最新六年级上数学培优训练含答案
六年级上数学培优训练含详细答案
六年级上数学培优训练含详细答案一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
小学六年级上学期期末数学培优试题(带答案)
小学六年级上学期期末数学培优试题(带答案)一、填空题1.填上合适的单位。
(1)一间教室的内部空间约是60( )。
(2)一只墨水瓶的容积约是60( )。
(3)一瓶酱油的质量约是500( )。
(4)一桶纯净水的体积约是20( )。
2.某小学六年级有400人,他们的体育达标情况如图所示,获得良好的比优秀的多( )人。
3.小丽4天做完了寒假作业的14,照这样计算,她完成寒假作业还要( )天。
4.杨叔叔骑自行车45分钟行了25千米,他每分钟行______千米,行1千米需要______分钟。
5.如图,以第一个圆的半径为直径画出第二个圆,再以第二个圆的半径为直径画出第三个圆,则第三个圆的面积(图中阴影部分)占第一个圆的面积的( )。
(填几分之几)6.甲、乙两车行完,A B 两地间全程所用时间的比是2∶3,现在甲、乙两车同时从,A B 两地相向开出,相遇时,乙车比甲车多行驶120千米。
相遇时乙车行驶了( )千米。
(甲、乙两车的速度不变)7.小明买了3支铅笔和2支钢笔,钢笔的单价是铅笔的3倍。
1支钢笔的钱可以买( )支铅笔,假设钱全部用来买铅笔,可以买( )支。
8.在括号里填上“>”“<”或“=”。
510117÷( )511 710811⨯( )108117÷ 514÷( )45 5544⨯( )5544÷ 9.六(1)班今天48人到校上课,1人病假,1人事假,六(1)班今天的出勤率是( )。
10.如下图,继续摆下去,第50个图形有( )根小棒。
11.下面的阴影部分是扇形的是( )。
A .B .C .12.已知:2321353a b c d ⨯=⨯=÷=,且a b c d 、、、都不等于0,其中最小的数是( )。
A .b B .a C .c D .d 13.在2∶3中,如果前项增加10,要使比值不变,后项应增加( )。
A .12 B .13 C .14 D .15 14.六(一)班期末考试及格率是92%,及格人数与不及格人数的比是( )。
最新苏教版小学六年级数学上册期中综合拓展培优提升测评试卷(附答案及答题卡)
最新苏教版小学六年级数学上册期中综合拓展培优提升测评试卷(附答案及答题卡)时间:90分钟 满分:100分注意事项:1.亲爱的同学:答题前填写好自己的学校、班级、姓名等信息。
2.请将答案正确填写在答题区域,注意书写工整,格式正确,卷面整洁。
3.经过两周的认真学习,你一定又掌握了不少新的知识,你作好准备了吗?现在就让我们带着希望、带着微笑来挑战自己吧!相信你会做得很棒!记住:要细心哦! 4.考试结束,将本试卷和答题卡一并交回一.用心思考,正确填空。
(满分20分,每小题2分)1.(2分)如图是一块铁皮,沿虚线弯折后可以焊接成一个无盖的长方体铁盒(接头处忽略不计)。
这个无盖铁盒的表面积是 2dm ,容积是 L 。
2.(2分)一个长方体,如果高增加2厘米,就变成一个正方体.这时,表面积比原来增加56平方厘米.原来长方体的体积是 立方厘米。
3.(2分)1只小熊的重量等于2只小狗的重量,4只小兔的重量又等于2只小狗的重量,一只小熊8千克,一只小狗重 千克,一只小兔重 千克。
4.(2分)大象的寿命是x 年,海龟的寿命比大象的2倍多20年。
海龟的寿命是 年。
如果海龟的寿命是180年,可列方程为 。
5.(2分)一个长方体的饼干盒,长10厘米,宽6厘米,高12厘米。
如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有 平方厘米。
6.(2分)一本书有150页,看了它的35,看了 页,还剩下 没看。
7.(2分)成人体内血液约是体重的113,儿童体内血液约是体重的112,血液中约含有1225的水。
李叔叔的体重是78kg ,他的血液中约含有 千克水。
8.(2分)一个三角形的一个内角的度数是60︒,另两个内角的度数的比是1:2,这个三角形是 三角形.9.(2分)如果a 与b 互为倒数,且2b ac=,那么c = 。
10.(2分)57kg黄豆可以榨油528kg,,照这样计算,1kg黄豆可以榨油kg,榨1千克油需要kg黄豆。
六年级上册数学培优试题含详细答案
六年级上册数学培优试题含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.4.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.5.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成?【答案】解:===(天)答:要用天才能完成。
人教版小学数学六年级上册期末质量培优试题测试卷(含答案)
