轴承的游隙选择方法
深沟球轴承游隙的选用
深沟球轴承游隙选用一、轴承游隙的选择标准从理论来讲,轴承在安定运转状态下,稍微有点负的运转游隙,轴承寿命最大,但实际上要保证这一最佳状态是非常困难的,一旦某种使用条件发生变化,则负游隙增大,从而招致轴承寿命显著下降或发热,因此,通常选用初期的游隙时,要求运转游隙取为仅稍大于零.对于通常条件的使用的轴承.将采用普通负荷的配合,转速和温度正常时,只需选择相应的普通游隙,便可得到适宜的运转游隙.一、游隙的选择原则:采用较紧配合,内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向负荷或需改善调心性能的场合,宜采用大游隙组。
当旋转精度要求较高或需严格限制轴向位移时,宜采用小游隙组。
滚动轴承的润滑油多用锭子油、机油、涡轮机油等矿物油,润滑油的使用温度-30℃~150℃,超过这个范围则用二脂油、硅酮油、氟炭油等合成油常用润滑脂的种类人本集团杭州轴承厂深沟球轴承径向游隙技术要求Q/RBJ03.07-2003 1.适用范围本标准适用于人本集团杭州轴承厂深沟球轴承径向游隙的内控技术要求。
2.引用标准GB/T4604-93 《滚动轴承径向游隙》3.技术要求3.1径向游隙要求:表1表1单位:μm3.2测量时负荷下轴承径向游隙增加量:表2表23.3本要求为常规生产产品的径向游隙,对游隙有特殊要求的产品应执行相应的工艺文件,本要求实施后其它文件要求的径向游隙与本要求不符合的执行本要求。
3.4 游隙组别选择:3.4.1在上表所示的内部游隙中,基本组游隙值(C0组)适用于一般使用条件,所谓一般使用条件,是指在内圈留过盈量安装的轴承,承受普通载荷(P<=0.1Cr)以下的负荷,内圈旋转数为该轴承极限转速的50%以下的使用条件。
3.4.2为降低电机的噪声,尽可能缩小径向游隙范围,同时规定了采用小游隙值的电机用深沟球轴承专用CM游隙。
3.4.3在冲击、振动大,或电机轴比较长,挠曲大,温度较高的场合需要采用C3,甚至C4组游隙。
轴承游隙c1c2c3c4值 -回复
轴承游隙c1c2c3c4值-回复轴承游隙是指轴承内部的间隙或间隙系数,是衡量轴承内部构造设计合理性和制造精度的重要参数之一。
合适的轴承游隙可以保证轴承的工作稳定性和寿命,因此轴承游隙的确定是轴承设计与生产的关键环节。
轴承游隙可分为径向游隙和轴向游隙两种。
1. 径向游隙:径向游隙是指在轴承内径和外径之间的间隔。
在轴承的设计和制造过程中,径向游隙的确定需要考虑到轴承的安装与旋转。
一般来说,径向游隙应适当增大,以确保轴承正常运转时不会因热胀冷缩引起卡滞或因热胀冷缩引起卡滞或超限。
2. 轴向游隙:轴向游隙是指在轴承轴向方向上的间隔。
轴向游隙的大小影响轴承在正负负荷下的接触状态和运动稳定性。
相对于径向游隙,轴向游隙一般需要更小。
因为小的轴向游隙能够减小轴承在负载变化时的滑动与磨损,提高轴承的寿命。
c1、c2、c3、c4是计算轴承游隙时需要用到的参数。
其中,c1表示轴向副的公差,c2表示冲子副的公差,c3表示轴承圈的内孔直径公差,c4表示轴承圈的外径公差。
计算轴承游隙的具体方法如下:首先,根据轴承的类型和规格确定c1、c2、c3、c4的取值范围。
一般来说,不同类型和规格的轴承所需的游隙大小是不同的,因此需要根据具体的情况来确定。
其次,根据轴承的运转要求和负荷特性,选择合适的公差等级。
公差等级的选择应综合考虑到轴承的定位精度、转动精度和承载能力等因素。
然后,根据选定的公差等级和轴承规格,查找相关的标准或手册,获取c1、c2、c3、c4的具体数值。
最后,将c1、c2、c3、c4代入轴承游隙的计算公式,计算出轴承的游隙数值。
对于径向游隙,计算公式一般为轴承内径和外径的差值;对于轴向游隙,计算公式一般为轴承座标和轴承外座标的差值。
确定轴承游隙后,需要在轴承的设计和制造中加以考虑,采取合适的加工工艺和装配方式,以确保轴承达到所需的游隙值。
总之,轴承游隙的确定是轴承设计与制造中的重要环节,它直接影响轴承的工作稳定性和寿命。
轴承游隙标准
轴承游隙标准轴承内部游隙(初始间隙)是指轴承安装在轴或壳体上之前的内部间隙量。
如下图所示,当内圈或外圈中的一个固定,另一个可以自由移动时,位移可以在轴向或径向发生,该位移量(径向或轴向)称为内部间隙,根据方向,称为径向游隙或轴向游隙。
当测量轴承的内部间隙时,向滚道施加轻微的测量负载,以便可以准确测量内部间隙,然而,此时,轴承在测量载荷下发生轻微弹性变形,间隙测量值(测量间隙)略大于真实间隙,必须补偿真实轴承间隙与弹性变形导致的增加量之间的差异,这些补偿值如下表所示。
一、游隙选择。
运行条件下轴承的内部间隙(有效间隙)通常小于安装和运行前相同轴承的初始间隙,这是由包括轴承配合、内外环之间的温差等因素造成的。
由于轴承的工作间隙会影响轴承寿命、发热、振动、噪声等,因此在选择最合适的轴承游隙时必须慎之又慎。
初始间隙和工作(有效)间隙之间的内部间隙差(过盈配合引起的间隙减少量,或由于内外环之间的温差引起的间隙变化)可以通过公式δff=δ-(δf+δ)计算,其中:δff代表有效内部间隙,单位毫米;δ代表轴承内部间隙,单位毫米;δf代表因干涉而减少的间隙量,单位毫米;δ代表内外环温差引起的间隙减少量,单位毫米。
