角形经典题型全等三角形是几何学中的一个重要概念,它指的是具有相同形状和大小的两个三角形。
在解决全等三角形的经典题型时,我们通常会利用全等三角形的性质和一些几何定理来推导和证明。
以下是一些经典的全等三角形题型以及解题思路:1. SSS(边-边-边)判定法,当两个三角形的三条边分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且AB=DE,BC=EF,AC=DF,那么可以得出三角形ABC全等于三角形DEF。
2. SAS(边-角-边)判定法,当两个三角形的两边和夹角分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且AB=DE,BC=EF,∠BAC=∠EDF,那么可以得出三角形ABC 全等于三角形DEF。
3. ASA(角-边-角)判定法,当两个三角形的两角和一边分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,那么可以得出三角形ABC全等于三角形DEF。
4. RHS(直角边-斜边-直角边)判定法,当两个直角三角形的一个直角边和斜边分别相等时,可以判定两个三角形全等。
例如,已知直角三角形ABC和直角三角形DEF,且∠BAC=∠EDF,AC=DF,AB=DE,那么可以得出三角形ABC全等于三角形DEF。
5. AAS(角-角-边)判定法,当两个三角形的两角和一边的对应边分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且∠BAC=∠EDF,∠ABC=∠DEF,AB=DE,那么可以得出三角形ABC全等于三角形DEF。
在解决全等三角形题型时,我们要注意使用合适的判定法,并根据题目给出的已知条件进行推导和证明。
同时,还要注意运用其他几何定理和性质,如平行线的性质、垂直线的性质、等腰三角形的性质等,来辅助解题。
以上是关于全等三角形经典题型的回答,希望对你有所帮助。
专题4.16 探索三角形全等的条件3(专项练习)-2020-2021学年七年级数学下册基础知识专项讲
1专题4.16 探索三角形全等的条件3(专项练习)一、单选题1.(2021·安徽九年级专题练习)如图,在ABC 中,90C ∠=︒,DE AB ⊥于点D ,BC BD =.如果3cm AC =,那么AE DE +=( )A .2cmB .4cmC .3cmD .5cm2.(2021·湖南长沙市一中双语实验中学九年级期末)如图,已知在ABC 和DEF 中,AB DE =,BC EF =,下列条件中不能判定ABC DEF △≌△的是( )A .AC DF =B .B E ∠=∠C .AB AC ⊥且ED DF⊥ D .C F ∠=∠ 3.(2021·四川成都市·八年级期末)如图,AB BD ⊥,CD BD ⊥,AD BC =,则能直接判断Rt Rt ABD CDB △△≌的理由是( )A .HLB .ASAC .SASD .SSS4.(2021·山东济南市·八年级期末)如图所示,∠C =∠D =90°,添加下列条件∠AC =AD ;∠∠ABC =∠ABD ;∠∠BAC =∠BAD ;∠BC =BD ,能判定Rt∠ABC 与Rt∠ABD 全等的条件的个数是()2A .1B .2C .3D .45.(2020·浙江省临海市临海中学八年级期中)下列各组条件中,不能使两个直角三角形全等的是( )A .一条直角边和一锐角分别相等B .斜边和一锐角分别相等C .斜边和一条直角边分别相等D .两个锐角分别相等6.(2019·浙江台州市·八年级期末)用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA7.(2020·全国八年级课时练习)如图,Rt ABC 中,90BAC ∠=︒,DE BC ⊥,6AC =,6EC =,60ACB ∠=︒,则ACD ∠等于( )A .45︒B .30C .20︒D .15︒8.(2019·上海外国语大学秀洲外国语学校八年级期中)下列结论中不正确的是( ) A .一锐角和斜边对应相等的两个直角三角形全等B.一锐角和一条直角边对应相等的两个直角三角形全等C.两锐角对应相等的两个直角三角形全等3D .有一条直角边和斜边上的中线对应相等的两个直角三角形全等9.(2019·北京海淀区·101中学八年级期中)如图,在ACB ∆的两边上分别取点A ,B 使得CA CB =,将两个全等的直角三角板的直角顶点分别放在点A ,B 处,一条直角边分别落在ACB ∠的两边上,另一条直角边交于点P ,连接CP ,则判定ACP BCP ∆≅∆的依据是( )A .AASB .ASAC .SSSD .HL10.(2020·安徽芜湖市·八年级期末)如图,在∠ABC 中,∠BAC 的平分线AD 和边BC 的垂直平分线ED 相交于点D ,过点D 作DF 垂直于AC 交AC 的延长线于点F ,若AB =8,AC =5,则CF =( )A .1.5B .2C .2.5D .3二、填空题 11.(2021·江苏南京市·八年级期末)结合如图,用符号语言表达定理“斜边和一条直角边分别相等的两个直角三角形全等”的推理形式:在Rt ABC ∆和Rt DEF ∆中,90C F ∠=∠=︒,ACDF =,_______4Rt ABC Rt DEF ∴∆≅∆.12.(2020·河北唐山市·八年级期末)如图,∠C =90°,AC =103BC =8,AX ∠AC ,点P 和点Q 从A 点出发,分别在线段AC 和射线AX 上运动,且AB =PQ ,当点P 运动到AP =___________,∠ABC 与∠APQ 全等.13.(2020·吐鲁番市高昌区第一中学八年级月考)在∠ABC 中,AD ∠BC 于D ,要用“HL ”证明Rt∠ADB ∠Rt∠ADC ,则需添加的条件是_____.14.(2020·临邑县第五中学八年级期中)已知:如图,AB =CD ,DE∠AC ,BF∠AC ,E ,F 是垂足,AE =CF ;则证明∠ABF∠∠CDE 的方法是________(用字母表示)15.(2020·中江县凯江中学校八年级月考)如图,在Rt∠ABC 中,∠C=90︒,AC=12cm ,BC=6cm ,一条线段PQ=AB ,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,则当AP= __________时,才能使∠ABC 和∠APQ 全等.16.(2020·蒙阴县高都镇中心学校八年级月考)已知:如图,ABC 中,AB =AC ,AD 是高,则________∠ADC .依据是________,并且BD =________,∠BAD=________.517.(2020·泰州市大泗学校)如图,在∠AOB 的两边上,分别取OM =ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB 的依据是_____.(填SAS 或AAS 或HL )18.(2020·扬州市江都区实验初级中学八年级月考)如图,在四边形ABCD 中,B D 90∠∠==︒,AB AD =,ACB 28∠=︒,则DAC ∠=________.19.(2020·浙江台州市·八年级期中)如图,点P 是AOB ∠的角平分线OC 上一点,PN ⊥OB 于点N ,点M 是线段ON 上一点,已知OM=3,ON=4,点D 为OA 上一点,若满足PD=PM,则OD 的长度为________20.(2019·黑龙江哈尔滨市·八年级期中)如图:四边形ABDC 中,CD=BD,E 为AB 上一点,连接DE,且∠CDE=∠B .若∠CAD=∠BAD=30°,AC=5,AB=3,则EB=______________.6三、解答题21.(2021·西安市浐灞欧亚中学八年级期末)如图:已知AD CB =,CE BD ⊥,AF BD ⊥,垂足分别为点E 、F ,若DE BF =,求证://AD BC .22.(2019·广东广州市白云区六中珠江学校八年级期中)如图,AD 为ABC 的高,E 为AD 上一点,连接BE ,已知BE AC =,且ED CD =.(1)求证:ADC BDE ≌;(2)请你判断BE 与AC 的位置关系,并说明理由.23.(2020·云南昆明市·八年级期中)如图,已知:AB ∠BD ,ED ∠BD ,AB =CD ,AC=CE.(1)AC与CE有什么位置关系?(2)请证明你的结论.24.(2020·南京师范大学附属中学江宁分校)如图,在∆ABC 中,AC = BC ,直线l 经过顶点C ,过A , B 两点分别作l 的垂线AE ,BF , E ,F 为垂足.AE = CF ,求证:∠ACB = 90︒.25.(2019·全国八年级课时练习)如图,∠ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.78参考答案1.C【分析】通过HL 判定定理可证Rt∆BDE ∠Rt∆BCE ,得到ED=EC ,即可求解.【详解】在Rt BCE 和Rt BDE △中,BC BD =,BE BE =,∠()Rt Rt HL BCE BDE ≌△△, ∠ED EC =,∠3cm AE DE AE EC AC +=+==.故选:C .【点拨】本题考查了全等三角形的性质和判定,注意:直角三角形全等的判定定理有SAS ,ASA ,AAS , SSS ,HL ,全等三角形的对应边相等.2.D【分析】根据三角形全等的判定条件可直接排除选项.