概率论与数理统计公式整理(完整版)

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

( 4 )随 如果一个试验在相同条件下可以重复进行,而每次试验的 机 试 验 可能结果不止一个,但在进行一次试验之前却不能断言它 和 随 机 出现哪个结果,则称这种试验为随机试验。 事件 试验的可能结果称为随机事件。
( 5 )基 在一个试验下,不管事件有多少个,总可以从其中找出这
1
本事件、 样一组事件,它具有如下性质: 样 本 空 ①每进行一次试验,必须发生且只能发生这一组中的一个 间 和 事 事件; 件 ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件, 用 来表示。 基本事件的全体,称为试验的样本空间,用 表示。 一个事件就是由 中的部分点(基本事件 )组成的集合。 通常用大写字母 A,B,C,„表示事件,它们是 的子集。
第 1 章 随机事件及其概率
n Pm
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能
( 1 )排 数。 列组合 公式
n Cm
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能
数。 加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成, 第一种方法可由 m 种方法完成, 第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方 ( 2 )加 法来完成。 法和乘 乘法原理(两个步骤分别不能完成这件事) : m ×n 法原理 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种 方法来完成。 ( 3 )一 重复排列和非重复排列(有序) 些 常 见 对立事件(至少有一个) 排列 顺序问题
P Ai P( Ai ) i 1 i 1

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

f (x) ,对任意实数 x ,有
x
F (x) f (x)dx

则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函
数或密度函数,简称概率密度。
密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1


P(X x) P(x X x dx) f (x)dx
第 1 章 随机事件及其概率
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行
(1)排列组合公 式
排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进
行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,
第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方
(1)pij≥0(i,j=1,2,…);
(2)
pij 1.
ij
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边分别平行
于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
P{(X ,Y) D} f (x, y)dxdy,
为标准正态分布,记为 X ~ N (0,1) ,
其密度函数记为
(x)
1
x2
e2
2

x ,
分布函数为
(x) 1
x
t2
e 2 dt 。
2
( x) 是不可求积函数,其函数值,已

概率论与数理统计公式整理超全版

概率论与数理统计公式整理超全版

函数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
a≤x≤b 其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
x
F (x) f (x)dx
0,
xa, ba
1,
x<a, a≤x≤b x>b。
当 a≤x1<x2≤b 时,X 落在区间( x1 , x2 )内的概率为
x
F (x) f (x)dx


则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。 密度函数具有下面 4 个性质:
1° f (x) 0 。 f 源自x)dx 12° 。
P(X x) P(x X x dx) f (x)dx
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
(5)八大 0-1 分布 分布
二项分布
P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

第1章 随机事件及其概率(1)排列组合公式)!(!n m m P nm -=从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C nm -=从m 个人中挑出n 个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

(6)事件的关系与运算②运算:结合率:A(BC)=(AB)C A ∪(B ∪C)=(A ∪B)∪C 分配率:(AB)∪C=(A ∪C)∩(B ∪C) (A ∪B)∩C=(AC)∪(BC)德摩根率: ∞=∞==11i ii iAAB A B A =,B A B A =(7)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(i ii iA P A P常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1° {}n ωωω 21,=Ω,2°nP P P n 1)()()(21===ωωω 。

设任一事件A,它是由m ωωω 21,组成的,则有P(A)={})()()(21m ωωω=)()()(21m P P P ωωω+++ nm =基本事件总数所包含的基本事件数A =(9)几何概型)()()(Ω=L A L A P 。

其中L 为几何度量(长度、面积、第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件:二、给出事件运算关系符,要求判断其正确性:§1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)


(3)离散与
P(X x) P(x X x dx) f (x)dx
连续型随机
变量的关系 积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离散型随机变量理论中所起的作用相类
(4)分布函 数
似。
设 X 为随机变量, x 是任意实数,则函数
F(x) P( X x) 称为随机变量 X 的分布函数,本质上是一个累积函数。
①两个事件的独立性
设事件 A 、 B 满足 P( AB) P( A)P(B) ,则称事件 A 、 B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P(AB) P(A)P(B) P(B)
P( A)
P( A)
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独立。
1 / 25
(7)概率的公理化定义
(8)古典概型
(9)几何概型 (10)加法公式 (11)减法公式 (12)条件概率 (13)乘法公式 (14)独立性
概率论与数理统计公式整理(超全免费版)
Ai Ai
德摩根率: i1
i1
AB AB, AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母 A,B,C,…表示事件,它
们是 的子集。
为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为 1, 而概率为 1 的事件也不一定是必然事件。