人教版小学数学六年级上册期末质量培优试题测试卷(含答案)一、填空题1.填上合适的单位。
(1)一间教室的内部空间约是60( )。
(2)一只墨水瓶的容积约是60( )。
(3)一瓶酱油的质量约是500( )。
(4)一桶纯净水的体积约是20( )。
2.20千克油用去34千克油后,还剩( )千克;20千克油用去34后,还剩( )千克。
3.一堆货物共10吨,第一次运走14,第二次运走4吨,还剩( )吨。
4.学校操场跑道一圈长25千米,小强跑1圈用了112小时,小强平均每小时跑( )千米。
5.下图中有六个小正方形,它们的边长是一组斐波那契数列,分别是:1,1,2,3,5,8(单位:cm),用这些数作半径,可画出美妙的螺旋线。
请计算图中螺旋线的长度是( )cm。
(结果可用含有 的式子表示)。
6.把一根24厘米长的铁丝围成长方形,长与宽的比是3∶1,这个长方形的面积是( )平方厘米。
7.小红、小明、小玲都买了笔记本和钢笔,三人用的钱一样多。
小红小明小玲笔记本/本1269钢笔/支35?(2)小玲买了( )支钢笔。
(3)如果每人用去84元,那么每支钢笔( )元。
8.有5只同样的玩具小猪和18只同样的玩具小羊,总价是396元,已知1只玩具小猪的价格和3只玩具小羊的价格相等。
假设396元都买玩具小羊,能买( )只,每只玩具小羊( )元;假设396元都买玩具小猪,能买( )只,每只玩具小猪( )元。
9.一个三角形三个内角度数的比是1∶3∶6,其中最大的角是( )度,这是一个( )三角形。
(填锐角、直角或钝角)10.观察如图所示图形,照这样摆下去,第6个图中有( )个灰色方块,第n个图中有( )个灰色方块。
11.下图是3个相同的圆,半径都是2cm,连接3个圆心,阴影面积是()。
A.212.56cm B.26.28cm C.答案A、B都不对12.A、B、C是非零自然数,且A×65=B×87=C×109,那么()。
六年级上册数学培优试题含答案
则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1, 故答案为:1 【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两 个数的大小关系,根据其选择算式.
3.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:2212=3,则 3 就是智慧数;22-02=4,则 4 就是智慧数. 从 0 开始第 7 个智慧数是________ ;不大于 200 的智慧数共有________ .
【解析】【分析】 可以这样来看,将溶液中的水剔出或者说蒸发掉,那么所得到的溶液就 是盐溶在酒精中。(事实上这种情况不符合物理规律,但这只是假设)。这样就能分别求 出甲、乙溶液中盐占盐和酒精的百分之几。根据配制成溶液中酒精是盐的 3 倍先计算出配 制后盐占盐和酒精的百分之几。分别求出 1 千克甲、乙溶液中盐和酒精的质量,然后确定 需要加入的乙溶液的重量即可。
完成总工程量 “1” “1” “1”
可得
, 所以
,
。因为甲单
独做需 率为
天,所以工作效率为 , 于是乙的工作效率为 。
, 丙的工作效
于是,一个周期内他们完成的工程量为
。则
需
个完整周期,剩下
的工程量;正好甲、乙各一天
完成.所以第二种可能是符合题意的。这样用总工作量除以三人的工作效率和即可求出合 作完成的时间。
, 还剩
下
, 而甲每天完成
, 所以剩下的 不可能由甲 1 天
完成,即所得到的结果与假设不符,所以假设不成立。 第二种可能:
完整周期 不完整周期
小学六年级数学培优专题训练含详细答案
小学六年级数学培优专题训练含详细答案一、培优题易错题1.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。
【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。
然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。
2.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。
根据纯酒精的量可列方程:所以丙缸中纯酒精的量是:(千克)。
答:丙缸中纯酒精的量是12千克。
【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。
等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。
3.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。
六年级数学上册培优试卷含详细答案
六年级数学上册培优试卷含详细答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。
