小学六年级数学培优训练含答案
小学六年级上学期期末数学培优试题(带答案)
小学六年级上学期期末数学培优试题(带答案)一、填空题1.填上合适的单位。
(1)一间教室的内部空间约是60( )。
(2)一只墨水瓶的容积约是60( )。
(3)一瓶酱油的质量约是500( )。
(4)一桶纯净水的体积约是20( )。
2.某小学六年级有400人,他们的体育达标情况如图所示,获得良好的比优秀的多( )人。
3.小丽4天做完了寒假作业的14,照这样计算,她完成寒假作业还要( )天。
4.杨叔叔骑自行车45分钟行了25千米,他每分钟行______千米,行1千米需要______分钟。
5.如图,以第一个圆的半径为直径画出第二个圆,再以第二个圆的半径为直径画出第三个圆,则第三个圆的面积(图中阴影部分)占第一个圆的面积的( )。
(填几分之几)6.甲、乙两车行完,A B 两地间全程所用时间的比是2∶3,现在甲、乙两车同时从,A B 两地相向开出,相遇时,乙车比甲车多行驶120千米。
相遇时乙车行驶了( )千米。
(甲、乙两车的速度不变)7.小明买了3支铅笔和2支钢笔,钢笔的单价是铅笔的3倍。
1支钢笔的钱可以买( )支铅笔,假设钱全部用来买铅笔,可以买( )支。
8.在括号里填上“>”“<”或“=”。
510117÷( )511 710811⨯( )108117÷ 514÷( )45 5544⨯( )5544÷ 9.六(1)班今天48人到校上课,1人病假,1人事假,六(1)班今天的出勤率是( )。
10.如下图,继续摆下去,第50个图形有( )根小棒。
11.下面的阴影部分是扇形的是( )。
A .B .C .12.已知:2321353a b c d ⨯=⨯=÷=,且a b c d 、、、都不等于0,其中最小的数是( )。
A .b B .a C .c D .d 13.在2∶3中,如果前项增加10,要使比值不变,后项应增加( )。
A .12 B .13 C .14 D .15 14.六(一)班期末考试及格率是92%,及格人数与不及格人数的比是( )。
小学六年级数学培优专题训练含详细答案
小学六年级数学培优专题训练含详细答案一、培优题易错题1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.2.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1实际股价37.436.633.734.236.3(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。
培优试卷数学六年级答案
一、选择题(每题2分,共20分)1. 下列各数中,质数是()A. 20B. 21C. 23D. 22答案:C 解析:23是质数,因为它只有1和它本身两个因数。
2. 下列各图形中,轴对称图形是()A. 矩形B. 三角形C. 平行四边形D. 梯形答案:A 解析:矩形是轴对称图形,可以沿中心线对折后重合。
3. 下列运算中,正确的是()A. 2.5 × 0.2 = 0.5B. 3.14 ÷ 0.5 = 6.28C. 0.5 ÷ 0.2 = 2.5D.0.5 × 0.2 = 0.1答案:C 解析:0.5 ÷ 0.2 = 2.5,因为0.2是0.5的5倍,所以0.5除以0.2等于2.5。
4. 小明有20个苹果,他吃掉了一半,又买了5个苹果,这时他有多少个苹果?()A. 10B. 15C. 20D. 25答案:D 解析:小明先吃掉一半,剩下10个苹果,然后又买了5个,所以共有10 + 5 = 15个苹果。
5. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?()A. 16B. 20C. 24D. 32答案:C 解析:长方形的周长计算公式是(长 + 宽)× 2,所以周长是(8 + 4)× 2 = 24厘米。
6. 下列各数中,小数点后第三位是千分位的是()A. 1.234B. 1.23C. 1.2345D. 1.2答案:A 解析:小数点后第三位是千分位,所以答案是1.234。
7. 一个班级有男生35人,女生30人,这个班级共有多少人?()A. 65B. 70C. 75D. 80答案:B 解析:男生35人,女生30人,所以班级总人数是35 + 30 = 65人。
8. 下列各数中,整数是()A. 1.5B. 2.5C. 3.5D. 4答案:D 解析:整数是没有小数部分的数,所以答案是4。
9. 下列各图形中,不是平面图形的是()A. 圆B. 正方形C. 三角形D. 立方体答案:D 解析:立方体是立体图形,不是平面图形。
六年级数学培优试题含答案
六年级数学培优试题含答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
小学六年级数学培优专题训练含答案
小学六年级数学培优专题训练含答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km)(1)求收工时距A地多远?(2)在第________次纪录时距A地最远。
(3)若每千米耗油0.3升,问共耗油多少升?【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.答:收工时距A地1km,在A的东面(2)五(3)解:根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.故答案为:五.【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.3.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶液中的溶质质量为,所以混合溶液的浓度为,所以,即,,可见。