【详解】解:A 、若AC DF =,则根据“SSS”可判定ABC DEF △≌△,故不符合题意; B 、若B E ∠=∠,则根据“SAS”可判定ABC DEF △≌△,故不符合题意;C 、若AB AC ⊥且ED DF ⊥,则根据“HL”可判定ABC DEF △≌△,故不符合题意; D 、若C F ∠=∠,则不能判定ABC DEF △≌△,故符合题意;故选D .【点拨】本题主要考查三角形全等的判定,熟练掌握三角形全等的条件是解题的关键.3.A【分析】根据全等三角形的判定方法解答.【详解】解:在Rt∠ABD 和Rt∠CDB 中,9AD BC BD DB =⎧⎨=⎩∠Rt∠ABD∠Rt∠CDB (HL ),故选A .【点拨】本题考查了全等三角形的判定,解题的关键是掌握判定方法.4.D【分析】根据已知条件与全等三角形的判定定理即可分别判断求解.【详解】∠∠C =∠D =90°,AB=AB ,∠∠AC =AD ,可用HL 判定Rt∠ABC 与Rt∠ABD 全等;∠∠ABC =∠ABD ,可用AAS 判定Rt∠ABC 与Rt∠ABD 全等;∠∠BAC =∠BAD ,可用AAS 判定Rt∠ABC 与Rt∠ABD 全等;∠BC =BD ,可用HL 判定Rt∠ABC 与Rt∠ABD 全等;故选:D .【点拨】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.5.D【分析】依据全等三角形的判定定理进行判断即可.【详解】解:A 、根据AAS 或ASA 都可以证得这两个直角三角形全等,故本选项不符合题意; B 、根据AAS 或ASA 都可以证得这两个直角三角形全等,故本选项不符合题意; C 、根据HL 可以证得这两个直角三角形全等,故本选项不符合题意;D 、判定两个直角三角形是否全等,必须有边的参与,故本选项符合题意;故选:D .【点拨】考查了直角三角形全等的判定,直角三角形首先是三角形,所以一般三角形全等的判定方法10 都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.6.A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∠PM OA ⊥,PN OB ⊥,∠90PMO PNO ∠=∠=.∠OM ON =,OP OP =,∠()HL ≌PMO PNO △△, ∠POA POB ∠=∠,故选:A .【点拨】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.7.B【分析】利用HL 可证明∠ACD∠∠ECD ,可得∠ACD=∠ECD ,即可得答案.【详解】DE BC ⊥,90DAC DEC ∴∠=∠=︒.在Rt ACD △和Rt ECD △中,6DC DC AC EC =⎧⎨==⎩, ()Rt ACD Rt ECD HL ∴≌,ACD ECD ∴∠=∠.1160ACB ∠=︒,30ACD ∴∠=︒.故选:B .【点拨】本题考查全等三角形的判定与性质,全等三角形的判定定理有:SSS 、SAS 、ASA 、AAS 、HL 等,注意:AAA 、SSA 不能判定两个三角形全等,当运用SAS 时,角必须是两边的夹角;熟练掌握并灵活运用适当的判定方法是解题关键.8.C【分析】根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .逐条排除.【详解】解:A 、一锐角和斜边对应相等的两个直角三角形,符合AAS ,能判定全等;B 、一锐角和一条直角边对应相等的两个直角三角形符合ASA 或AAS ,能判定全等;C 、两锐角对应相等的两个直角三角形,不符合全等判定,不能判定全等;D 、有一条直角边和斜边上的中线对应相等的两个直角三角形,符合HL ,能判定全等. 故选:C .【点拨】本题考查了直角三角形全等的判定方法;判断两个三角形全等,至少应有一条对应边相等参与其中,做题时要结合已知条件与全等的判定方法逐一验证.9.D【分析】根据全等三角形的判定定理即可得到结论.【详解】∠∠CAP=∠CBP=90°,∠在Rt∠ACP 与Rt∠BCP 中,AC BC CP CP ⎧⎨⎩== , ∠Rt∠ACP∠Rt∠BCP (HL ).12故选:D .【点拨】此题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.10.A【分析】连接CD ,DB ,过点D 作DM ∠AB 于点M ,证明∠AFD ∠∠AMD ,得到AF =AM ,FD =DM ,证明Rt CDF Rt BDM ≌,得到BM =CF ,结合图形计算,得到答案.【详解】连接CD ,DB ,过点D 作DM ∠AB 于点M ,∠AD 平分∠F AB ,∠∠F AD =∠MAD ,在∠AFD 和∠AMD 中,FAD MADAFD AMD AD AD∠∠⎧⎪∠∠⎨⎪=⎩==∠∠AFD ∠∠AMD (AAS )∠AF =AM ,FD =DM ,∠DE 垂直平分BC∠CD =BD ,在Rt∠CDF 和Rt∠BDM 中,DC DBDF DM =⎧⎨=⎩, ∠Rt∠CDF ∠Rt∠BDM (HL )∠BM =CF ,∠AB =AM +BM =AF +MB =AC +CF +MB =AC +2CF ,∠8=5+2CF ,解得,CF =1.5,故选:A .13【点拨】本题主要考查了全等三角形的判定和性质、垂直平分线的性质和角平分线的性质等知识,根据已知角平分线以及垂直平分线作出相关辅助线从而利用全等求出是解决问题的关键. 11.AB DE【分析】根据判断两个直角三角形全等的条件“HL”即可填空.【详解】AC 和DF 为直角边.再利用“HL”,可知两个直角三角形的斜边相等即可证明这两个三角形全等.∠填AB=DE .故答案为:AB=DE .【点拨】本题考查直角三角形全等的判定条件“HL”,掌握判定直角三角形全等的判定定理是解答本题的关键.12.8或103【分析】分两种情况:∠当AP=BC=8时;∠当AP=CA=103由HL 证明Rt∠ABC∠Rt∠PQA (HL );即可得出结果.【详解】∠AX∠AC ,∠∠PAQ=90°,∠∠C=∠PAQ=90°,分两种情况:14∠当AP=BC=8时,在Rt∠ABC 和Rt∠QPA 中,AB PQ BC AP=⎧⎨=⎩, ∠Rt∠ABC∠Rt∠QPA (HL );∠当AP=CA=10时,在∠ABC 和∠PQA 中,AB PQ AP AC =⎧⎨=⎩, ∠Rt∠ABC∠Rt∠PQA (HL );综上所述:当点P 运动到AP=8或103∠ABC 与∠APQ 全等;故答案为:8或103【点拨】本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法,本题需要分类讨论,难度适中.13.AB =AC【分析】利用HL 定理可直接得到答案.【详解】解:添加条件:AB=AC ,∠AD∠BC ,∠∠ADB=∠ADC=90°,在Rt∠ABD和Rt∠ACD 中15AD AD AB AC ⎧⎨⎩==, ∠Rt∠ABD∠Rt∠ACD (HL ),故答案为:AB=AC .【点拨】本题主要考查了直角三角形全等的判定,关键是掌握斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).14.HL【分析】根据已知条件知∠ABF 和∠CDE 都是直角三角形,所以根据直角三角形全等的判定定理HL 可以证得它们全等.【详解】解:如图,∠DE ∠AC ,BF ∠AC ,AE =CF ,∠∠DEC =∠BF A =90°,AE +EF =CF +EF ,即AF =CE .∠在Rt∠ABF 和Rt∠CDE 中,AF CE AB CD=⎧⎨=⎩, ∠Rt∠ABF ∠Rt∠CDE (HL ).故答案为:HL .【点拨】本题考查了全等三角形的判定.注意,此题属于开放题,也可以根据全等三角形的判定定理SAS 、SSS 证得它们全等.15.6cm 或12cm【分析】由题意易得∠C=∠QAP=90°,AB=QP ,要使∠ABC 与∠APQ 全等,则需AP=CB 或AP=CA ,进而问题可求解.【详解】解:∠AX∠AC ,∠C=90°,∠∠C=∠QAP=90°,16∠AB=QP ,∠要使∠ABC 与∠APQ 全等,则需AP=CB 或AP=CA ,∠AP=6cm 或12cm ;故答案为6cm 或12cm .【点拨】本题主要考查直角三角形全等的判定与性质,熟练掌握直角三角形全等的判定与性质是解题的关键.16.ADB △ HL CD CAD ∠【分析】由,AD BC ⊥可得90ADB ADC ∠=∠=︒,结合,AB AC AD AD ==,利用斜边直角边判定两个三角形全等,再利用全等三角形的性质可得结论.【详解】解:,AD BC ⊥90ADB ADC ∴∠=∠=︒,AB AC AD AD ==,,()Rt ADB Rt ADC HL ∴≌,,.BD CD BAD CAD ∴=∠=∠故答案为:ADB △,HL ,CD ,.CAD ∠ 【点拨】本题考查的是直角三角形的判定与性质,掌握以上知识是解题的关键.17.HL【分析】利用判定方法“HL ”证明Rt OMP 和Rt ONP 全等,进而得出答案.【详解】解:由题意知OM =ON ,∠OMP =∠ONP =90°,OP =OP ,∠在Rt OMP 和Rt ONP 中,OP OP OM ON=⎧⎨=⎩,17 ∠Rt OMP ∠Rt ONP (HL ),∠∠AOP =∠BOP ,∠OP 是∠AOB 的平分线.