数学小学六年级上学期期末培优试题测试题(附答案解析)
数学小学六年级上学期期末培优试题测试题(附答案解析)一、填空题1.填上合适的单位。
(1)课桌高约70( );(2)数学书封面面积约5( );(3)牙膏盒的体积约180( );(4)小明的体重约45( )。
2.20千克油用去34千克油后,还剩( )千克;20千克油用去34后,还剩( )千克。
3.一本故事书有108页,小明第一天读了全书的16,第二天读了余下的19,第三天应从第________页读起。
4.150厘米的23是( )厘米,( )公顷的16是110公顷。
5.(如下图)在大圆中画4个相等的小圆,其中大圆周长是25.12厘米,那么阴影部分的周长是____厘米.6.小刚和小勇的画片张数的比是4∶5。
如果小刚有32张画片,小勇有( )张画片;小勇送给小刚( )张,两人画片张数就同样多。
7.王大爷用3个竹筐和5个竹篮运回350千克橘子,已知每个竹筐装的橘子质量是竹篮的3倍。
每个竹筐装橘子( )千克,每个竹篮装橘子( )千克。
8.3根胡萝卜换1个大萝卜,9个大萝卜换3棵白菜,6棵白菜换( )根胡萝卜。
9.观察下列的点阵图,按规律填空,第10幅点阵图中的圆点数是( )。
第n幅点阵图中的圆点数是( )。
10.观察下面搭成的小正方形所用小棒的根数:根据你发现的规律,如果摆10个正方形,需要( )根小棒;搭n个小正方形,需要( )根小棒。
11.下面各图中的阴影部分,()是扇形。
A.B.C.D.12.如果a是一个大于零的自然数,那么下列各式中得数最大的是()。
A.a×78B.a÷78C.78÷a13.18.9%去掉百分号,这个数就()。
A.扩大到原来的100倍B.缩小到原来的1100C.大小不变14.甲数比乙数多20%,乙数与甲数的比是()。
A.5∶4 B.4∶5 C.6∶5 D.5∶6 15.下列选项中互为倒数的是()。
A.0.5和15B.45和14C.35和5316.如图,长方形的面积与圆的面积相等,如果长方形的长是6.28cm,圆的面积是()。
最新六年级上数学培优训练含详细答案
最新六年级上数学培优训练含详细答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):1日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
最新六年级上册数学培优试题含答案
最新六年级上册数学培优试题含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
最新六年级上册数学培优试题含详细答案
最新六年级上册数学培优试题含详细答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.5.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
六年级数学苏教版第一学期培优试卷及答案新版
六年级数学苏教版第一学期培优试卷及答案新版(60 分钟完卷, 满分 100 分)姓名班级得分一.填空题(每空2分,共16分) .1.圆的周长是直径的()倍 .2.一个挂钟分针长 5 厘米 , 它的尖端走了一圈是()厘米 .3.六( 1)班有 29 名男同学 ,21 名女同学 , 女同学占全班人数的()%4.甲数是 40, 乙数是 80, 甲数是乙数的()% .5.一个圆的半径扩大 2 倍 , 面积扩大()倍 .6.甲数是 5, 乙数是 4, 那么甲数比乙数多()% .7.把 5 克盐溶于 95 克水中 , 盐占盐水的()% .8.用相同长铁丝围成长方形 . 正方形和圆形 , 则围成的()面积最大 .二 . 选择题(每题 3 分 , 共 12 分) . (把正确答案的序号填在括号里. )1.100 比 80 大() .A .20%B.25%C.80%2.笑笑和调皮下学后一块儿回家 . 走了一段行程后 , 笑笑对调皮说:我己走了全程的 40% , 调皮说:我己走了全程的90% . ()先到家.A.笑笑B.调皮C.没法确立3.一台电冰箱的原价是 2100 元, 此刻按七折销售 , 求现价多少元?列式是().A . 2100÷70% B.2100×70% C.2100×( 1-70 %)4. 画一个周长是 18.84 厘米的圆 , 圆规的两脚之间的距离应当是()厘米.A.3B.6C.9D.12三. 判断题(每题 3 分, 共 12 分) . (正确的在括号里画“√” , 错的在括号里画“×”.)1.在 100 克水中放入 10 克盐 , 盐的重量占盐水重量的 10%. ( )2.假如甲比乙多 20%,则乙比甲必定少 20%. ()3.周长相等的两个圆 , 它们的面积也必定相等 . ()4.一种商品打“八五折”销售 , 也就是把这类商品优惠了15%. ()四.