培优试卷六年级数学答案
一、选择题(每题3分,共15分)1. 下列各数中,质数有()A. 12B. 15C. 23D. 25答案:C2. 下列各数中,完全平方数有()A. 49B. 50C. 51D. 52答案:A3. 一个长方形的长是6cm,宽是3cm,它的周长是()A. 12cmB. 15cmC. 18cmD. 21cm答案:C4. 下列各图中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形答案:A5. 下列各数中,正比例函数图象是一条直线的是()A. y = 2x + 1B. y = 3x - 2C. y = 4xD. y = 5x + 3答案:C二、填空题(每题3分,共15分)6. 一个圆的半径扩大2倍,它的面积扩大()答案:4倍7. 一个长方体的长、宽、高分别是4cm、3cm、2cm,它的体积是()答案:24cm³8. 下列各数中,既是偶数又是质数的是()答案:29. 下列各数中,负数的相反数是正数的是()答案:-510. 一个正方形的边长是a,它的周长是()答案:4a三、解答题(每题10分,共30分)11. 计算下列各式的值:(1)3.2 × 0.8 + 4.5 × 1.5答案:8.6(2)5.6 ÷ 0.4 - 2.8 × 0.2答案:10.6(3)9.6 × (2.4 - 1.6)答案:9.612. 一个长方形的长是8cm,宽是5cm,求它的面积和周长。
答案:面积= 40cm²,周长 = 26cm13. 一个梯形的上底是4cm,下底是6cm,高是2cm,求它的面积。
答案:面积= 14cm²四、应用题(每题15分,共30分)14. 小明家住在三层,每层楼高3米,他从一楼走到三楼共走了多少米?答案:18米15. 一个长方形的长是12cm,宽是6cm,如果长方形的长增加2cm,宽减少1cm,那么新的长方形面积比原来增加多少平方厘米?答案:12平方厘米。
最新小学六年级数学培优训练含答案
最新小学六年级数学培优训练含答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
(1)2★5;(2)(-2)★(-5).【答案】(1)解:2★5=2×5-2-52+1=-16(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.3.操作探究:已知在纸面上有一数轴(如图所示),(1)操作一:折叠纸面,使数字1表示的点与﹣1表示的点重合,则﹣3表示的点与________表示的点重合;(2)操作二:折叠纸面,使﹣1表示的点与5表示的点重合,回答以下问题:①10表示的点与数________表示的点重合;(3)②若数轴上A、B两点之间距离为15,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【答案】(1)3(2)﹣6(3)解:由题意可得,A、B两点距离中心点的距离为15÷2=7.5,∵中心点是表示2的点,∴A、B两点表示的数分别是﹣5.5,9.5.【解析】【解答】解:(1)因为折叠纸面,使数字1表示的点与﹣1表示的点重合,可确定中心点是表示0的点,所以﹣3表示的点与3表示的点重合,故答案为:3;(2)①因为折叠纸面,使﹣1表示的点与5表示的点重合,可确定中心点是表示2的点,所以10表示的点与数﹣6表示的点重合,故答案为:﹣6;【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是7.5,即可求出答案.4.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.5.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。
小学六年级数学培优专题训练含详细答案
小学六年级数学培优专题训练含详细答案一、培优题易错题1.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。
【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。
然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。
2.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。
根据纯酒精的量可列方程:所以丙缸中纯酒精的量是:(千克)。
答:丙缸中纯酒精的量是12千克。
【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。
等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。
3.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。
六年级培优试卷答案数学
一、选择题(每题2分,共10分)1. 下列各数中,不是整数的是()A. 2.5B. 3C. -4D. 0答案:A解析:整数包括正整数、负整数和零,2.5是小数,不属于整数。