概率论与数理统计公式大全

概率论与数理统计公式大全

第1章随机事件及其概率第二章随机变量及其分布Ihl ttamitai'l例1.16设某人从一副扑克中(52张)任取13张,设A为 至少有一张红桃”,B 为恰有2张红桃”,张方块”,求条件概率P( B| A), P( B| C) 解 P(A)1 P(A)P(BA)P(AB) P(A)1 c;3CTG ;c3;C 13 C52C52C39—C13一C 13 C 13C 52 C 39—血39P(AB)P(C)C 13C 39 c ;3P(BC)5 26C13C 13C 2652P(B C )P ( BC ) P(C)C13 C 13 C 2613 --------- C 52C 5 C 8C13 C 39C13~ —C 522 6C 13 C 26C 8C39C 为恰有5 C 23C 3113T -某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现 年为20岁的这种动物活到25岁的概率.解 设A 表示事件 活到20岁以上”,B 表示 事件活到25岁以上”, P(A) 0.7 P(B) 0.56P(B A)P(AB) P(A)显然P(AB) 0.56 0.7P(B) 0.560.81例 1.21例1.21 某工厂生产的产品以 超过 4件,且具有如下的概率: 一批产品中的次品数 0概率 0.1 0.2现进行抽样检验,从每批中随机抽取 为该批产品不合格。

求一批产品通过检验的概率。

解设B 表示事件 “一批产品通过检验 品”100 1 2 0.4 0.2 件为一批,假定每一批产品中的次品最多不 3 0.1 10件来检验,若发现其中有次品,则认 ”,A (=0,1,234) 表示 ,贝U A 0 ,A 1 , A 2, A 3, A 4组成样本空间的一个划分, C 10C99 C 10C100P(A) 0.1P(B|") 1P(A) 0.2,P (B |A )0.900 P(A)'一批产品含有 0.4,P(B A 2)i 件次P(A 3) 0.2, P(B A 3)c 10崗 0.727 C 100P(A 4)0.1 , P(B A 4)C 10C 96C 10 C0.652C 1098C 101000.8094P ( A k )P ( B |A k ) k 0 顾客买到的一批合格品中,含次品数为0的概率是类似可以计算顾客买到的一 批合格品中,含次品数为 1、2、 3、 4件的概率分别约 为 0.221 、0.398 、0.179 、 0.080贝叶斯公式(Bayes)P(B) P (A 。