故答案为:HL .【点拨】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.18.62︒【分析】根据HL 证明Rt∠ABC 与Rt∠ADC 全等,进而利用全等三角形的性质及直角三角形两锐角互余解答即可.【详解】解:在Rt∠ABC 与Rt∠ADC 中AB AD AC AC =⎧⎨=⎩, ∠Rt∠ABC∠Rt∠ADC (HL ),∠∠ACD=∠ACB=28°,∠∠DAC=90°-28°=62°,故答案为:62°.【点拨】本题考查了全等三角形的判定与性质,直角三角形两锐角互余.证明∠ABC∠∠ADC 是解题的关键.19.3或5【分析】过点P 作PE∠OA 于点E ,分点D 在线段OE 上,点D 在射线EA 上两种情况讨论,利用角平分线的性质可得PN=PE ,即可求OE=ON=4,由题意可证∠PMN∠∠PDE ,可求OD 的长.【详解】如图:过点P 作PE∠OA 于点E18∠OC 平分∠AOB ,PE∠OA ,PN∠OB∠PE=PN∠PE=PN ,OP=OP∠∠OPE∠∠OPN (HL )∠OE=ON=4∠OM=3,ON=4∠MN=1若点D 在线段OE 上,∠PM=PD ,PE=PN∠∠PMN∠∠PDE (HL )∠DE=MN=1∠OD=OE -DE=3若点D 在射线EA 上,∠PM=PD ,PE=PN∠∠PMN∠∠PDE (HL )∠DE=MN=1∠OD=OE+DE=5故答案为3或5.【点拨】 此题考查全等三角形的判定与性质,熟练运用全等三角形的判定和性质是解题关键. 20.13【分析】如图,作DM∠AC 于M ,DN∠AB 于N .首先证明Rt∠DMC∠Rt∠DNB ,推出CM=BN ,∠ADM∠∠ADN ,推出AM=AB ,再证明DE∠AC ,推出∠ADE=∠CAD=∠DAB=30°,推出19AE=DE ,推出∠DEN=60°,在Rt∠ADN 中,可得43,在Rt∠EDN 中,可得DE=DN÷cos30°=83,由此即可解决问题.【详解】如图,作DM∠AC 于M ,DN∠AB 于N.∠∠CAD=∠BAD=30°,DM∠AC 于M ,DN∠AB 于N ,∠DN=DM ,在Rt∠DMC 和Rt∠DNB 中,DC DBDM DN ==⎧⎨⎩ ,∠Rt∠DMC∠Rt∠DNB ,∠CM=BN ,同理可证∠ADM∠∠ADN ,∠AM=AB ,∠AC+AB=AM+CM+AN−BN=2AM=8,∠AM=AN=4,∠∠DCM=∠DBN ,∠∠1=∠2,∠∠CDE=∠2,∠∠1=∠CDE ,∠DE∠AC ,∠∠ADE=∠CAD=∠DAB=30°,∠AE=DE ,∠∠DEN=60°,20 在Rt∠ADN 中43 在Rt∠EDN 中,DE=DN÷cos30°=83, ∠AE=83, ∠EB=AB−AE=3−83=13. 故答案为13. 【点拨】此题考查全等三角形的判定与性质,解题关键在于作辅助线.21.见解析【分析】利用已知条件证明∠ADF∠∠CBE ,由全等三角形的性质即可得到∠B=∠D ,进而得出结论.【详解】证明:∠DE=BF ,∠DE+EF=BF+EF ;∠DF=BE ;在Rt∠ADF 和Rt∠BCE 中DF BE AD CB =⎧⎨=⎩, ∠Rt∠ADF∠Rt∠CBE (HL ),∠∠B=∠D ,∠//AD BC .【点拨】本题考查了直角三角形全等的判定及性质;由DE=BF 通过等量加等量和相等得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.(1)证明见解析;(2)BE AC ⊥,理由见解析. 【分析】(1)由AD 为ABC 的高,证明90ADC BDE ∠=∠=︒,再利用斜边直角边公理证明ADC BDE ≌即可;21(2)由ADC BDE ≌证明:,DAC EBD ∠=∠再利用:90DBE BED ∠+∠=︒,证明:90AEF DAC ∠+∠=︒,从而可得结论.【详解】 证明:(1) AD 为ABC 的高,,AD BC ∴⊥90ADC BDE ∴∠=∠=︒,在Rt ADC 与Rt BDE 中,AC BECD ED =⎧⎨=⎩()ADC BDE HL ∴≌(2)BE AC ⊥, 理由如下:如图,延长BE 交AC 于,F,ADC BDE ≌,DAC EBD ∴∠=∠90BDE ∠=︒,90DBE BED ∴∠+∠=︒,,BED AEF ∠=∠90AEF DAC ∴∠+∠=︒,90AFE ∴∠=︒,.BE AC∴⊥【点拨】22 本题考查的是三角形的高的含义,直角三角形全等的判定与性质,三角形的内角和定理,直角三角形的两锐角互余,垂直的定义,掌握以上知识是解题的关键.23.(1)AC ∠CE ;(2)见解析【分析】((1)根据题意写出结论即可.(2)由条件可证明Rt∠ABC ∠Rt∠CDE ,得到∠ECD =∠A ,进一步可得∠ECA =90°,可证得结论.【详解】解:(1)AC CE ⊥.(2)证明:AB BD ⊥,ED BD ⊥, 90ABC CDE, 在Rt ABC ∆和Rt CDE ∆中, AB CD AC CE , Rt ABCRt CDE(HL), A ECD ∴∠=∠, 90AACB , 90ECD ACB, 90ACE ∴∠=︒,AC CE ∴⊥.【点拨】本题主要考查直角三角形全等的判定,掌握直角三角形全等的判定方法HL 定理是解题的关键.24.见解析【分析】先利用HL 定理证明∠ACE 和∠CBF 全等,再根据全等三角形对应角相等可以得到∠EAC =∠BCF ,因为∠EAC +ACE =90°,所以∠ACE +∠BCF =90°,根据平角定义可得∠ACB =90°.【详解】证明:如图,在Rt ∆ACE 和Rt ∆CBF 中,∠AC = BC ,AE = CF ,23∠Rt ∆ACE ∠ Rt ∆CBF (HL ) ,∠∠EAC = ∠BCF ,∠∠EAC + ∠ACE = 90︒ ,∠∠ACE + ∠BCF = 90︒ ,∠∠ACB = 180︒ - 90︒ = 90︒ .【点拨】本题主要考查全等三角形的判定,全等三角形对应角相等的性质,熟练掌握性质是解题的关键.25.80°,50°.【解析】【分析】根据三角形外角与内角的性质及角平分线的性质求出∠ CAB ,再利用直角三角形全等的判定定理,得出∠CAP=∠PAF ,继而求出即可【详解】解:如图所示:延长BA ,作PN∠BD ,PF∠BA,PM∠AC ,设∠PCD = x°∠CP 平分∠ ACD∠∠ACP =∠PCD = x°,PM=PN∠BP 平分∠ ABC∠∠ABP=∠PBC ,PF=PN∠PM=PF∠∠BPC=40°∠∠ABP=∠PBC=∠PCD−∠BPC=(x−40)°∠∠CAB=∠ACD−∠ABC=2x°−2(x−40)°=80°∠PM=PF ,AP=AP ,PF∠BA,PM∠AC∠Rt∠PAF ∠ Rt ∠PAM∠∠CAP=∠PAF=12(180°−∠CAB )=12 (180°−80°)=50°故本题答案应为:∠CAB=80°,∠CAP=50°24【点拨】三角形内角与外角的性质及角平分线的性质、直角三角形全等的判定都是本题的考点,熟练掌握数学基础知识是解题的关键.。
第03讲 探索三角形全等的条件(7种题型)(解析版)
第03讲 探索三角形全等的条件(7种题型)1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”“HL ”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.一、全等三角形判定1——“边角边”1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).''A B 'A ''A C '''A B C要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.四、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC ≌△.五.直角三角形全等的判定——“HL ”1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,'A ''A B 'B '''A B C ''A B ''A C ''B C '''A B C使用时应该抓住“直角”这个隐含的已知条件.六、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.七.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.八.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.题型一、全等三角形的判定1——“边角边”例1、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD中AB AD BAC DAEAC AE =ìïÐ=Ðíï=î∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例2、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .90AB BC ABE CBD BE BD =ìïÐ=Ð=°íï=îAD DE ADB EDCBD CD ìïÐÐíïî===.