连线题(每题 4 分, 共 16 分):(将问题与相应的算式用线连结起来 . )六年级一班有男同学25 名, 女同学 20 名.①男同学人数是女同学的几倍?20÷25②女同学的人数是男同学的百分之几?( 25-20 )÷ 20③男同学比女同学多百分之几?25÷20④女同学比男同学少百分之几?( 25-20 )÷ 25五 . 实质应用( 1.2.3 每题 8 分每题10分,共44分).1.圆的周长为 12.56 米, 那么这个圆的半径是多少米?面积是多少平方米?2.一件商品降价 8 折销售 , 廉价了 84 元 , 原价是多少元?3.笑笑在银行存了 20000 元人民币 , 按期三年 , 年利率是 2.70 %. 到期时缴纳利息所得税 5%后 , 银行对付给笑笑本金和利息一共多少元?4.某村昨年植树 2400 棵, 比前年少 20%, 前年比昨年多百分之几?5.六年级有三勤学生 28 人, 是六年级学生人数的 1/6, 六年级学生人数占全校学生人数的 2/9. 全校有学生多少人 ?6.某手机店有甲乙两款手机 , 售价都是 990 元 , 甲款手机是新品 , 赚了 10%,乙款手机是旧款, 赔了10%,假如今日这两款手机各售出一部, 这家手机店是赚了仍是赔了?参照答案第一题1. ∏2. 15.73. 424. 505. 46. 257. 58.圆第二题1. B2. B3. B4. A第三题1. ×2.×3.√4.√第四题①连 3②连 1③连 2④ 连四第五题1、解: 1200 ÷(1—20%)=1500(度)答:九月份用电量是1500 度 .2.解:已知 C= 12.56 米r= C ÷ 2 ∏ = 12.56÷6.28=2(米)S= 3.14 × 2× 2 = 12.56(平方米 )答:半径是 2 米 , 面积是 12.56平方米 .3. 解:八折 =80%84÷( 1— 80%)= 420 (元)答:原价是 420 元.4.解: 20000 + 20000 × 3 × 2.70% = 21620 (元)答:本金和利息共 21620 元.5.解: 2400÷( 1—20%) = 3000 (棵)(3000—2400)÷ 2400 = 25%答:前年比昨年多 25%.夺冠平台:1.28 ×6=168(人) 168÷2×9=756(人)答:全校一共有756 人.2、甲: 990÷( 1+10%)=900(元) 990-900=90( 元)乙: 990÷( 1-10%)=1100(元) 1100-990=110 (元)110-90=20(元)答:手机店赔了 , 赔了 20 元 .评分标准:第一题:每空 2分,共 16分.第二题:每题 3分,共 12分.第三题 : 每题3分,共12 分.第四题:每题 4分,共 16分.第五题: 1.2.3.每题8 分,4.5. 每题 10 分, 共 44 分.夺冠平台:任选一题做对得 6 分 .。
最新六年级上册数学培优试题含详细答案
最新六年级上册数学培优试题含详细答案一、培优题易错题1.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。
(1)写出数轴上点B表示的数________,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)-6;8-5t(2)解:设点P运动x秒时,在点C处追上点Q(如图)则AC=5x,BC=3x,∵AC-BC=AB∴5x-3x=14解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB=7综上所述,线段MN的长度不发生变化,其值为7(4)解:式子|x+6|+|x-8|有最小值,最小值为14.【解析】【解答】解:(1)点B表示的数是-6;点P表示的数是8-5t,【分析】(1)点B表示的数是-6;点P表示的数是8-5t,【分析】(1)根据点A的坐标和AB之间的距离即可得出B点的坐标和P点的坐标;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据距离的差为14列出方程即可求解;(3)分类讨论:①当点P在点A、B两点之间运动时,根据MN=MP+NP进行计算即可;②当点P运动到点B的左侧时,根据MN=MP-NP计算即可;(4)分三种情况去绝对值符号:x8时,原式=x+6+x-8=2x-214; -6x8时,原式=x+6+8-x=14; x-6时,原式=-x-6-x+8=-2x+214,综上所述得出最小值。
小学数学六年级上学期期末培优试题测试卷(附答案解析)
小学数学六年级上学期期末培优试题测试卷(附答案解析)一、填空题1.橡皮的底面积大约是6( )。
集装箱的体积大约是40( )。
水桶的容积大约是12( )。
2.PM2.5颗粒是导致雾霾天气的“罪魁祸首之一”,PM2.5颗粒的最大直径是2.5微米,人的头发直径一般为50微米,PM2.5颗粒的最大直径与人的头发一般直径的最简整数比是( )。