2. 下列各数中,绝对值最小的是()A. -1.2B. 0.1C. -0.3D. 1.5答案:C解析:绝对值表示一个数距离零的距离,所以绝对值最小的数是-0.3。
3. 如果a > b,那么下列不等式中成立的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 0答案:A解析:当a > b时,a - b的差值大于0,所以A选项成立。
4. 下列各式中,正确的是()A. 3a + 2b = 3a - 2bB. 2a - 3b = 2a + 3bC. 3a + 2b = 3a + 2bD. 2a - 3b = 2a - 3b答案:C解析:3a + 2b = 3a + 2b表示两边的表达式相等,所以C选项正确。
5. 下列各图中,平行四边形是()A. 图①B. 图②C. 图③D. 图④答案:B解析:平行四边形有两组对边分别平行,所以B选项是平行四边形。
二、填空题(每题2分,共10分)6. 如果x + 3 = 8,那么x = __________。
答案:5解析:将等式两边同时减去3,得到x = 8 - 3 = 5。
7. 下列各数中,是2的倍数的是()A. 7B. 14C. 21D. 25答案:B解析:2的倍数是指能被2整除的数,14能被2整除,所以B选项是2的倍数。
8. 下列各数中,是质数的是()A. 8B. 11C. 15D. 20答案:B解析:质数是指只有1和它本身两个因数的数,11只有1和11两个因数,所以B选项是质数。
9. 如果一个长方形的长是8厘米,宽是3厘米,那么它的周长是 __________厘米。
答案:22解析:长方形的周长等于长和宽的两倍之和,所以周长是(8 + 3) × 2 = 22厘米。
小学六年级数学培优训练含详细答案
小学六年级数学培优训练含详细答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.3.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
六年级数学培优综合训练题含详细答案
六年级数学培优综合训练题含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km)(1)求收工时距A地多远?(2)在第________次纪录时距A地最远。
(3)若每千米耗油0.3升,问共耗油多少升?【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.答:收工时距A地1km,在A的东面(2)五(3)解:根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.故答案为:五.【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.4.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.5.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.6.在浓度为的盐水中加入一定量的水,则变为浓度的新溶液.在这种新溶液中加入与前次加入的水量相等的盐,溶液浓度变为 .求 .【答案】解:设原来的盐水为100克,加入的水(或盐)重a克。
小学数学六年级培优题库 - 培优题库含详细答案
小学数学六年级培优题库 - 培优题库含详细答案一、培优题易错题1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.2.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。
如果全部用来做裤子,刚好可以做90条。
现要用这批布料来做一件上衣和一条裤子组成的套装,可以做多少套?【答案】解:1÷(+)=1÷=36(套)答:可以做36套。
【解析】【分析】把这批布料看作单位“1”,然后用分数表示出做一件上衣用布占总数的几分之几,再表示出做一条裤子用布占总数的几分之几,然后用1除以一件上衣和一条裤子共用几分之几即可求出共做的套数。
3.有,两个桶,分别盛着水和某含量的酒精溶液.先把桶液体倒入桶,使桶中的液体翻番;再将桶液体倒入桶,使桶中的液体翻番.此时,,两桶的液体体积相等,并且桶的酒精含量比桶的酒精含量高.问:最后桶中的酒精含量是多少?【答案】解:因为最后桶的酒精含量高于桶,所以一开始桶盛的是酒精溶液.设一开始桶中有液体,桶中有.第一次从桶倒入桶后,桶有,桶剩;第二次从桶倒入桶,桶有,桶剩.由,得.再设开始桶中有纯酒精,则有水.将酒精稀释过程列成表(如图):由题意知,,解得.所以最后桶中的酒精含量是.桶桶纯酒精:水纯酒精:水初始状态第一次桶倒入桶第二次桶倒入桶液,B桶中是水。
六年级数学培优试题含答案
示). 【答案】55;(n+1)2+n 【解析】【解答】第 1 个图形共有小正方形的个数为 2×2+1;第 2 个图形共有小正方形的 个数为 3×3+2; 第 3 个图形共有小正方形的个数为 4×4+3; …; 则第 n 个图形共有小正方形的个数为(n+1)2+n, 所以第 6 个图形共有小正方形的个数为:7×7+6=55. 故答案为:55;(n+1)2+n 【分析】观察图形规律,第 1 个图形共有小正方形的个数为 2×2+1;第 2 个图形共有小正 方形的个数为 3×3+2;则第 n 个图形共有小正方形的个数为(n+1)2+n,找出一般规律.