当轴承以过盈配合安装在轴和壳体上时,内圈将膨胀,外圈将收缩,从而减少轴承的内部间隙,膨胀或收缩量取决于轴承的形状、轴或壳体的形状、各个零件的尺寸以及所用材料的类型。
差分的范围约为有效干扰的70%-90%,可以通过公式δf=(0.70~0.90)·Δdeff计算,其中:δf代表因干涉而减少的间隙量,单位毫米;Δdeff代表有效干扰,单位毫米。
在操作过程中,通常外圈比内圈或旋转部件的温度低5到10C,然而,如果壳体的冷却效果大,则轴连接到热源,或加热物质通过空心轴传导,内外圈之间的温差可能更大,因此,由于内外圈的胀差,内部间隙量进一步减少,可以通过公式δ=α·Δ·D计算,其中:δ代表由于热差而减少的间隙量,单位毫米;α代表轴承钢线膨胀系数12.5x10/°C;Δ代表内外环温差,单位°C;D代表外圈滚道直径,单位毫米。
轴承的轴向游隙和径向游隙
轴承的轴向游隙和径向游隙1. 引言在机械设备中,轴承承担着支撑和传递载荷的重要角色。
为了确保轴承的正常运转和寿命,轴向游隙和径向游隙的设定是至关重要的。
本文将介绍轴承的轴向游隙和径向游隙的概念、作用、测量方法以及对轴承性能的影响。
2. 轴向游隙轴向游隙是指轴承内、外圈之间沿轴向方向的间隙。
它的存在可以使轴承在工作时能够自由地沿轴向方向进行微小的移动。
轴向游隙的大小对轴承的定位和承载能力有重要影响。
2.1 轴向游隙的作用轴向游隙的存在可以使轴承在受到轴向载荷时能够自由地进行微小的移动,从而适应轴向载荷的变化。
它可以减小由于热胀冷缩引起的内、外圈的相对位移,降低轴承的应力集中,延长轴承的使用寿命。
2.2 轴向游隙的测量方法测量轴向游隙可以使用推力计或测微计等工具。
具体测量方法如下:1.将轴承安装在支架上,并通过螺母将其固定住;2.在轴承的内圈和外圈之间施加一定的轴向载荷;3.使用推力计或测微计测量内、外圈之间的间隙;4.记录测量结果,得到轴向游隙的数值。
2.3 轴向游隙对轴承性能的影响轴向游隙的大小直接影响轴承的定位和承载能力。
如果轴向游隙过大,会导致轴承在受到轴向载荷时发生过大的位移,使得轴承无法正常工作。
而如果轴向游隙过小,会使得轴承在受到轴向载荷时产生过大的应力,降低轴承的承载能力和使用寿命。
3. 径向游隙径向游隙是指轴承内、外圈之间沿径向方向的间隙。
它的存在可以使轴承在工作时能够自由地沿径向方向进行微小的移动。
径向游隙的大小对轴承的定位和承载能力同样具有重要影响。
3.1 径向游隙的作用径向游隙的存在可以使轴承在受到径向载荷时能够自由地进行微小的移动,从而适应径向载荷的变化。
它可以减小由于热胀冷缩引起的内、外圈的相对位移,降低轴承的应力集中,延长轴承的使用寿命。
3.2 径向游隙的测量方法测量径向游隙可以使用游隙规或测微计等工具。
具体测量方法如下:1.将轴承安装在支架上,并通过螺母将其固定住;2.在轴承的内圈和外圈之间施加一定的径向载荷;3.使用游隙规或测微计测量内、外圈之间的间隙;4.记录测量结果,得到径向游隙的数值。
轴承游隙到底有多重要?该如何选择!
轴承游隙到底有多重要?该如何选择!视频资料,建议WiFi观看什么是轴承游隙?简单来说,轴承游隙就是单个轴承内部、或者⼏个轴承组成的系统内部的间隙(或⼲涉)。
游隙可分为轴向游隙和径向游隙,这取决于轴承类型及测量⽅法。
为什么要调整轴承游隙?打个⽐⽅,煮饭的时候⽔过多或过少,都会影响⽶饭的⼝感。
同理,轴承游隙过⼤或过⼩,轴承的⼯作寿命乃⾄整个设备运⾏的稳定性都会降低。
轴承结构及其轴承游隙的那点事!(附轴承游隙表格)适⽤不同调整⽅法的轴承种类游隙调整的⽅法由轴承类型决定,⼀般可以分为游隙不可调轴承和可调轴承。
游隙不可调轴承是指轴承出⼚后,轴承的游隙就确定了,我们熟知的深沟球轴承、调⼼轴承、圆柱轴承都属于这⼀类。
▲圆柱滚⼦轴承▲调⼼滚⼦轴承▲深沟球轴承游隙可调轴承是指可以移动轴承滚道的相对轴向位置来获得所需要的游隙,属于这类的有圆锥轴承和⾓接触球轴承及⼀些⽌推轴承。
▲圆锥滚⼦轴承▲⾓接触轴承轴承游隙调整分类对于不可调轴承的游隙,⾏业有相应的标准值(CN, C3,C4等等),也可以定制特定的游隙范围。
当轴、轴承座尺⼨已知,相应的内、外圈配合量就确定了,安装后的游隙就不能改变。
由于在设计阶段配合量是⼀个范围,最后的游隙也存在⼀个范围,在对游隙精度有要求的应⽤就不适⽤。
可调轴承很好的解决了这个问题,通过改变滚道的相对轴向位置,我们可以得到⼀个确定的游隙值。
如下图,当移动内圈的位置,我们⼤致可以得到正、负两种游隙。
影响轴承游隙的因素最佳⼯作游隙的选择是由应⽤⼯况(载荷、速度、设计参数)和期望得到的⼯作状态(最⼤寿命、最好的刚度、低的热量产⽣、维护的便利等等)决定的。
然⽽,在⼤多数应⽤中,我们⽆法直接调整⼯作游隙,这就需要我们根据对应⽤的分析和经验,计算出相应的安装后游隙值。
轴承游隙标准查询C3——向⼼轴承径向游隙,⽐标准游隙⼤;MC3——⼩型、微型球轴承径向游隙标准游隙。
详细如下:C1——向⼼轴承径向游隙,⽐C2游隙⼩。
轴承游隙的选择
轴承游隙的选择newmaker滚动轴承的径向游隙系指一个套圈固定不动,而另一个套圈在垂直于轴承轴线方向,由一个极端位置移动到另一个极端位置的移动量。