如果把这个比的前项扩大到原来的10倍,要使比值不变,后项应该是( )。
(微米是用来计量微小物体的长度单位)3.一块菜地和一块麦地共30公顷,菜地面积的12和麦地面积的13共13公顷,麦地是( )公顷。
4.学校操场跑道一圈长25千米,小强跑1圈用了112小时,小强平均每小时跑( )千米。
5.如图,把一个半径是6cm的圆沿半径分成若干份,拼成近似的平行四边形,这个平行四边形的底大约是( )cm,平行四边形的面积大约是( )2cm。
6.把一根24厘米长的铁丝围成长方形,长与宽的比是3∶1,这个长方形的面积是( )平方厘米。
7.新城小学买了3个篮球和8个足球,共用去910元,已知1个篮球和2个足球的价钱一样多。
每个篮球( )元。
8.一个数的14是13,这个数是( ),它的倒数是( )。
9.大圆的直径是10厘米,小圆的半径是4厘米,则小圆周长和大圆周长的比是( )。
10.观察下列各图形中正方形个数与直角三角形个数的关系,将下表填写完整。
正方形个数12345…直角三角形个数 0 4 8 ( ) ( ) … 11.下图中一共有( )个是圆心角。
A .1B .2C .3D .412.x 、y 、z 是三个非零自然数,且6810579x y z ⨯=⨯=⨯,那么x 、y 、z 按照从大到小的顺序排列应是( )。
A .z >y >x B .y >x >zC .y >z >x13.一杯糖水的含糖率是2%,喝去半杯糖水后,余下糖水的含糖率是( )。
A .1% B .2% C .4% D .无法确定 14.把7∶5的后项加15,要保持比值不变,前项应该( )。
六年级上册数学培优试题含答案
六年级上册数学培优试题含答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
六年级数学上册培优试卷含详细答案
六年级数学上册培优试卷含详细答案一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
小学六年级上学期期末数学培优试卷测试卷(含答案)
小学六年级上学期期末数学培优试卷测试卷(含答案)一、填空题1.橡皮的底面积大约是6( )。
集装箱的体积大约是40( )。
水桶的容积大约是12( )。
2.如图:圆的面积与长方形的面积相等,则长方形的长是( )cm,图中阴影部分的面积是( )cm2。
3.我国农历中的节气“夏至”是一年中白昼最长、黑夜最短的一天。
这一天吴江的黑夜比白昼少25。
这一天白昼有( )小时。
4.一台收割机34小时收割小麦35公顷,这台收割机平均每小时收割小麦( )公顷,收割4公顷小麦需要( )小时。
5.下图中长方形的周长是24cm,则半圆的周长是( )cm,面积是( )cm2。
6.这是科斯蒂早餐的配方:50克燕麦,30克葡萄干,40克坚果。
如果她用了125克燕麦,那么她需要用( )克葡萄干。
7.在4个同样的大盒和4个同样的小盒里装满球,正好是60个,每个小盒比每个大盒少装3个,每个小盒装( )个球,每个大盒装( )个球。
8.如果m和n互为倒数,那么32mn÷=( )。
9.两个长方形重叠部分的面积相当于大长方形面积的16,相当于小长方形面积的14,大方形和小长方形的面积比是( )。
10.根据下表的规律,6个点能连成( )条线段,8个点能连成( )条线段。
图形点数2345线段条数1361011.将一个圆对折,再对折,再对折,所得到的扇形圆心角是()。
A.30°B.45°C.60°D.90°12.已知a×45=b+56=c×54=d,那么,a、b、c、d四个数中,()最大。
A.a B.b C.c D.d13.一种糖水的含糖率是10%,糖与水的比是()。
A.9∶1 B.1∶9 C.9∶10 D.1∶1014.在一幅地图上,用10厘米的线段表示15千米的实际距离,那么这幅地图的比例尺是()。
A.11500∶B.115000∶C.1150000∶D.11500000∶15.下面四句话中,错误的一句是()。
六年级上册数学培优试题含详细答案
六年级上册数学培优试题含详细答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):1日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.5.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600千克,乙容器中装有浓度为的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸:400×40%=160(千克),混合后浓度:(48+160)÷(600+400)=20.8%,应交换溶液的量:600×(20.8%-8%)÷(40%-85)=600×0.128÷0.32=240(千克)答:各取240千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样。