概率论与数理统计超全公式总结

概率论与数理统计超全公式总结

E (X )=∑∑x i p i jijxxn+∞ n n−λλkP (X = k ) = e , (k = 0,1,...)k !(a ≤ x ≤ b )1b − af (x ) =概率论与数理统计公式总结F (x ) = P (X ≤ x ) = ∑P (X = k )k ≤x分布函数 对离散型随机变量F ' (x ) = f (x )第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当 A 、B 互斥时, P(A+B)=P(A)+P(B)对连续型随机变量F (x ) = P (X ≤ x ) =∫−∞f (t )dt条件概率公式分布函数与密度函数的重要关系:P (A | B ) =P (AB )P (B )F (x ) = P (X ≤ x ) =∫−∞f (t )dt概率的乘法公式P (AB ) = P (B )P (A | B )= P (A )P (B | A )二元随机变量及其边缘分布分布规律的描述方法全概率公式:从原因计算结果P (A ) = ∑ P (B k )P (A | B k )k =1联合密度函数联合分布函数f (x , y ) ≥ 0f (x , y ) F (x , y )+∞ +∞Bayes 公式:从结果找原因∫−∞ ∫−∞f (x , y )dx dy = 1 0 ≤ F (x , y ) ≤ 1P (B k| A ) = P (B i )P (A | B i ) ∑P (B )P (A | B )F (x , y ) = P {X ≤ x ,Y ≤ y }f (x ) = ∫ f (x , y )d y 联合密度与边缘密度第二章kkk =1Xf Y (y ) = −∞+∞−∞f (x , y )dx二项分布(Bernoulli 分布)——X~B(n,p)P (X =k )=C k p k (1−p)n −k,(k =0,1,...n , ) 泊松分布——X~P(λ)概率密度函数离散型随机变量的独立性P {X = i ,Y = j } = P {X = i }P {Y = j }连续型随机变量的独立性f (x , y ) = f X (x ) f Y (y ) 第三章数学期望离散型随机变量,数学期望定义怎样计算概率P (a ≤ X ≤ b )b连续型随机变量,数学期望定义� E(a)=a ,其中 a 为常数P (a ≤ X ≤ b ) = ∫af (x )d x均匀分布 X~U(a,b)指数分布 X~Exp (θ)• E(a+bX)=a+bE(X),其中 a 、b 为常数 � E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量 g(X)的数学期望常用公式+∞∫−∞ f (x )dx = 1+∞E (X ) = ∑x k ⋅P kk =−∞+∞E (X ) = ∫−∞x ⋅ f (x )dxE (g (X )) = ∑ g (x k ) p kk∫Y / nD (X +Y ) = D (X ) + D (Y ) + 2E {(X − E (X ))(Y − E (Y ))} X ~ N (µ,σ2 )i σ 12 σ E (X Y ) = ∑∑x i y j p i jij2σ22−(x −µ) e 12πσf (x ) =不相关不一定独立第四章 正态分布E (X ) = µ,D (X ) = σ2方 差 定义式常用计算式常用公式当 X 、Y 相互独立时:标准正态分布的概率计算 标准正态分布的概率计算公式P (Z ≤ a ) = P (Z < a ) = Φ(a )P (Z ≥ a ) = P (Z > a ) = 1− Φ(a )P (a ≤ Z ≤ b ) = Φ(b ) − Φ(a )P (−a ≤ Z ≤ a ) = Φ(a ) − Φ(−a ) = 2Φ(a ) −1一般正态分布的概率计算一般正态分布的概率计算公式 P (X ≤ a ) = P (X < a ) = Φ(a − µσ ) a − µ方差的性质P (X ≥ a ) = P (X > a ) = 1− Φ( σ)D(a)=0,其中 a 为常数P (a ≤ X ≤ b ) = Φ(b − µ− Φ(a − µD(a+bX)=b2D(X),其中 a 、b 为常数当 X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数E {[X − E (X )][Y − E (Y )]}= E (XY ) − E (X )E (Y )第 五 章卡方分布σ ) σ)n若X ~ N (0,1),则∑ X 2 ~ χ2(n )i =121n2 2协方差的性质若Y ~ N (µ,σ ),t 分布则 2 ∑(Y i− µ) i =1 ~ χ (n )若X ~ N (0,1), Y ~ χ2(n ),则X ~ t (n )独立与相关独立必定不相关 Cov (aX ,bY ) = abCov (X ,Y )若U ~ χ2 (n ), F 分布正态总体条件下 样本均值的分布:V ~ χ2(n ),则U / n 1 V / n 2~ F (n 1,n 2 )相关必定不独立2X ~ N (µ,)nX − µ~ N (0,1)σ/ n 2− E (X )) ⋅ f (x )dx x +∞−∞∫ D (X ) =( E (XY ) = ∫ ∫ xyf (x , y )dxdy σX ~ N (µ,σ2 ) ⇔ Z = X − µ~ N (0,1)D (X )D (Y )XY ρ =C ov (X ,Y )Cov (X +Y , Z ) = Cov (X , Z ) + Cov (Y , Z )C ov (X , X ) = E (X 2 ) − (E (X ))2 =D (X )Cov (X ,Y ) = E (XY ) − E (X )E (Y )D (X +Y ) = D (X ) + D (Y )D (X ) =E (X 2 ) − [E (X )]2当X 与Y 独立时,E (XY ) = E (X )E (Y )Φ(a ) = 1− Φ(−a ) E (X +Y ) = E (X ) + E (Y )E (X ) = ∫ ∫ xf (x , y )dxdyn ⎠ n ⎠ n ⎠σ2 1 + 2 n 1 n 2 σ2 σ / n(x 1 − x 2 )± z α/ 2 2 2 ⎜ χ χ ⎛ ⎜ ⎟12x ± z样本方差的分布:正态总体方差的区间估计 两个正态总体均值差的置信区间(n −1)S 2 ~ χ2 (n −1) X − µ~ t (n −1) 大样本或正态小样本且方差已知σ2两个正态总体的方差之比⎛⎜ ⎜ ⎝S 2 / S 2两个正态总体方差比的置信区间1 2~ F (n 1 −1,σ2 /σ2n 2 −1)2 / S 2 , 2 / S 2⎞ ⎝ F α/ 2 (n 1 −1,n 2 −1) F α/ 2 (n 1 −1,n 2 −1) ⎠第六章点估计:参数的估计值为一个常数矩估计 最大似然估计n似然函数第七章假设检验的步骤1 根据具体问题提出原假设 H0 和备择假设 H12 根据假设选择检验统计量,并计算检验统计值3 看检验统计值是否落在拒绝域,若落在拒绝域则L = Π i =1f (x i ;θ)L = Π i =1p (x i ;θ)拒绝原假设,否则就不拒绝原假设。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