【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果; (4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.
4.股民老黄上星期五买进某股票 1000 股,每股 35 元,下表为本周内每日该股票的涨跌 情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)
(4)由(3)中的计算可得:
;
,,
。
7.有 、 、 三种盐水,按 与 数量之比为 混合,得到浓度为 的盐水;按
与 数量之比为 混合,得到浓度为 的盐水.如果 、 、 数量之比为
,
混合成的盐水浓度为
,问盐水 的浓度是多少?
【答案】 解:B 盐水浓度: (14%×6-13%×3)÷(4-1) =(0.84-0.39)÷3 =0.45÷3 =15% A 盐水浓度:14%×3-15×2=12% C 盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3 =(0.51-0.27)÷3
小学六年级数学培优题及答案
小学六年级数学培优题及答案一、选择题(每空1分,共20分)1、已知小圆的半径是2cm,大圆的直径是6cm,小圆和小圆的周长之比为( ),面积的比是( )。
2、12的因数有()个,选4个组成一个比例是( )。
3、一幅地图的比例尺是1:,把它改成线段比例尺是( ),已知AB两地的实际距离是24千米,在这幅地图上应画( )厘米。
4、3时整,分针和时针的夹角是()°,6时整,分针和时针的夹角是( )°。
5、一个比例的两个内项分别是4和7,那么这个比例的两个外项的积是( )。
6、用圆规画一个直径是8cm的圆,圆规两脚尖的距离是( )cm,这个圆的位置由()决定。
7、一个数,如果用2、3、5去除,正好都能被整除,这个数最小是( ),如果这个数是两位数,它最大是( )。
8、如果一个长方体,如果它的高增加2cm就成一个正方体,而且表面积增加24cm2,原来这个长方体的表面积是( )。
9、一个三位小数四舍五入取近似值是2.80,这个数最大是( ),最小是( )。
10、打一份稿件,甲单独做需要10小时,乙单独做需要12小时,那么甲、乙的工效之比是( ),时间比是( )。
11、一个正方体的棱长总和是24cm,这个正方体的表面积是( )cm2,体积是( )cm3。
二、判断题(每题1分,共10分)1、两根1米长的木料,第一根用米,第二根用去,剩下的木料同样长。
( )2、去掉小数0.50末尾的0后,小数的大小不变,计数单位也不变。
( )3、一个三角形中至少有2个锐角。
( )4、因为3a=5b(a、b不为0),所以a:b=5:3。
( )5、如果圆柱和圆锥的体积和高分别相等,那么圆锥与圆柱的底面积的比是3:1。
( )6、10吨煤,用去了一半,还剩50%吨煤。
( )7、一组数据中可能没有中位数,但一定有平均数和众数。
( )8、含有未知数的式子是方程。
( )9、一个数乘小数,积一定比这个数小。
( )10、把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的。
小学数学六年级上册期末培优试题(及答案)
小学数学六年级上册期末培优试题(及答案)一、填空题1.在下面的括号里填上合适的单位。
一个粉笔盒的体积接近1( ); 一本书的体积大约是200( ); 一个游泳池大约能蓄水1200( ); 一袋牛奶的容积大约是220( )。
2.妈妈早餐时磨了58升豆浆给一家5口人喝,平均每人喝了( )升,每人喝了这些豆浆的()()。
3.一堆货物共10吨,第一次运走14,第二次运走4吨,还剩( )吨。
4.一种钢轨,长56米。
重115吨,这样的钢轨1米重( )吨,1吨这样的钢轨长( )米。
5.在一块长10分米、宽5分米的长方形铁板上,最多能截取( )个直径是2分米的圆形铁板。
剩下部分的面积是( )。
6.一块菜地种黄瓜、辣椒和西红柿,它们种植面积的比是5∶4∶7;(1)黄瓜的种植面积是辣椒的()() ,辣椒比西红柿少这块地的()()。
(2)辣椒种植面积是黄瓜的( )%,西红柿的种植面积比黄瓜多( )%。
7.小杯容量是大杯的14,一桶2000毫升的可乐正好能倒满4大杯和4小杯,那么大杯的容量是( )毫升。
8.在括号里填“>”“<”。
71188÷( )718 19125÷( )19125÷ 86408739⨯( )4039 782÷( )782⨯ 9.小亮家住幸福小区1栋25层楼的第21层,已知该楼高70m ,电梯每秒行74m ,那么从小亮进入电梯,到他家的楼层需要( )秒钟。
10.明明用小棒按照下面的方式摆六边形,摆n 个六边形要用( )根小棒。
11.下面说法正确的是( )。
A .圆的周长是其直径的3.14倍。