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例3、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED.BD DE ADB=ADEAD AD ìïíïî=∠∠=AE D CB又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=(AB+AD),求证:∠B+∠D=180°.【答案】证明:在线段AE上,截取EF=EB,连接FC,∵CE⊥AB,∴∠CEB=∠CEF=90°在△CBE和△CFE中,1 2∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型二、全等三角形的判定2——“角边角”例4、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D=∠B.求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中CEB CEFEC =EC EB EF =ìïÐ=Ðíïî12(AF AD FAC DAC AC AC =ìïÐ=Ðíï=î角平分线定义)∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下: (1)找到以待证角(线段)为内角(边)的两个三角形; (2)证明这两个三角形全等; (3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B =∠DEF ,∠ACB =∠F ,再证明BC =EF ,然后根据“ASA ”可判断△ABC ≌△DEF .【解答】证明:∵AB ∥DE ,∴∠B =∠DEF ,∵AC ∥DF ,∴∠ACB =∠F ,∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (ASA ).【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用A C AD CBD B Ð=Ðìï=íïÐ=Ðî哪一种判定方法,取决于题目中的已知条件.例5、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】ïîïíìÐ=Ð=Ð=ÐC DAC BCAD CBFADG证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,∴△MPQ ≌△NHQ (ASA )∴PM =HN题型三、全等三角形的判定3——“角角边”例6.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC =AD ,再由平行线的性质可得∠DAE =∠ACB ,由∠CED +∠B =180°,∠CED +∠AED =180°,得∠AED =∠B ,从而利用AAS 可判定△ADE ≌△CAB .【解答】证明:∵∠ADC =∠ACD ,∴AD =AC ,∵AD ∥BC ,∴∠DAE =∠ACB ,∵∠CED +∠B =180°,∠CED +∠AED =180°,∴∠AED =∠B ,在△ADE 与△CAB 中,,∴△ADE ≌△CAB (AAS ).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例7、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .12MQ NQMQP NQH Ð=Ðìï=íïÐ=Ðî【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【变式】已知:如图,,,是经过点的一条直线,过点、B 分别作、,垂足为E 、F ,求证:.【答案与解析】证明:∵ ,∴∴∵∴∴BAC EAD B ECB=DE Ð=ÐìïÐ=Ðíïî90ACB Ð=°AC BC =CD C A AE CD ^BF CD ^CE BF=CD AE ^CD BF ^°=Ð=Ð90BFC AEC °=Ð+Ð90B BCF ,90°=ÐACB °=Ð+Ð90ACF BCF BACF Ð=Ð在和中∴≌()∴【总结升华】要证,只需证含有这两个线段的≌.同角的余角相等是找角等的好方法.题型四、全等三角形的判定4——“边边边”例8、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.BCF ∆CAE ∆ïîïíì=Ð=ÐÐ=ÐBC AC B ACE BFC AEC BCF ∆CAE ∆AAS BF CE =BF CE =BCF ∆CAE∆()(),,RP RQ PM QM RM RM ì=ï=íï=î已知公共边【答案】证明:连接DC ,在△ACD 与△BDC 中∴△ACD≌△BDC(SSS )∴∠CAD=∠DBC(全等三角形对应角相等)例9、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型五.直角三角形全等的判定“HL ”例10.如图,AB ⊥BD ,CD ⊥BD ,AD =BC ,则能直接判断Rt △ABD ≌Rt △CDB 的理由是( )()AD BC AC BDCD DC ì=ï=íï=î公共边AB AC AD AEBD CE =ìï=íï=îA.HL B.ASA C.SAS D.SSS【分析】由“HL”可证Rt△ABD和Rt△CDB.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.【点评】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法是本题的关键.【变式1】.如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.【变式2】如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件 ,使Rt△ABC和Rt△EDF全等.【分析】根据全等三角形的判定解答即可.【解答】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.题型六.全等三角形的判定与性质例11.(2022•南通模拟)如图,在△ABC中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为D,E,BD,CE 相交于点O,且∠BAE=∠CAD.(1)求证:△ABD≌△ACE;(2)若∠BOC=140°,求∠OBC的度数.【分析】(1)由“AAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,即可求解.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,∵AD⊥BD,AE⊥EC,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)解:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∵∠BOC=140°,∴∠OBC=∠OBC=20°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.【变式1】.如图,已知AB=CB,AD=CD.求证:∠A=∠C.【分析】连接BD,利用边边边证明△ABD≌△CBD,由全等三角形的性质即可求解.【解答】证明:连接BD,在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠A=∠C.【点评】此题主要考查了全等三角形的性质与判定,此题主要利用边边边判定三角形全等.【变式2】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAD=∠CAE.求证:∠ABD=∠ACE.【分析】由“SAS”可证△ABD≌△ACE,可得结论.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.题型7.全等三角形的应用例12.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段 的长度就是A、B两点间的距离(2)请说明(1)成立的理由.【分析】(1)根据题意确定DE=AB;(2)根据已知条件得到两个三角形全等,利用全等三角形的性质得到结论即可.【解答】解:(1)线段DE的长度就是A、B两点间的距离;故答案为:DE;(2)∵AB⊥BC,DE⊥BD∴∠ABC=∠EDC=90°又∵∠ACB=∠DCE,BC=CD∴△ABC≌△CDE(ASA)∴AB=DE.【点评】本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.【变式】为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图①,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图②,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.(1)甲、乙两同学的方案哪个可行?(2)请说明方案可行的理由.