六年级上学期期末数学培优试题测试题(附答案解析)
六年级上学期期末数学培优试题测试题(附答案解析)一、填空题1.填上合适的单位。
一个茶叶罐的容积大约是900( );一个水桶的容积大约是12( )。
2.水族箱里有红、黑两种金鱼共18条.其中黑金鱼的条数是红金鱼的.红金鱼有________条,黑金鱼有________条.3.校合唱团有128人,男同学占整个合唱团的14,后来又增加了部分男同学,这时男同学占这个合唱团的25,现在合唱团一共有( )人。
4.学校操场跑道一圈长25千米,小强跑1圈用了112小时,小强平均每小时跑( )千米。
5.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为_____厘米。
6.佳佳和敏敏的画片张数的比是4∶5,如果佳佳有32张画片,敏敏有( )张;如果佳佳有48张画片,敏敏送给佳佳( )张两人的画片张数就同样多。
7.○÷5=△,○-△=817,则○=______,△=______。
8.如果a,b互为倒数,则22ba÷=______。
9.观察如图所示图形,照这样摆下去,第6个图中有( )个灰色方块,第n个图中有( )个灰色方块。
10.如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴( )根。
11.在同一个圆中,扇形的大小与这个扇形的()有关。
A.圆心角B.半径C.直径12.如果a是一个大于零的自然数,那么下列各式中得数最大的是()。
A.a×78B.a÷78C.78÷a13.甲、乙两工厂生产零件的合格率都是95%,两个工厂生产零件的个数相比()。
A.甲工厂多B.乙工厂多C.一样多D.无法比较14.如果a∶b=4∶5,b∶c=6∶5,那么a、b、c三数的关系是()。
A.a>b>c B.a>c>b C.c>b>a D.b>c>a15.下面说法正确的是()。
A.工厂某天生产的110个零件全部合格,那么这天零件的合格率为110%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新六年级上数学培优训练含答案
一、培优题易错题
1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.
【答案】(3n+1)
【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,
通过观察,可得第n个图形为(3n+1)个★.
故答案为:(3n+1)
【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.列方程解应用题:
(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?
(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.
【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有
18x+16×2x=400,
解得x=8,
2x=2×8=16.
答:装橙子的箱子8个,则装梨的箱子16个
(2)解:设有x个小孩,
依题意得:3x+7=4x﹣3,
解得x=10,
则3x+7=37.
答:有10个小孩,37个苹果
(3)解:设无风时飞机的航速为x千米/小时.
根据题意,列出方程得:
(x+24)× =(x﹣24)×3,
解这个方程,得x=840.
航程为(x﹣24)×3=2448(千米).
答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米
【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
3.用火柴棒按下图中的方式搭图形.
(1)按图示规律填空:
图形符号①②③④⑤
火柴棒根数________________________________________
【答案】(1)4;6;8;10;12
(2)2n+2
【解析】【解答】解:(1)填表如下:
图形符号①②③④⑤
火柴棒根数4681012
【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;
(2)由(1)可得规律:2+2n.
4.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
(1)2★5;
(2)(-2)★(-5).
【答案】(1)解:2★5=2×5-2-52+1=-16
(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12
【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.