B .圆的半径扩大到原来的3倍,面积也扩大到原来的3倍。
C .用4个圆心角都是90°的扇形,一定可以拼成一个圆。
D .如果两个圆的周长相等,那么这两个圆的面积也一定相等。
12.下面算式中,得数最大的是()。
A.2153⨯B.40.255⨯C.2257÷13.淘气、奇思和妙想练习投篮,淘气的命中率是55%,奇思的命中率是68%,妙想的命中率是80%。
小学六年级上学期期末数学培优试卷测试卷(含答案)
小学六年级上学期期末数学培优试卷测试卷(含答案)一、填空题1.橡皮的底面积大约是6( )。
集装箱的体积大约是40( )。
水桶的容积大约是12( )。
2.如图:圆的面积与长方形的面积相等,则长方形的长是( )cm,图中阴影部分的面积是( )cm2。
3.我国农历中的节气“夏至”是一年中白昼最长、黑夜最短的一天。
这一天吴江的黑夜比白昼少25。
这一天白昼有( )小时。
4.一台收割机34小时收割小麦35公顷,这台收割机平均每小时收割小麦( )公顷,收割4公顷小麦需要( )小时。
5.下图中长方形的周长是24cm,则半圆的周长是( )cm,面积是( )cm2。
6.这是科斯蒂早餐的配方:50克燕麦,30克葡萄干,40克坚果。
如果她用了125克燕麦,那么她需要用( )克葡萄干。
7.在4个同样的大盒和4个同样的小盒里装满球,正好是60个,每个小盒比每个大盒少装3个,每个小盒装( )个球,每个大盒装( )个球。
8.如果m和n互为倒数,那么32mn÷=( )。
9.两个长方形重叠部分的面积相当于大长方形面积的16,相当于小长方形面积的14,大方形和小长方形的面积比是( )。
10.根据下表的规律,6个点能连成( )条线段,8个点能连成( )条线段。
图形点数2345线段条数1361011.将一个圆对折,再对折,再对折,所得到的扇形圆心角是()。
A.30°B.45°C.60°D.90°12.已知a×45=b+56=c×54=d,那么,a、b、c、d四个数中,()最大。
A.a B.b C.c D.d13.一种糖水的含糖率是10%,糖与水的比是()。
A.9∶1 B.1∶9 C.9∶10 D.1∶1014.在一幅地图上,用10厘米的线段表示15千米的实际距离,那么这幅地图的比例尺是()。
A.11500∶B.115000∶C.1150000∶D.11500000∶15.下面四句话中,错误的一句是()。
六年级数学培优题含详细答案
(3)解:如图 2,
根据已知条件可知: A→B 表示为:(1,4),B→C 记为(2,0)C→D 记为(1,﹣2); 则该甲虫走过的路线长为:1+4+2+1+2=10 (4)解:由 M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2), 所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2, 所以,点 A 向右走 2 个格点,向上走 2 个格点到点 N, 所以,N→A 应记为(﹣2,﹣2) 【解析】【解答】解:(1)图中 A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2); 故答案为:(+3,+4),(+2,0),D; 【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果; (4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论. 3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第 1 个至第 4 个台阶上依次标着 -5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)图中 A→C(________,________),B→C(________,________),C→________ (+1,﹣2); (2)若这只甲虫从 A 处去甲虫 P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣ 2,+3),(﹣1,﹣2),请在图中标出 P 的位置; (3)若这只甲虫的行走路线为 A→B→C→D,请计算该甲虫走过的路程. (4)若图中另有两个格点 M、N,且 M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则 N→A 应记为什么? 【答案】(1)+3;+4;+2;0;D (2)解:P 点位置如图 1 所示;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学培优训练含答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.4.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.5.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.6.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。