轴承游隙的选择正确与否,对机械运转精度、轴承寿命、摩擦阻力、温升、振动与噪声等都有很大的影响。
如对向心轴承游隙的选择过小时,则会使承受负荷的滚动体个数增多,接触应力减小,运转较平稳,但是,摩擦阻力会增大,温升也会提高.反之,则接触应力增大,振动大,而摩擦阻力减小,温升低。
因此,根据轴承使用条件,选择最合适的游隙值,具有十分重要的意义.选事实上轴承游隙时,必须充分考虑下列几种主要因素:(1)轴承与轴和外壳孔配合的松紧会导致轴承游隙值的变化。
一般轴承安装后会使游隙值缩小;(2)轴承在机构运转过程中,由于轴与外壳的散热条件的不同,使内圈和外圈之间产生温度差,从而会导致游隙值的缩小;(3)由于轴与外壳材料因膨胀系数不同,会导致游隙值的缩小或增大.通常向心轴承选择最适宜的工作游隙值就是轴承游隙标准中所规定的基本组游隙值。
基本组游隙值适用于一般工作条件,应该优先选用。
对于在特殊条件下工作的向心轴承不能采用基本组游隙时,可选用辅助组游隙值。
如深沟球轴承的第3、4、5组游隙值,适用于轴承与轴和外壳孔采用比正常配合更紧的过盈配合或轴承内圈与外圈工作温差较大的机械部件中。
在轴中心与外壳孔中心线倾斜度较大,和为了增加其承受轴向负荷能力,提高轴承极限转速,以及降低轴承摩擦阻力等工况条件下,亦可采用第3、4、5组游隙值。
对于要求旋转精密或限制轴向游动的轴,一般采用第2组游隙值(小游隙值)的轴承,必要时还给予一定的预加负荷“预紧”,以提高轴的刚性。
滚动轴承的校核计算newmaker1 基本概念1.轴承寿命:轴承中任一元件出现疲劳剥落扩展迹象前运转的总转数或一定转速下的工作小时数。
批量生产的元件,由于材料的不均匀性,导致轴承的寿命有很大的离散性,最长和最短的寿命可达几十倍,必须采用统计的方法进行处理。
轴承游隙选择说明及游隙对照表
轴承游隙选择说明及游隙对照表滚动轴承的游隙分为径向游隙ur和轴向游隙ua。
它们分别表示一个套圈固定时,另一套圈沿径向和轴向由一个极限位置到另一个极限位置的移动量。
各类轴承的径向游隙ur和轴向游隙ua之间有一定的对应关系,如图1 所示。
径向游隙又分为原始游隙、安装游隙和工作游隙。
原始游隙指未安装前的游隙。
各种轴承的原始游隙分组数值见表1〜表7.合理的轴承游隙的选择,应在原始游隙的基础上,考虑因配合、内外圈温度差以及载荷等因素所引起的游戏变化,以使工作游隙接近于最佳状态。
由于过盈配合和温度的影响,轴承的工作游隙小于原始游隙。
0组径向游隙值适用于一般的运转条件、常规温度及常用的过盈配合,即对球轴承不得超过j5、k5(轴)和J6 (座孔);对滚子轴承不得超过k5、m5 (轴)和 K6 (座孔)。
当采用轴较紧配合、内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向载荷或需改善调心性能的场合,宜采用3、4、5组游隙值;当旋转精度要求较高或需严格限制轴向位移时,宜采用2组游隙值。
对于球轴承,最适宜的工作游隙是趋于0。
对于滚子轴承,可保持少量的工作游隙。
在要求支撑刚性良好的部件中(例如机床主轴),轴承应有一定的预紧。
角接触球轴承、圆锥滚子轴承以及内圈带锥孔的轴承等,由于结构特点可以在安装或使用过程中调整游隙。
表1 深沟球轴承的径向游隙(GB/T4604-1993)(口 m)Rm表2圆柱孔调心球轴承的径向游隙(08/14604-1993)Rm表3圆锥孔调心球轴承的径向游隙(08/14604-1993)um表4圆柱孔圆柱滚子轴承的径向游隙(08/14604-1993)注:滚针轴承的径向间隙:除冲压外圈滚针轴承和重系列滚针轴承外,有内、外圈和保持架的滚针轴承采用本表中给出的圆柱滚子轴承的径向游隙值。
有内、外圈的重系列滚针轴承和内圈作为一个分离零件交货的有保持架滚针轴承,其径向游隙由内圈滚道直径和滚针组件内径决定。
圆锥滚子轴承游隙设定的方法
圆锥滚子轴承游隙设定的方法一、游隙的基本概念游隙是指在轴承安装后,轴承内外环之间的轴向距离。
合适的游隙可以保证轴承在运转过程中具有适当的热胀冷缩容量,并能吸收由于装配误差、热膨胀等因素产生的轴向载荷。
游隙过小容易导致过紧,增大轴承的摩擦和磨损;游隙过大则容易引起轴承轴向的摆动,降低轴承的定位精度和刚度,影响轴承的可靠性和寿命。
1.冷装法冷装法是一种常用的游隙设定方法。
具体步骤如下:a.将圆锥滚子轴承轴承套圈放入冰箱或冷藏室中降温,使其达到低温状态;b.在轴承座中涂覆合适的厚度润滑脂;c.使用专用的安装工具将套圈冷装入轴承座中,同时使用适当的冷却夹具对套圈施加轴向压力;d.等待套圈回到室温,并观察轴承的内外环之间是否有适当的游隙。
2.热装法热装法是另一种常用的游隙设定方法。
具体步骤如下:a.将圆锥滚子轴承轴承套圈放入烤箱或加热设备中加热,使其达到高温状态;b.在轴承座中涂覆合适的厚度润滑脂;c.使用专用的安装工具将套圈热装入轴承座中,同时使用适当的加热夹具对套圈施加轴向压力;d.等待套圈回到室温,并观察轴承的内外环之间是否有适当的游隙。
3.试装法试装法是一种较为简单直观的游隙设定方法。