【分析】(1)甲同学作出的是全等三角形,然后根据全等三角形对应边相等测量的,所以是可行的;(2)甲同学利用的是“边角边”,乙同学的方案只能知道两三角形的两边相等,不能判定△ABD与△CBD全等,故方案不可行.【解答】解:(1)甲同学的方案可行;(2)甲同学方案:在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD;乙同学方案:在△ABD和△CBD中,只能知道DC=DA,DB=DB,不能判定△ABD与△CBD全等,故方案不可行.【点评】本题主要考查了全等三角形的应用,熟练掌握全等三角形判定的“SAS”定理是解决问题的关键.一.选择题(共8小题)1.(2022秋•南京期末)已知:如图,AC=DF,BC=EF,下列条件中,不能证明△ABC≌DEF的是( )A.AC∥DF B.AD=BEC.∠CBA=∠FED=90°D.∠C=∠F【分析】根据三角形的判定定理,结合题目所给条件进行判定即可.【解答】解:A、由AC∥DF可得∠A=∠FDB,再加上条件AC=DF,BC=EF,不能证明△ABC≌DEF,故此选项正确;B、AD=BE可得AB=DE,再加上条件AC=DF,BC=EF,可利用SSS定理证明△ABC≌DEF,故此选项错误;C、∠CBA=∠FED=90°可利用HL定理证明△ABC≌DEF,故此选项错误;D、∠C=∠F可利用SAS定理证明△ABC≌DEF,故此选项错误;故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2022秋•启东市校级月考)不能判定两个直角三角形全等的条件是( )A.两个锐角对应相等B.两条直角边对应相等C.斜边和一锐角对应相等D.斜边和一条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、全等三角形的判定必须有边的参与,故本选项错误,符合题意;B、符合判定SAS,故本选项正确,不符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定HL,故本选项正确,不符合题意.故选:A.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2022秋•阜宁县期末)如图,已知∠ABC=∠BAD,再添加一个条件,仍不能判定△ABC≌△BAD的是( )A.AC=BD B.∠C=∠D C.AD=BC D.∠ABD=∠BAC【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC ≌△BAD即可.【解答】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法:SSS、SAS、ASA、AAS.4.(2022秋•江都区期末)如图,已知AB=AD.下列条件中,不能作为判定△ABC≌△ADC条件的是( )A.BC=DC B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、AB=AD,BC=DC,再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2022秋•扬州期中)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、3或3、4去均可【分析】带1、4可以用“角边角”确定三角形;带3、4也可以用“角边角”确定三角形.【解答】解:带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,故选:C.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.6.(2022秋•宿豫区期末)如图,小明和小丽用下面的方法测量位于池塘两端的A、B两点的距离;先取一个可以直接到达点A的点C,量得AC的长度,再沿AC方向走到点D处,使得CD=AC;然后从点D 处沿着由点B到点A的方向,到达点E处,使得点E、B、C在一条直线上,量得的DE的长度就是A、B 两点的距离.在解决这个问题中,关键是利用了△DCE≌△ACB,其数学依据是( )A.SAS B.ASA C.AAS D.ASA或AAS【分析】直接利用全等三角形的判定方法,进而分析得出答案.【解答】解:由题意可得:AC=DC,∠ACB=∠DCE,∠ABC=∠DEC,∠BAC=∠EDC,故由AC=DC,∠ACB=∠DCE,∠ABC=∠DEC或AC=DC,∠ACB=∠DCE,∠BAC=∠EDC都可以得出△DCE≌△ACB,故其数学依据是ASA或AAS.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022秋•高邮市期末)如图,已知∠1=∠2,若用“AAS”证明△ACB≌△BDA,还需加上条件( )A.AD=BC B.BD=AC C.∠D=∠C D.∠DAB=∠CBA【分析】根据图形找出公共边AB=BA,再根据全等三角形的判定定理AAS得出即可.【解答】解:A.AD=BC,BA=AB,∠1=∠2不符合全等三角形的判定定理,不能推出△ACB≌△BDA,故本选项不符合题意;B.AB=BA,∠1=∠2,AC=BD,符合全等三角形的判定定理SAS,不符合AAS定理,故本选项不符合题意;C.∠D=∠C,∠1=∠2,AB=BA,符合全等三角形的判定定理AAS,能推出△ACB≌△BDA,故本选项符合题意;D.∠DAB=∠CBA,AB=BA,∠1=∠2,符合全等三角形的判定定理ASA,能推出△ACB≌△BDA,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS,ASA,AAS,SSS,两直角三角形全等还有HL.8.(2022秋•邳州市期末)如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.二.填空题(共4小题)9.(2022秋•泗洪县期中)如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 AB=DE ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.10.(2022秋•启东市校级月考)如图,在△ABC和△DEF中,∠A=∠D=90°,AC=DE,若要用“斜边直角边(H.L.)”直接证明Rt△ABC≌Rt△DEF,则还需补充条件: BC=EF .【分析】此题是一道开放型题目,根据直角三角形的全等判定解答即可.【解答】解:在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故答案为:BC=EF【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,题目比较典型,难度适中.11.(2022秋•江宁区校级月考)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是 AB=DC或AC=DB ,理由是 “HL” (填简称).【分析】根据直角三角形全等的判定方法,即可解答.【解答】解:∵∠A=∠D=90°,BC=BC,∴再添加:AB=DC,∴Rt△ABC≌Rt△DCB(HL),∵∠A=∠D=90°,BC=BC,∴再添加:AC=BD,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =DC 或AC =BD ,HL .【点评】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解题的关键.12.(2022秋•江阴市期中)如图,在△ABC 中,AB =3,AC =5,AD 是边BC 上的中线,AD =2,则△ACB 的面积是 6 .【分析】延长AD 到E ,使DE =AD ,连接BE ,证△ADC ≌△EDB (SAS ),得BE =AC =5,∠CAD =∠E ,再由勾股定理的逆定理证∠EAB =90°,即可解决问题.【解答】解:如图,延长AD 到E ,使DE =AD ,连接BE ,∵D 为BC 的中点,∴CD =BD ,在△ADC 与△EDB 中,,∴△ADC ≌△EDB (SAS ),∴BE =AC =5,∠CAD =∠E ,又∵AE =2AD =4,AB =3,∴BE 2=AE 2+AB 2,∴△ABE 是直角三角形,∠EAB =90°,则S △ACB =2S △ABD =2××2×3=6,故答案为:6.【点评】此题考查了全等三角形的判定与性质、勾股定理的逆定理以及三角形面积等知识,熟练掌握全等三角形的判定与性质是解题的关键.三.解答题(共5小题)13.(2022秋•泗阳县期中)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可;(2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6(cm),BE=7×2=14(cm),∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.14.(2022秋•鼓楼区期中)如图,点B、C、E、F在同一条直线上,AF、DE相交于点G,∠B=∠C=∠AGD=90°,BF=CD.求证:AF=DE.。
探索三角形全等的条件-边边边
4.如果只有三个条件可以分 几种情况?