根据纯酒精的量可列方程:所以丙缸中纯酒精的量是:(千克)。
答:丙缸中纯酒精的量是12千克。
【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。
等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。
7.一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【答案】解:假设一开始桶中有液体升,桶中有升.第一次将桶的液体倒入桶后,桶有液体升,桶剩升;第二次将桶的液体倒入桶后,桶有液体升,桶剩升;第三次将桶的液体倒入桶后,桶有液体升,桶剩升.由此时两桶的液体体积相等,得,,.现在还不知道桶中装的是牛奶还是水,可以将稀释牛奶的过程列成下表:桶桶原桶液体:原桶液体原桶液体:原桶液体初始状态第一次桶倒入桶第二次桶倒入桶第三次桶倒入桶由上表看出,最后桶中的液体,原桶液体与原桶液体的比是,而题目中说“水比牛奶多升”,所以原桶中是水,原桶中是牛奶.因为在中,“ ”相当于1升,所以2个单位相当于1升.由此得到,开始时,桶中有升水,桶中有升牛奶;结束时,桶中有3升水和1升牛奶,桶中有升水和升牛奶.【解析】【分析】共操作了3次,假设一开始A桶中有溶液x升,b桶中有y升。
然后用含有字母的式子分别表示出每次操作后溶液的重量,根据第三次操作后两桶溶液质量相等列出等式,化简等式得到x与y的比是11:5。
把稀释牛奶的过程用列表的方法列出来,然后确定前后两个桶中水和牛奶的升数即可。
8.甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用天.已知甲单独完成这件工作需天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?【答案】解:甲的工作效率:1÷10.75=,乙的工作效率:,丙的工作效率:,(天)。
答:完成工作需要天。
【解析】【分析】以甲、乙、丙各工作一天为一个周期,即3天一个周期。
容易知道,第一种情况下一定不是完整周期内完成,但是在本题中,有两种可能,第一种可能是完整周期天,第二种可能是完整周期天。
如果是第一种可能,有,得。
然而此时甲、乙、丙的效率和为,经过4个周期后完成,还剩下,而甲每天完成,所以剩下的不可能由甲1天完成,即所得到的结果与假设不符,所以假设不成立。
第二种可能:完整周期不完整周期完成总工程量第一种情况n个周期甲1天,乙1天“1”第二种情况n个周期乙1天,丙1天,甲天“1”第三种情况n个周期丙1天,甲1天,乙天“1”可得,所以,。
因为甲单独做需天,所以工作效率为,于是乙的工作效率为,丙的工作效率为。
于是,一个周期内他们完成的工程量为。
则需个完整周期,剩下的工程量;正好甲、乙各一天完成.所以第二种可能是符合题意的。
这样用总工作量除以三人的工作效率和即可求出合作完成的时间。
9.甲、乙、丙3队要完成A,B两项工程.B工程的工作量比A工程的工作量多.甲、乙、丙3队单独完成A工程所需时间分别是20天、24天、30天.为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程;经过几天后,又调丙队与甲队共同完成A工程.那么,丙队与乙队合作了多少天?【答案】解:总工作量:,三队合做完成总工作量的时间:(天),乙完成的工作量:,B工程中丙完成的时间:(天)。
答:丙队与乙队合作了15天。
【解析】【分析】三队是同时开工,同时完成工程,实际就是三队合做完成了两项工程。
设A项工程的工程总量为“1”,那么B工程的工作量为(1+)。
用两项工程的工作总量除以三队的工作效率和即可求出三队合作完成的时间。
用乙队的工作效率乘合作完成的时间即可求出B工程中乙队做的工作量,剩下的工作量就是由丙来做的,这样用剩下的工作量除以丙的工作效率即可求出丙在B工程工作的时间,也就是丙和乙合作的时间。
10.甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际上从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?【答案】解:甲、乙的工作效率比:(8400-5040):5040=3360:5040=2:3,甲提高工效后甲、乙总的工效比:(3360+960):(5040-960)=4320:4080=18:17,设甲开始时的工效为“2”,那么乙的工效为“3”,设甲在提高工效后还需x天完成任务。