具体步骤如下:a.在轴承座中涂覆合适的润滑脂;b.将圆锥滚子轴承的内外环分别装入轴承座中,不施加任何轴向压力;c.使用适当的工具轻轻摇动轴承的内外环,观察轴承的轴向移动情况;d.根据摇动的情况来判断轴承的游隙是否适当。
如果轴承轴向移动较为顺畅且不摆动,游隙即为合适。
三、注意事项1.游隙设定过程中要保持清洁和干燥,防止灰尘和杂质进入轴承座;2.游隙设定前需检查轴承座和轴承套圈的表面是否有划伤或凹陷,确保其平整度;3.游隙设定后需检查轴承内外环的旋转情况,确保无卡滞、摩擦或异常噪声等现象;4.根据具体的使用要求和轴承型号,选择合适的游隙设定方法和设定数值。
四、总结圆锥滚子轴承的游隙设定对于轴承的使用寿命和性能具有重要影响。
轴承游隙c1c2c3c4值 -回复
轴承游隙c1c2c3c4值-回复轴承游隙c1c2c3c4值在机械工程中扮演着重要的角色。
在本文中,我们将逐步回答有关这些值的问题,并深入探讨它们对机械系统的影响。
第一步:了解轴承游隙的概念轴承游隙是指轴承内部各零件之间的间隙或间距。
它是为了确保轴承在工作时能够自由旋转,并具有一定的变形能力以适应外部负载。
游隙值会对轴承的刚性、精度和耐磨性产生影响,因此在设计和制造过程中需要进行精确的计算和控制。
第二步:了解c1、c2、c3、c4值的含义c1、c2、c3、c4是表示轴承游隙的数值,每个值代表了不同的寸法测量。
具体而言,c1代表了轴向游隙,即轴向方向上轴承零件之间的间隙。
c2代表了径向游隙,即径向方向上轴承零件之间的间隙。
c3代表了角向游隙,即角向方向上轴承零件之间的间隙。
c4代表了变形游隙,即轴承在受到外部载荷时产生的变形量。
第三步:确定轴承游隙的计算方法要计算轴承游隙的值,需要考虑多个因素,包括轴承类型、工作条件、材料特性等。
通常,可以使用轴承制造商提供的公式和表格来进行计算。
根据这些参数,我们可以得到具体的数值,并对其进行精确测量和调整。
第四步:分析轴承游隙对机械系统的影响轴承游隙的大小直接影响到机械系统的性能。
较大的游隙值可以提高轴承系统的灵活性和自由度,适用于高速运动和高负载工况。
然而,较大的游隙值可能会导致系统精度下降,并增加噪音和振动。
相反,较小的游隙值可以提高系统的精度和刚性,适用于高精度和低振动要求的应用。
但是,较小的游隙值可能会增加摩擦和磨损,降低轴承的寿命。
第五步:优化轴承游隙的方法和技术为了实现最佳的轴承游隙值,需要正确选择和安装轴承,并采用适当的预紧力和调整方法。
此外,使用高质量的材料和制造工艺也是优化轴承游隙的关键。
通过合理的设计和工艺选择,可以实现最佳的游隙值,并提高机械系统的性能和寿命。
总结:轴承游隙c1c2c3c4值在机械工程中具有重要的意义。
通过逐步了解轴承游隙的概念、c1、c2、c3、c4值的含义、计算方法以及对机械系统的影响,我们可以深入理解轴承游隙的重要性和优化方法。
滚动轴承游隙的选择与调整及实例分析
滚动轴承游隙的选择与调整及实例分析阐述了轴承游隙对于轴承振动、噪声、寿命的影响;轴承游隙的概念;轴承初始游隙、安装游隙、工作游隙的概念及关系;并结合公司实际,举例分析径向游隙的计算与选择。
标签:滚动轴承;径向游隙1、前言轴承是许多机械设备的关键部件,一旦轴承失效,将会引起严重后果。
轴承的游隙对轴承的使用寿命有着重要影响,过大或过小都会引发轴承故障。
过大的游隙会造成系统运转精度降低,振动和噪声增大,同时使轴承承载能力降低,缩短轴承使用寿命;过小的游隙会使轴承生热增多,导致系统温度过高,甚至烧损轴承,引发故障,所以科学合理地计算并选择适当游隙是十分重要的工作。
2、轴承的游隙轴承的游隙可分为径向游隙和轴向游隙。
所谓径向(轴向)游隙是指轴承无外负荷作用时,内外圈的相对位移量,即将轴承内圈或外圈固定,另一套圈从一个极限位置至另一极限位置的距离。
径向位移量称为径向游隙,轴向位移量称为轴向游隙。
在GB/T4604 《滚动轴承径向游隙》中,滚动轴承的径向游隙是根据轴承的结构类型,分别规定了若干不同组别的游隙值。
每个组别中均有一个基本组C0,还有若干较小和较大游隙组。
基本游隙组可满足大多数轴承使用场合,但并非所有情况都适用,尤其是如今机械设备向重载轻量化发展,校核轴承游隙越发重要。
轴承的轴向游隙可以根据轴承的配置作具体调整,装配时要十分注意轴向游隙大小的控制。
3、径向游隙的选择3.1、工作游隙的概念轴承的游隙也可分为初始游隙、安装游隙和工作游隙三种。
初始游隙是指轴承出厂时的游隙,即供货游隙。
安装游隙是指轴承安装后的游隙,一般而言,轴承的内、外圈与轴和轴承座孔间存在过盈或者过渡关系,由于配合作用一般内圈胀大,外圈缩小,安装完成后会吃掉部分轴承游隙,所以安装游隙要比初始游隙小。
工作游隙是指轴承在设备正常运转时的游隙,工作游隙的数值很难用测量的手段获得。
轴承在运转过程中,内外圈温度均会升高,但是由于内外圈的散热情况不同,内圈通过轴散发热量,外圈通过轴承座散发热量,外圈的散热情况要比内圈好,所以内外圈会产生温差,一般内圈温度要高于外圈温度5~10℃,如果轴承工作于高速下,温差会更大,这样会进一步减小轴承的游隙,所以工作游隙又比安装游隙小。
轴承游隙选择及理论游隙标准
轴承游隙选择及理论游隙标准1、轴承游隙所谓轴承游隙,即指轴承在未安装于轴或轴承箱时,将其内圈或外圈的一方固定,然后便未被固定的一方做径向或轴向移动时的移动量。