5.为什么三角形具有稳定性?
三探索活动
一个条件
1.都给边:一条边 2.都给角:一个角
探索1 只给一个条件
已知一条边
不一定全等
5cm 已知一个角
5cm
5cm
不一定全等
30。
30。
30。
结论:只给一个条件,所画的三角形不一定全等。
三探索活动
一个条件
四讲授新知
三角形全等的条件一:
三边分别相等 的两个三角形全等, 简写为“边边边”或“SSS”
A
D
B
C
E
F
符号语言:
在△ABC与△DEF中,
AB DE BC EF
AC DF ∴△ABC≌△DEF(SSS)
A
D
BCEFra bibliotekF例.下图,△ABC是一个刚架,AB=AC,AD 是连接A与BC中点D的支架。
6. 如 图 , A B = C D , 若 添 加 条 件 _ _ _ _ _ _ _ , 可 根 据 “SSS”证得△ABC≌△CDA.
分层作业:
A组:习题4.6 第2、3题; 复习题第8题;
B组:习题4.6 第2、3题; 复习题第6题;
C组:习题4.6 第2、3题;
如果有一块玻璃,被打碎了一角,能根据 残缺玻璃中的数据来制作一块与原来形状大小 都相同的玻璃吗?需要哪些数据呢?
求证:△ABC≌ △ADC
证明:在△ABC和△ADC中 A
AB=AD ( 已知 )
B
D
BC=DC (已知 )
AC= AC (公共边 )
∴ △ABC ≌ △ADC(SSS) C
全等三角形开放探索型问题例析
口湖北董迎新开放探索型试题重在开发思维,促进创新,提高数学素养,是近几年中考试题的热点.中考数学试题中关于全等三角形的探索型问题更是倍受关注.现举例分类说明.‘。
一一、探索条件犁、此类题给出了结论.要求探索使该结论成立所具备的条件.解这类题时。
一般应依据三角形全等的判定方法,补充所缺少的条件.例1如图1。
△A B C 中,点D 在B C 上,点E 在A 曰上,B D =B E ,要使△A D B 錾△C E B .还需添加一个条件.;f 1)给出下列四个条件:①A D =C E ;②A E =C D ;③厶B A C =£B C A :④£A D B =£C EB .请你从中选出一个能使△A D B 鲨△C EB的条件.并给出证明.(2)在(1)中所给出的条件中,能使△A D B 錾△蚀B 的还有哪些?B DC 图1直接在题后横线上写出满足题意的条件序号:.暖珏■这是一道探索条件、补充条件的开放型试题.根据“探索三角形全等的条件”,添加条件②,利用SA S 可以判定A A D B 兰A C E B .若添加条件③.利用SA S 可以判定.若添加条件④,可以用A SA 判定.(1)添加条件②,③,④中任一个即可,以添加②为例证明.证明:.A E=C D ,B E =B D ,.‘.A B =C &又Z A B D =£C B E ,B E =B D ,.‘.△A D B 錾△C 胎(SA S).(2)可填③④.△—●=、结论齐放墅’+i此类题给出了限定条件,但结论并不唯,呈现多样性,要求根据所给条件探索可能得到的结论.例2如图2,A 、E 、B 、D 在同一直线上,在A A B C 和△D EF 中,A B =D E ,A C =D F ,A c //D F 、(1)求证:△A B C 錾△D E F .(2)你还可以得到的结论是’(写出一个即可,不再添加其他线段。
不再标注或使用其他字母).,,一暖囫(1)证明:。
八年级上册数学《全等三角形》知识归纳与题型突破含解析
第十二章 全等三角形知识归纳与题型突破(题型清单)一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定01 思维导图02 知识速记五、全等三角形的证明思路SAS HLSSS AAS SAS ASAAAS ASA AAS→ → → →→ → → → → → 找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、 角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。
1.3探索三角形全等的条件(6)(分层练习)解析版
1.3 探索三角形全等的条件(6)分层练习1.图中是全等的三角形是()A.甲和乙B.乙和丁C.甲和丙D.甲和丁【答案】B【分析】比较三条边的长度一致的就是全等三角形.【详解】解:比较三角形的三边长度,发现乙和丁的长度完全一样,即为全等三角形,故选:B.2.将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是()A.SSS B.SAS C.ASA D.AAS【答案】A【分析】根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.【详解】解:三根木条即为三角形的三边长,即为利用SSS确定三角形,故选:A.3.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④【答案】A【分析】根据全等三角形的SSS判定条件解答即可.【详解】解:∵AE=FB,∴AE+BE=FB+BE,∴AB=FE,在△ABC和△FED中,AC=FDBC=ED,AB=FE∴△ABC≌△FED(SSS),∵AE=BE和BF=BE推不出AB=FE,∴可利用的是①或②,故选:A.4.如图,在△ABC中,AB=AC,D为BC的中点,则下列结论中:①△ABD≌△ACD;②∠B=∠C;③AD平分∠BAC;④AD⊥BC,其中正确的个数为( )A.1个B.2个C.3个D.4个【答案】D【分析】由D为BC中点可得BD=CD,利用SSS即可证明△ABD≌△ACD,根据全等三角形的性质逐一判断即可.【详解】∵D为BC的中点,∴BD=CD,又∵AB=AC,AD为公共边∴△ABD≌△ACD(SSS),故①正确,∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD⊥BC,故②③④正确.综上所述:正确的结论有①②③④共4个,故选D.【答案】3【分析】根据已知利用全等三角形的判定方法SSS得出全等三角形即可.【详解】解:全等三角形共有3对,△ACE≅△ADE,△ACB≅△ADB,△ECB≅△EDB,理由:在△ECB和△EDB中EB=EBEC=ED,BC=BD∴△ECB≅△EDB(SSS),在△ACE和△ADE中AC=ADAE=AE,EC=ED∴△ACE≅△ADE(SSS),在△ACB和△ADB中AB=ABAC=AD,BC=BD∴△ACB≅△ADB(SSS).故答案为:3.8.如图,点E、F在BD上,且AB=CD,BF=DE,AE=CF,试说明:点O是AC的中点.请你在横线上补充其推理过程或理由.解:因为BF=DE,所以BF―EF=DE―EF,因为AB=CD,AE=CF,所以_______________(理由:SSS)所以∠B=∠D(理由:_________________)因为∠AOB=∠COD(理由:_________________)所以△ABO≌△CDO所以__________________(理由:全等三角形对应边相等)所以点O是AC中点.【答案】△ABE≌△CDF,全等三角形对应角相等,对顶角相等,AO=CO【分析】由“SSS”可证△ABE≌△CDF,可得∠B=∠D,由“AAS”可证△ABO≌△CDO,可得AO=CO,即可求解.【详解】解:因为BF=DE,所以BF―EF=DE―EF,因为AB=CD,AE=CF,所以△ABE≌△CDF(理由:SSS),所以∠B=∠D(理由:全等三角形对应角相等),因为∠AOB=∠COD(理由:对顶角相等),所以△ABO≌△CDO,所以AO=CO(理由:全等三角形对应边相等),所以点O是AC中点,故答案为:△ABE≌△CDF,全等三角形对应角相等,对顶角相等,AO=CO.9.如图,AB=AD,BC=CD,AC、BD相交于E,由这些条件可以得到若干结论,请你写出其中3个正确结论(不要添加字母和辅助线,并对其中一个给出证明)结论1:结论2:结论3:证明:【答案】结论1:△ABC≌△ADC结论2:∠BCA=∠DCA结论3:AC平分∠BAD证明结论3,见详解【分析】结合题意,得出三个结论;利用“SSS”证明△ABC≌△ADC,由全等三角形的性质即可证明AC平分∠BAD.