5.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)
星期一二三四五六
每股涨跌+4-6-1-2.5+4.5+2
(2)本周内最高价和最低价各是多少钱?
(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?
【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元
∴星期四收盘时,每股是22.5元
(2)解:由题意得:星期一股价最高,为28+4=32元
星期四股价最低,由(1)知22.5元
∴本周内股价最高为32元,最低为22.5元
(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元
卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元
总收益=29000-28000-(42+72.5)=885.5元
因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元
【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;
(2)分别算出这几天的股市价格,比较可得答案;
(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.
6.有,两个桶,分别盛着水和某含量的酒精溶液.先把桶液体倒入桶,使桶中的液体翻番;再将桶液体倒入桶,使桶中的液体翻番.此时,,两桶的液体体积相等,并且桶的酒精含量比桶的酒精含量高.问:最后桶中的酒精含量是多少?
【答案】解:因为最后桶的酒精含量高于桶,所以一开始桶盛的是酒精溶液.设一开始桶中有液体,桶中有.第一次从桶倒入桶后,桶有,桶剩;第二次从桶倒入桶,桶有,桶剩.由,得.
再设开始桶中有纯酒精,则有水.将酒精稀释过程列成表(如图):由题意知,,解得.所以最后桶中的酒精含量是
.
桶桶
纯酒精:水纯酒精:水
初始状态
第一次桶倒入桶
第二次桶倒入桶
液,B桶中是水。
设一开始A桶中有液体x,B桶中有y,然后分别表示出两次操作后溶液的量,并根据两种液体体积相等得到一个等式,再求出两桶溶液的容量比。
然后运用列表的方法确定A桶中酒精的含量即可。
7.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?
【答案】解:甲溶液中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克),0.3-0.1=0.2(千克);
0.2÷40%=0.5(千克)
答:需要加入0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。
【解析】【分析】由于乙溶液中不含盐,所以只需要计算出甲溶液中酒精比盐少多少千克,用酒精少的重量除以乙溶液的酒精浓度即可求出需要加入乙溶液的质量。
8.一件工作甲先做小时,乙接着做小时可以完成;甲先做小时,乙接着做小时也可以完成.如果甲做小时后由乙接着做,还需要多少小时完成?
【答案】解:第一种情况乙独做:12-6=6(小时),
第二种情况甲独做:8-6=2(小时),
6÷2=3,甲1小时的工作量相当于乙3小时的工作量,
乙单独完成需要:6×3+12=30(小时),
30-3×3=21(小时)。
答:还需要21小时。
【解析】【分析】甲先做6小时,乙接着做12小时,相当于两队合做6小时,乙又独做6小时;甲先做8小时,乙接着做6小时,相当于两队合做6小时,甲又独做2小时。
由于都完成了任务,所以乙做6小时的工作量相当于甲2小时的工作量,也就是乙做3小时的工作量相当于甲做1小时。
这样把甲做的6小时代换成乙做18小时,再加上乙做的12小
时就是乙单独完成需要的时间。
甲先做3小时就相当于乙做9小时,这样用乙单独完成需要的时间减去9即可求出乙还需要做的时间。
9.一项工程,甲单独做天完成,乙单独做天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了天.乙请假多少天?
【答案】解:
=
=6(天)
16-6=10(天)
答:乙请假10天。
【解析】【分析】乙请假了,甲没有请假,所以甲一共工作了16天,用甲的工作效率乘16求出甲的工作量,用1减去甲的工作量即可求出乙的工作量。
用乙的工作量除以乙的工作效率求出乙工作的时间,用16减去乙的工作时间即可求出乙请假的天数。
10.搬运一个仓库的货物,甲需小时,乙需小时,丙需小时.有同样的仓库和,甲在仓库,乙在仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?
【答案】解:甲、乙、丙搬完两个仓库共用了:(小时),
丙帮助甲搬运了:(小时),
丙帮助乙搬运了:(小时)。
答:丙帮助甲搬运了3小时,帮助乙搬运了5小时。
【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,用工作量2除以三人的工作效率和求出共同完成工作量需要的时间。
在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。
用甲的工作效率乘共同完成的时间即可求出甲完成的工作量,用1减去甲完成的工作量即可求出丙帮甲完成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的时间即可。