根据移动方向,可分为径向游隙和轴向游隙。
运转时的游隙(称做工作游隙)的大小对轴承的滚动疲劳寿命、温升、噪声、振动等性能有影响。
测量轴承的游隙时,为得到稳定的测量值,一般对轴承施加规定的测量负荷。
因此,所得到的测量值比真正的游隙(称做理论游隙)大,即增加了测量负荷产生的弹性变形量。
安装前轴承的内部游隙一般用理论游隙表示,见表。
2、游隙的选择从理论游隙减去轴承安装在轴上或外壳内时因过盈配合产生的套圈的膨胀量或收缩后的游隙称做“安装游隙”。
在安装游隙上加减因轴承内部温差产生的尺寸变动量后的游隙称做“有效游隙”。
轴承安装有机械上承受一定的负荷放置时的游隙,即有效游隙加上轴承负荷产生的弹性变形量后的以便称做“工作游隙”。
当工作游隙为微负值时,轴承的疲劳寿命最长但随着负游隙的增大疲劳寿命同显著下降。
因此,选择轴承的游隙时,一般使工作游隙为零或略为正为宜。
另外,需提高轴承的刚性或需降低噪声时,工作游隙要进一步取负值,而在轴承温升剧烈时,工作游隙则要进一步取正值等等。
轴承达到最理想的寿命,必须有合适的游隙,游隙值=设计游隙(出厂游隙)-内圈配合产生的游隙减少量-外圈因配合产生的游隙减少量加上或减去因温差产生的游隙减少量或增加量。
具体游隙选择,请详见设备安装技术标准。
3、游隙代号径向内部游隙代号有一下几种:C0:标准游隙代号,此代号一般在轴承型号中省略不做标记。
C2:比标准游隙略小的游隙。
C3:比标准游隙略大的游隙。
C4:比C3游隙略大的游隙。
C5比C4游隙略大的游隙。
4、常用轴承径向游隙标准见下表:1、2深沟球轴承C0为标准游隙,一般采用C0和C3数值。
圆柱孔圆柱滚子轴承C0为标准游隙,一般采用C0和C3数值。
THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
轴承游隙选择知识
问:轴承游隙如何的确定?
答:轴承的径向游隙一般要根据轴承的使用条件来确定。
以下是一般条件下轴承径向游隙选用参考:(一)使用条件:
1.安装配合精密或非过盈配合
2.要求严格控制振动噪音
3.要求精确的径向或轴向定位
应用举例:测试设备、仪器,低噪音、小型电机,精密轧机
选用游隙:C2
(二)使用条件:
1.一般的安装配合条件(由样本推荐)
2.一般载荷和转速,工作温升不大
应用举例:低噪音、小型电机,减速机,传动机构
选用游隙:C0
(三)使用条件:
1.内圈和外圈过盈配合,或其中某一件过盈量大
2.内圈不容易散热
3.调心滚子轴承以承载为主要目的,工作条件变化大时
应用举例:精密轧机,造纸干燥机,矿山机械
选用游隙:C3
(四)使用条件:
1.内圈和外圈过盈配合,且过盈量较大
2.工作温升高,且内圈不容易散热
3.角接触使用的球轴承;球轴承内外圈轴线有倾斜
应用举例:振动筛,烘干机,汽车后轮
选用游隙:C4
(五)使用条件:
1.内圈和外圈过盈配合,且过盈量很大,并且工作温升高,内圈不容易散热
应用举例:振动式压路机
选用游隙:C5
(六)使用条件:
1.如果轴承的工作条件非常特殊,上述5种标准游
隙都不能满足其要求,则可以选择非标准游隙
应用举例:工业洗衣机,罗茨风机
选用游隙:C9。
滚动轴承工作游隙的计算和选择方法(修改)
滚动轴承工作游隙的计算和选择方法(修改)1. 实际有效过盈量的计算公式△dy =32△d-G △d —— 名义过盈量G —— 过盈配合的压平尺寸例如:轴承内径 φ400012.0- 轴φ40013.0002.0++名义过盈量为+25μm经压缩1/3后,实际有效过盈量为+17μm 。
过盈配合的压平尺寸G表面粗糙度0.8时为1μm 。
2.径向游隙减小的估算公式①轴承内圈与钢质实心轴△j=△dy*h d△j ——内圈滚道挡边直径扩张量(μm )d ——轴承内径公称尺寸(mm )h ——内圈滚道挡边直径(mm )②轴承内圈与钢质空心轴△j=△dy*F(d) F(d)= h d *)/()1/()1/(2221h d d d d d -- d1——空心轴内径(mm )③轴承外圈与钢质实体外壳△A=△Dy*D H△A ——外圈滚道挡边直径扩张量(μm )△Dy ——外壳孔直径实际有效过盈量(μm )D ——轴承外径公称尺寸(mm )H ——外圈滚道挡边直径(mm )④轴承外圈与钢质薄壁外壳△A=△Dy*F(D) F(D)= D H *)/()/()/(2221D H D F D F --F ——轴承座外壳外径⑤轴承外圈与灰铸铁外壳△A=△Dy[F(D)-0.15]⑥轴承外圈与轻金属外壳△A=△Dy[F(D)-0.25]3. 由于内外套圈的温度差引起的游隙减小量δt = αΔt Do (mm)式中,α—轴承钢的膨胀系数1.12×105-(1/℃)Δt —内外套圈的温度差(℃),Δt = T内- T外Do —外圈滚道直径(mm)。
4.径向游隙的减小量△j+△A+δt5. 根据径向游隙的减小量在游隙组中选定游隙范围。
例如:轴承型号:22332,内圈受局部重载荷作用,与轴套轴向游动,取g6配合。
外圈受循环载荷作用,与外壳孔紧配,取P6配合。