【详解】结论1:△ABC≌△ADC结论2:∠BCA=∠DCA结论3:AC平分∠BAD证明结论3:在△ABC和△ADC中,AB=ADAC=ACCB=CD,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD.10.如图,AD=CB,E,F是AC上两动点,且有DE=BF(1)若E,F运动如图①所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若E,F运动如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E,F不重合,AD和CB平行吗?说明理由.【答案】(1)详见解析;(2)成立,证明详见解析;(3)AD与CB不一定平行,理由详见解析.【分析】(1)根据AF=CE可得AF+EF=CE+EF,即AE=CF,利用SSS即可证明△ADE≌△CBF;(2)根据AF=CE可得AF-EF=CE-EF,即AE=CF,利用SSS即可证明△ADE≌△CBF;(3)根据已知两个条件,不能判定△ADE≌△CBF,不能确定∠A=∠C,即可得AD和CB不一定平行.【详解】(1)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,在△ADE和△CBF中AD=CB DE=BF AE=CF,∴△ADE≌△CBF.(2)成立.理由如下:∵AF=CE,∴AF-EF=CE-EF,即AE=CF,在△ADE和△CBF中AD=CB DE=BF AE=CF,∴△ADE≌△CBF.(3)AD与CB不一定平行,理由如下:∵只给了两组对应相等的边,∴不能判定△ADE≌△CBF,∴不能判定∠A与∠C的大小关系,∴AD与CB不一定平行.11.中国现役的第五代隐形战斗机歼—20的机翼如图,为适应空气动力的要求,两个翼角∠A,∠B必须相等. 制造中,工作人员只需用刻度尺测量PA=PB,CA=CB就能满足要求,说明理由.【分析】连接PC,证明△APC≌△BPC(SSS)即可证明∠A=∠B;【详解】解:如图所示,连接PC,∵PA=PB,PC=PC,AC=BC,∴△APC≌△BPC(SSS),∴∠A=∠B;12.如图,在四边形ABCD中,CB⊥AB于点B,CD⊥AD于点D,点E,F分别在AB,AD上,AE AF=,CE=CF.若AE=8,CD=6,求四边形AECF的面积.【答案】)8【分析】连接AC ,证明△ACE ≌△ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF =S △ACF +S △ACE 求解即可;【详解】解:连接AC ,如图,在△ACE 和△ACF 中AE =AF CE =CF AC =AC∴△ACE ≌△ACF (SSS ).∴S △ACE =S △ACF ,∠FAC =∠EAC .∵CB ⊥AB ,CD ⊥AD ,∴CD =CB =6.∴S △ACF =S △ACE =12AE ·CB =12×8×6=24.∴S 四边形AECF =S △ACF +S △ACE =24+24=48.(1)【旧题重现】《学习与评价》19P 有这样一道习题:如图①,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的BC 、B C ¢¢边上的中线,AD A D ¢¢=,AB =A ′B ′,BC =B ′C ′.求证:△ABC≌△A ′B ′C ′.证明的途径可以用下面的框图表示,请填写其中的空格..(2)【深入研究】如图②,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的BC 、B C ¢¢边上的中线,AD A D ¢¢=,AB =A ′B ′,AC =A ′C ′.判断△ABC 与△A ′B ′C ′是否仍然全等.(3)【类比思考】下列命题中是真命题的是 .(填写相应的序号)①两角和第三个角的角平分线分别相等的两个三角形全等;②一边和这条边上的中线以及高分别相等的两个三角形全等;③斜边和斜边上的高分别相等的两个直角三角形全等;④两边和第三边上的高分别相等的两个三角形全等;⑤底边和一腰上的中线分别相等的两个等腰三角形全等.【答案】(1)①BD =12BC ;②B ′D ′=12B ′C ′;③AD =A ′D ′;④∠B =∠B ′(2)全等,见解析(3)①②③⑤【分析】(1)根据三角形中线的定义及全等三角形的判定与性质可得出答案;(2)延长AD 至E ,使DE =AD ,连接BE ,延长A ′D ′至E ′,使D ′E ′=A ′D ′,连接B ′E ′.证明△ADC≌△EDB(SAS ).由全等三角形的性质得出AC =EB ,∠DAC =∠E ,同理A ′C ′=E ′B ′,∠D ′A ′C ′=∠E ′.证明△ABE≌△A ′B ′E ′(SSS ).得出∠BAE =∠B ′A ′E ′,∠E =∠E ′.则可证明△ABC≌△A ′B ′C ′(SAS );(3)根据全等三角形的判定方法可得出结论.【详解】(1)证明:∵AD 是△ABC 的中线,∴BD =12BC ,∵A ′D ′分别是△A ′B ′C ′的中线,∴B ′D ′=12B ′C ′,∵BC =B ′C ′,∴BD =B ′D ′,在△ABD 和△A ′B ′D ′中,BD =B ′D ′AD =A ′D ′AB =A ′B ′,∴△ABD≌△A ′B ′D ′(SSS ),∴∠B =∠B ′,在△ABC 和△A ′B ′C ′中,AB =A ′B ′∠B =∠B ′BC =B ′C ′,∴△ABC≌△A ′B ′C ′(SAS ).故答案为:①BD =12BC ;②B ′D ′=12B ′C ′;③AD =A ′D ′;④∠B =∠B ′;(2)解:△ABC 与△A ′B ′C ′仍然全等,理由如下:延长AD 至E ,使DE =AD ,连接BE ,延长A ′D ′至E ′,使D ′E ′=A ′D ′,连接B ′E ′.∵AD 和A ′D ′分别是△ABC 和△A ′B ′C ′的BC 和B ′C ′边上的中线,∴BD =CD ,B ′D ′=C ′D ′.在△ADC 和△EDB 中,AD =DE ∠ADC =∠BDE BD =CD,∴△ADC≌△EDB(SAS ).∴AC=EB,∠DAC=∠E,同理A′C′=E′B′,∠D′A′C′=∠E′.∵AC=A′C′,∴EB=E′B′.∵AD=A′D′,AD=DE,A′D′=D′E′,∴AE=A′E′.∵AB=A′B′,∴△ABE≌△A′B′E′(SSS).∴∠BAE=∠B′A′E′,∠E=∠E′.∴∠DAC=∠D′A′C′.∴∠BAC=∠B′A′C′,又AB=A′B′,AC=A′C′,∴△ABC≌△A′B′C′(SAS),(3)①两角和第三个角的角平分线分别相等的两个三角形全等,正确,符合题意;②一边和这条边上的中线以及高分别相等的两个三角形全等,正确,符合题意;③斜边和斜边上的高分别相等的两个直角三角形全等,正确,符合题意;④两边和第三边上的高分别相等的两个三角形全等,说法错误,如图,在△ABC与△AB C′中,AB=AB,AC=A C′,高AD相同,但是△ABC与△AB C′不全等.故④不符合题意;⑤底边和一腰上的中线分别相等的两个等腰三角形全等,正确,符合题意.故答案为:①②③⑤.(初步探索)(1)如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小明同学探究此问题的方法是:延长FD 到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是___________;(灵活运用)(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由.【答案】(1)∠BAE+∠FAD=∠EAF,证明见解析(2)成立,理由见解析【分析】(1)如图1,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,得到∠BAE=∠DAG,AE=AG,再证明△AEF≌△AGF,得到∠EAF=∠GAF =∠DAG+∠DAF =∠BAE+∠DAF 即可;(2)同(1)证明即可.【详解】(1)解:∠BAE+∠FAD=∠EAF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠B=∠ADC=90°,∴∠ADG=∠B=90°,∵DG=BE,AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD,DG=BE,∴EF=DG+FD=GF,又∵AE=AG,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF =∠DAG+∠DAF =∠BAE+∠DAF.故答案为:∠BAE+∠FAD=∠EAF;(2)解:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF =∠DAG+∠DAF =∠BAE+∠DAF.。