(6)事件的关 系与运算
AB 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者
,它表
示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相容
分布是二项分布的特例。
设随机变量 X 的分布律为
P( X k) k e , 0 , k 0,1,2, k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
P( X
k)
CMk

C
nk N M
C
n N
k 0,1,2,l , l min(M , n)

f
(x)
b
1
a
,
0,
a≤x≤b
其他,
指数分布
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
x<a,
x
F(x) f (x)dx
xa, ba
1,
a≤x≤b x>b。
x , x 当 a≤x1<x2≤b 时,X 落在区间( 1 2 )内的概率为
P( x1
X
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能 断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

(完整版)概率论与数理统计公式整理(超全版)

(完整版)概率论与数理统计公式整理(超全版)
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。

2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。

3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。

4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。

5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。

2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。

3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。

4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。

5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。

6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。

以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。

掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。

2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。

概率论与数理统计 公式(全)

概率论与数理统计 公式(全)
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大
写字母 A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件; 同理,必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然 事件。 ①关系:
不发生的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) 德摩根率:


Ai Ai
i1
i 1
AB AB,AB AB
(7)概 率的公 理化定 义
0-1 P(X=1)=p, P(X=0)=q


二 项
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A
分 布
P( X
k)
Pn(k
)

C
k n
p k q nk ,
其中 q 1 p,0 p
则称随机变量 X 服从参数为 n , p 的二项分布。记为 X ~
当 n 1时, P( X k) p k q1k , k 0.1,这就是(0-1
也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时
;..
..
发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A

概率论与数理统计 公式(全)

概率论与数理统计 公式(全)


几 何
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
分 随机变量 X 服从参数为 p 的几何分布,记为 G(p)。

均 设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在



f
(
x)

b
1
a
,
0,
a≤x≤b 其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,

k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~
泊松分布为二项分布的极限分布(np=λ ,n→∞)。
1
概率论与数理统计 公式(全) 1
2012-6-1
超 几 何
P( X

k)

CMk

C nk N M
C
n N
k 0,1,2,l , l min(M , n)
分 随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N
也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
1
概率论与数理统计 公式(全)
2012-6-1
时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相 容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A

m n

A所包含的基本事件数 基本事件总数
(9)几 何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同 时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称 此随机试验为几何概型。对任一事件 A,

概率论与数理统计公式(全)

概率论与数理统计公式(全)

第1章随机事件及其概率
我们作了n 次试验,且满足
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用
)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k
n k k
n n q p k P C -=)(,n k ,,2,1,0Λ=。

第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。

概率论与数理统计公式全完整版

概率论与数理统计公式全完整版

概率论与数理统计公式

HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
第1章随机事件及其概率
每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样;
每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用p 表示每次试验A 发生的概率,则A 发生的概率为q p =-1,用
)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,
k n k k
n n q p k P C -=)(,n k ,,2,1,0 =。

第二章 随机变量及其分布
第三章二维随机变量及其分布
第四章随机变量的数字特征
第五章大数定律和中心极限定理
第六章样本及抽样分布
第七章参数估计
第八章假设检验
单正态总体均值和方差的假设检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
。其中L为几何度量(长度、面积、体积)。
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
1° 。
2° 。
(3)离散与连续型随机变量的关系
积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。
(4)分布函数
设 为随机变量, 是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
这种试验称为伯努利概型,或称为 重伯努利试验。
用 表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率,
, 。
第二章 随机变量及其分布
(1)离散型随机变量的分布律
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至ห้องสมุดไป่ตู้有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
第1章 随机事件及其概率
(1)排列组合公式
从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
德摩根率: ,
(7)概率的公理化定义
设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。
A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。
相关文档
最新文档