内圈:φ1600025.0-轴:φ160014 .0039 .0--最大名义过盈量△d =11,G=2.5则实际有效过盈量△dy=4.8 d/h=160/191≈0.838△j=△dy*d/h=4.8*0.838≈4外圈:φ2900035.0-外壳孔:φ290047 .0079 .0--最大名义过盈量△D =79,G=5则实际有效过盈量△Dy=48H/D=258/290≈0.89△A=△Dy*H/D=48*0.89≈43假设没有其他的热传入。
轴承游隙的检测调整方法
轴承游隙的检测调整方法轴承游隙是指轴承在装配时产生的间隙或间隙变化。
合适的轴承游隙可以提高轴承的工作性能和寿命,因此,检测和调整轴承游隙是非常重要的。
下面将详细介绍轴承游隙的检测和调整方法。
一、轴承游隙的检测方法1.制动器法:通过绑紧轴承内环,装配制动器在外环上,用力施加所需游隙,检测装入、拆出制动器的力矩。
2.感应法:利用感应装置,检测轴承内环的微小位移,从而计算轴承游隙。
3.铅沉法:将铅底盘涂上润滑油,将轴承装配并加装适当的力,轴承内间隙处铅底盘上的油会被挤出,测量铅盘上的间隙厚度。
4.涂料法:将液体润滑油注入轴承,在外环上涂一层特定厚度的材料,转动轴承一定圈数后观察涂料的磨损情况。
5.振动法:利用振动检测仪器,测量轴承的振动频率和振幅,进行轴承游隙的检测。
二、轴承游隙的调整方法1.轴承盖的调整:轴承盖是用来承载轴承、固定轴箱的零件。
调整轴承盖的位置可以改变轴承的游隙。
通常采用扩孔的方法,将轴承盖上的螺栓放松,逐渐调节扩孔螺栓的位置,使轴承游隙加大或减小。
2.弹簧片的调整:在一些轴承中,装有弹簧片来调整游隙。
调整游隙的方法是增加或减少弹簧片的数量,或者改变弹簧片的材料和厚度。
3.加减金属垫片:在轴承盖和轴承内部加装金属垫片,可以改变轴承的游隙。
加减金属垫片的方法是根据轴承盖位置的测量结果,在轴承盖和轴承上逐渐加减垫片,使轴承游隙达到要求。
4.轴承外环的夹紧:通过在轴承外环上加装夹紧套、锁紧螺母等装置,可以改变轴承的游隙。
通过加紧或松开夹紧套或螺母,调整轴承游隙达到要求。
5.轴向调整:通过调整轴向位置,可以改变轴承的游隙。
在轴承内环和外环上加装适当的垫片或调整轴承套的位置,可以改变轴承的轴向位置,从而改变轴承的游隙。
总之,轴承游隙的检测和调整方法多种多样,可以根据不同的轴承类型和工作条件选择适合的方法。
检测和调整轴承游隙时需要注意连续性和稳定性,避免因操作不当导致误差。
同时,轴承游隙的调整要符合轴承的设计要求和工作需求,确保轴承的正常运行。
圆锥滚子轴承游隙标准
圆锥滚子轴承游隙标准
圆锥滚子轴承游隙是一种重要的参数,它反映了轴承结构及工作状态。
正确的游隙大小,有利于轴承的可靠工作和满足使用寿命,调整它可以得到更优的工作性能。
游隙的确定,考虑了轴承搭接方式、使用条件、轴承类型和有关机械参数等因素。
圆锥滚子轴承的游隙一般分为内圆锥滚子轴承和外圆锥滚子轴承两种,内圆锥滚子轴承游隙的确定,主要考虑轴向负荷、速度和温度等因素:
1. 如果组合轴承(内圆锥滚子轴承和外圆锥滚子轴承),内圆锥滚子轴承和外圆锥滚子轴承应一起选择。
2. 根据使用条件,结合游隙设定规则,选定内圆锥滚子轴承;
3. 如果应用游隙较大,游隙增大系数α按照交货时增大规格确定;
4. 内圆锥滚子轴承的最小游隙应选择为所得的值的1/3;
5. 对于大扭矩轴承,应考虑游隙的危险性,并可采用增大游隙的措施;
6.对于主轴承,由于精度可能低于辅助轴承,应选用小游隙设计,以确保较好的散热性能和具有较高的转动精度;
7. 外圆锥滚子轴承的游隙不应超过内圆锥滚子轴承的游隙的1.5倍,以确保使用安全、稳定、无抖动性能;
8. 内外圆锥滚子轴承之间的游隙,其最小寿命游隙有关机械参数,如轴向负荷、转速、冷热条件的类型、结构及游隙变动曲线等。
圆锥滚子轴承游隙的正确选择,有利于轴承的可靠运行,是轴承调整工作稳定性及使用寿命的关键,关乎轴承性能和使用寿命。
因此,在实际应用中,圆锥滚子轴承游隙的选择应当非常谨慎,认真研究,以确保圆锥滚子轴承可靠运行。
轴承的轴向游隙和径向游隙
轴承的轴向游隙和径向游隙
【实用版】
目录
1.轴承的轴向游隙和径向游隙的定义
2.轴向游隙和径向游隙的影响因素
3.轴承游隙的测量和选择
4.轴承游隙在实际应用中的重要性
5.结论
正文
一、轴承的轴向游隙和径向游隙的定义
轴承的轴向游隙是指在轴承轴向上,滚动体与套圈之间的间隙量。
而径向游隙是指在轴承径向方向上,滚动体与套圈之间的间隙量。
这两种游隙是轴承在安装和使用过程中,关键的参数之一,对于轴承的性能和寿命有着重要的影响。
二、轴向游隙和径向游隙的影响因素
轴向游隙和径向游隙的大小取决于以下几个因素:首先,轴承的制造精度和安装精度是影响游隙大小的重要因素;其次,轴承的材料和热处理工艺也会影响游隙的大小;最后,轴承的使用环境和负荷也会对游隙产生影响。
三、轴承游隙的测量和选择
轴承游隙的测量通常采用专用的游隙测量仪器进行。
在选择轴承游隙时,需要根据轴承的使用条件和性能要求,选择合适的游隙等级。
一般来说,轴承的游隙等级越高,其精度越低,但是其承载能力和耐久性也会相应提高。
四、轴承游隙在实际应用中的重要性
轴承游隙对于轴承的性能和寿命有着重要的影响。
合适的游隙可以提高轴承的旋转精度和承载能力,同时也可以延长轴承的使用寿命。