初中数学全等三角形的创新题五种
全等三角形的创新题五种葛余常三角形全等是初中几何的最基础也是最重要的知识。
近年来,有关全等三角形的创新题目百花齐放,令人目不暇接。
为帮助同学们熟悉新题型,迎接新挑战,特采撷部分中考题并加以浅析,供大家参考。
一. 信息迁移型例1. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,且点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A B C A →→→及A B C A 1111→→→环绕时,若运动方向相同,则称它们是真正合同三角形(如图1所示);若运动方向相反,则称它们是镜面合同三角形(如图2所示),两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180°。
图1图2下列各组合同三角形中,是镜面合同三角形的是( )。
解:由镜面合同三角形的定义和性质知,应选B 。
说明:此类题要求把数学知识作横向或纵向迁移,才能作出判断。
解题时,关键是准确理解题目中所涉及到的新概念的意义和性质,并能准确地应用于解答相关问题。
常用的方法有直接法、排除法等。
二. 猜想证明型例2. 已知:如图3所示,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE=BF 。
请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。
图3分析:此题为探索、猜想、判断并证明的试题,我们要认真观察、作出判断再加以说明;本题结构较新改变了过去的固有模式,创造性地激活了学生的思维。
连结AF ,猜想AF=AE证明:四边形ABCD 是菱形∴=AB AD∴∠=∠∴∠=∠=∠=∠=∴≅∴=ABD ADBABF ADEABF ADE AB AD ABF ADE BF DEABF ADEAF AE 在和中,,∆∆∆∆三. 运动变化型例3. 如图4a 所示,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE 。
全等三角形_探究题_(各种题型非常全)
探究题讲练类型1.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°2.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.683.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,两直角边与坐标轴交于点A和点B。
(1)求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,两直角边与坐标轴交于点A和点B,求OA-OB的值;类型2.线段间的数量关系基础练习1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.2.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.3.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.例1.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC (或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.:例2.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系.例3.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.练习.已知:△ABC中,D为BC中点,E为AB上一点,F为AC上一点,ED⊥DF,连接EF,求证:BE+FC>EF.例4.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE ______CF;EF __________|BE-AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_________________,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).例5.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点.(1)求图①中,∠APD的度数______________;(2)图②中,∠APD的度数为______________,图③中,∠APD的度数为________________;(3)根据前面探索,你能否将本题推广到一般的正n边形情况?若能,写出推广问题和结论;若不能,请说明理由.练习:1.(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为______________;∠APB的大小为______________;.(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是____________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;例7.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形中的探索题型
一、条件探索型
例1 如图所示,AB ∥ED ,AB =ED ,请问:当满足什么条件时,△ABC 与△DEF 全等,试加以证明.
分析:本题中已知条件AB ∥ED 得∠B =∠E ,再加上已知条件AB =ED ,根据全等三角形的判定规律,可考虑利用“SAS ”,“ASA ”,“AAS ”证△ABC 与△DEF 全等,所以满足的条件不止一个,比如BF =CE 等.
解:情况1:可添加∠A =∠D ,∵AB ∥ED ,∴∠B =∠E ,又∵AB =ED
∴△ABC ≌△DEF (ASA )
情况2:可添加BC =EF (如果BF =CE 可由等式性质得到BC =EF ),
∵AB ∥ED ,∴∠B =∠E ,又∵AB =ED .
∴△ABC ≌△DEF (SAS )
情况3:可添加∠ACB =∠CFE ,∵AB ∥ED ,∴∠B =∠E ,又∵AB =ED
∴△ABC ≌△DEF (AAS )
评析:这类题型结论明确,条件不全,解题时应仔细分析已知条件并结合图形,探索其应满足的具体条件,通过执果索因,即可获解.
二、结论探索型
例2 (常州中考题)如图2,已知△ABC 为等边三角形,D ,E ,F 分别在边BC ,CA ,AB 上,且△DEF 也是等边三角形,除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.
分析:本题是一题结论开放题,要得到正确的结论需要根据等边三角形具有的性质,结合全等三角形的有关知识解决.
解:图中还有相等线段的线段是:
AE =BF =CD ,AF =BD =CE
因为△ABC 与△DEF 都是等边三角形
所以∠A =∠B =∠C =60°
∠EDF =∠DEF =∠EFD =60°,DE =EF =FD
又因为∠CED +∠AEF =120°
∠CDE +∠CED =120°
图
2 图1
所以∠AEF=∠CDE同理,得∠CDE=∠BFD
所以△AEF≌△BFD≌△CDE(AAS)
所以AE=BF=CD,AF=BD=CE
评析:这是一道结论探索题,应特别注意根据图形分析题中的已知条件及其产生的结论,充分找出它们之间的联系,结合全等三角形的判定即可得证.。