而过大或过小的游隙,都可能导致轴承的性能下降,甚至损坏轴承。
五、结论
轴承的轴向游隙和径向游隙是轴承关键的参数之一,其大小对于轴承的性能和寿命有着重要的影响。
轴承游隙标准
轴承游隙的选择原则一、游隙的选择原则:1、采用较紧配合,内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向负荷或需改善调心性能的场合,宜采用大游隙组。
2、当旋转精度要求较高或需严格限制轴向位移时,宜采用小游隙组。
二、与游隙有关的因素:1、轴承内圈与轴的配合。
2、轴承外圈与外壳孔的配合。
3、温度的影响。
注:径向游隙减少量与配合零件的实际有效过盈量大小、相配轴径大小、外壳孔的壁厚有关。
1、实际有效过盈量(内圈)应为:△dy = 2/3△d–G* △d为名义过盈量,G*为过盈配合的压平尺寸。
2、实际有效过盈量(外圈)应为:△Dy = 2/3△D–G* △D为名义过盈量,G*为过盈配合的压平尺寸。
3、产生的热量将导致轴承内部温度升高,继而引起轴、轴承座和轴承零件的膨胀。
游隙可以增大或减小,这取决于轴和轴承座的材料,以及轴承和轴承支承部件之间的温度剃度。
三、游隙的计算公式:(1):配合的影响1、轴承内圈与钢质实心轴:△j =△dy * d/h2、轴承内圈与钢质空心轴:△j =△dy * F(d)F(d) = d/h * [(d/d1)2 -1]/[(d/d1)2 - (d/h)2]3、轴承外圈与钢质实体外壳:△A =△Dy * H/D4、轴承外圈与钢质薄壁外壳:△A =△Dy * F(D)F(D) = H/D * [(F/D)2 - 1]/[(F/D)2 - (H/D)2]5、轴承外圈与灰铸铁外壳:△A =△Dy * [F(D)–0.15 ]6、轴承外圈与轻金属外壳:△A =△Dy * [F(D)–0.25 ]注:△j --内圈滚道挡边直径的扩张量(um)。
△dy—轴颈有效过盈量(um)。
d --轴承内径公称尺寸(mm)。
h --内圈滚道挡边直径(mm)。
B --轴承宽度(mm)。
d1 --空心轴内径(mm)。
△A --外圈滚道挡边直径的收缩量(mm)。
△Dy --外壳孔直径实际有效过盈量(um)。
轴承游隙——精选推荐
轴承游隙具体的也要看轴承的使⽤环境。
C3游隙的轴承会在运转过程中给机器带来振动和噪⾳。
机器转数⾼的⽤游隙⼤的.转数低的⽤游隙⼩的. (通常分为C0,C3,C4,C5,C6后两种属于超精密机床⽤的游隙不常见。
C0,C3,C4常见)轴承运转过程中发热,滚珠就要膨胀,C3为使⽤游隙较⼤的,这样轴承转起来减少摩擦⼒,寿命⾃然要⽐⼩游隙的长。
简单的说转速与温度需求不同,使⽤寿命不同。
关键看使⽤⼯矿。
具体分析。
科学选配很重要!关于游隙的其它资料仅供参考:轴承在运转过程中,其游隙(径向游隙、轴向游隙)的⼤⼩是影响轴承疲劳寿命、温升、噪⾳、振动、精度等项指标的关键因素,因此,设计时如何选取轴承游隙是⼗分重要的。
由于轴承内外圈和滚动体在安装时受过盈量的影响,在运转时受温度变化的影响,在载荷较⼤时受零件弹性变形的影响,其内部游隙(理论游隙)将变化为安装游隙、有效游隙、⼯作游隙,这样变化的结果,最终的⼯作游隙不是加⼤,⽽是缩⼩,甚⾄达到了负值,当然,微负值对轴承疲劳寿命是有益的,但是,过⼤的负值将使轴承疲劳寿命明显下降。
1、轴承的径向游隙⽆外载荷作⽤时,在不同的⾓度⽅向,⼀个套圈从⼀个径向偏⼼极限位置移向相反极限位置的径向距离的算术平均值。
此平均值包括了套圈或垫圈在不同的⾓位置时的相互移动量以及滚动体组在不同⾓位置时相对于套圈或垫圈的位移量。
轴承6312/C3的径向游隙为3组。
2、理论径向游隙对于径向接触来说,理论径向游隙即外圈滚道接触直径减去内圈滚道接触直径再减去两倍滚动体直径。
轴承代号6312/P63表⽰公差等级为6级,游隙为3组。
3、轴向游隙⽆外载荷作⽤时,⼀个套圈或垫圈相对于另⼀个套圈或垫圈从⼀个轴向极限位置移向相反的极限位置的轴向距离的算术平均值。
此平均值包括了套圈或垫圈在不同的⾓位置时的相互移动量以及滚动体组在不同⾓位置时相对于套圈或垫圈的位移量。
4、轴承的安装游隙从理论游隙减去轴承安装在轴上或外壳内时因过盈配合产⽣的套圈的膨胀量或收缩量后的游隙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴承的游隙选择方法
一、游隙的选择原则:1、采用较紧配合,内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向负荷或需改善调心性能的场合,宜采用大游隙组。
2、当旋转精度要求较高或需严格限制轴向位移时,宜采用小游隙组。
二、与游隙有关的因素:1、轴承内圈与轴的配合。
2、轴承外圈与外壳孔的配合。
3、温度的影响。
注:径向游隙减少量与配合零件的实际有效过盈量大小、相配轴径大小、外壳孔的壁厚有关。
1、实际有效过盈量(内圈)应为:△dy = 2/3△d G* △d 为名义过盈量,G*为过盈配合的压平尺寸。
2、实际有效过盈量(外圈)应为:△Dy = 2/3△D G* △D 为名义过盈量,G*为过盈配合的压平尺寸。
3、产生的热量将导致轴承内部温度升高,继而引起轴、轴承座和轴承零件的膨胀。
游隙可以增大或减小,这取决于轴和轴承座的材料,以及轴承和轴承支承部件之间的温度剃度。
三、游隙的计算公式:(1): 配合的影响1、轴承内圈与钢质实心轴:△j = △dy * d/h 2、轴承内圈与钢质空心轴:△j = △dy * F(d) F(d) = d/h * [(d/d1)2 -1]/[(d/d1)2 - (d/h)2] 3、轴承外圈与钢质实体外壳:△A = △Dy * H/D 4、轴承外圈与钢质薄壁外壳:△A = △Dy * F(D)F(D) = H/D * [(F/D)2 - 1]/[(F/D)2 - (H/D)2] 5、轴承外圈与灰铸铁外壳:△A = △Dy * [F(D) 0.15 ] 6、轴承外圈与轻金属外壳:△A = △Dy * [F(D) 0.25 ] 注: △j -- 内圈滚道挡边直径的扩张量(um)。
△dy - 轴颈有效过盈量(um)。
d -- 轴承内径公称尺寸(mm)。
h -- 内圈滚道挡边直径(mm)。
B -- 轴承宽度(mm)。
d1 -- 空心轴内径(mm)。
△A -- 外圈滚道挡边直径的收缩量(mm)。
△Dy -- 外壳孔直径实际有效过盈量(um)。
H -- 外圈滚道挡边直径(mm)。
D -- 轴承外圈和外壳孔的公称直径(mm)。
F -- 轴承座外壳外径(mm)。
(2): 温度的影响△T = Гb * [De * ( T0 Ta ) di * ( Ti Ta)] 其中Гb 为线膨胀系数,轴承钢为11.7 *10-6 mm/mm/ 0C De 为轴承外圈滚道直径,di 为轴承内圈滚道直径。
Ta 为环境温度。
T0 为轴承外圈温度,Ti 轴承内圈温度。
四、轴向游隙与径向游隙的关系:Ua = [4(fe + fi 1) * Dw * Ur Ur2 ] 1/2 因径向游隙Ur很小、故Ur2 很小,忽略不记。
故Ua = 2 * [(fe + fi 1) * Dw * Ur ] 1/2 其中fe 为外圈沟曲率系数,fi 为内圈沟曲率系数,Dw 为钢球直径。
洛阳世必爱特种轴承有限公司长期致力于各行业的轴承服务,由于先进的技术支持,产品几乎涵盖了各种轴承类型。
公司拥有专业的技术与服务团队,技术人员比例达40%,能高效的在最短时间内处理好客户的任何问题。
一、游隙的选择原则:1、采用较紧配合,内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向负荷或需改善调心性能的场合,宜采用大游隙组。
2、当旋转精度要求较高或需严格限制轴向位移时,宜采用小游隙组。
二、与游隙有关的因素:1、轴承内圈与轴的配合。
2、轴承外圈与外壳孔的配合。
3、温度的影响。
注:径向游隙减少量与配合零件的实际有效过盈量大小、相配轴径大小、外壳孔的壁厚有关。
1、实际有效过盈量(内圈)应为:△dy = 2/3△d G* △d 为名义过盈量,G*为过盈配合的压平尺寸。
2、实际有效过盈量(外圈)应为:△Dy = 2/3△D G* △D 为名义过盈量,G*为过盈配合的压平尺寸。
3、产生的热量将导致轴承内部温度升高,继而引起轴、轴承座和轴承零件的膨胀。
游隙可以增大或减小,这取决于轴和轴承座的材料,以及轴承和轴承支承部件之间的温度剃度。
三、游隙的计算公式:(1): 配合的影响1、轴
承内圈与钢质实心轴:△j = △dy * d/h 2、轴承内圈与钢质空心轴:△j = △dy * F(d) F(d) = d/h * [(d/d1)2 -1]/[(d/d1)2 - (d/h)2] 3、轴承外圈与钢质实体外壳:△A = △Dy * H/D 4、轴承外圈与钢质薄壁外壳:△A = △Dy * F(D)F(D) = H/D * [(F/D)2 - 1]/[(F/D)2 - (H/D)2] 5、轴承外圈与灰铸铁外壳:△A = △Dy * [F(D) 0.15 ] 6、轴承外圈与轻金属外壳:△A = △Dy * [F(D) 0.25 ] 注: △j -- 内圈滚道挡边直径的扩张量(um)。
△dy - 轴颈有效过盈量(um)。
d -- 轴承内径公称尺寸(mm)。
h -- 内圈滚道挡边直径(mm)。
B -- 轴承宽度(mm)。
d1 -- 空心轴内径(mm)。
△A -- 外圈滚道挡边直径的收缩量(mm)。
△Dy -- 外壳孔直径实际有效过盈量(um)。
H -- 外圈滚道挡边直径(mm)。
D -- 轴承外圈和外壳孔的公称直径(mm)。
F -- 轴承座外壳外径(mm)。
(2): 温度的影响△T = Гb * [De * ( T0 Ta ) di * ( Ti Ta)] 其中Гb 为线膨胀系数,轴承钢为11.7 *10-6 mm/mm/ 0C De 为轴承外圈滚道直径,di 为轴承内圈滚道直径。
Ta 为环境温度。
T0 为轴承外圈温度,Ti 轴承内圈温度。
四、轴向游隙与径向游隙的关系:Ua = [4(fe + fi 1) * Dw * Ur Ur2 ] 1/2 因径向游隙Ur很小、故Ur2 很小,忽略不记。
故Ua = 2 * [(fe + fi 1) * Dw * Ur ] 1/2 其中fe 为外圈沟曲率系数,fi 为内圈沟曲率系数,Dw 为钢球直径。