高考文科数学专题复习导数训练题(文)
文科求函数的导数练习题
![文科求函数的导数练习题](https://img.taocdn.com/s3/m/596dbc48a31614791711cc7931b765ce05087afc.png)
文科求函数的导数练习题一、基本初等函数求导1. 求函数 f(x) = x^3 的导数。
2. 求函数 f(x) = 5x^2 的导数。
3. 求函数 f(x) = 3x + 7 的导数。
4. 求函数 f(x) = 1/x 的导数。
5. 求函数f(x) = √x 的导数。
二、复合函数求导6. 求函数 f(x) = (x^2 + 3x + 2)^5 的导数。
7. 求函数f(x) = √(4x^2 9) 的导数。
8. 求函数 f(x) = e^(2x 1) 的导数。
9. 求函数 f(x) = ln(3x + 1) 的导数。
10. 求函数f(x) = sin(πx) 的导数。
三、隐函数求导11. 已知 y = x^2 + 3xy + y^3,求 dy/dx。
12. 已知 x^3 + y^3 = 6xy,求 dy/dx。
13. 已知 e^x + e^y = xy,求 dy/dx。
14. 已知 sin(x + y) = ycosx,求 dy/dx。
15. 已知 lnx + ln(y 1) = x,求 dy/dx。
四、参数方程求导16. 已知参数方程 x = 2t^3,y = t^2 + 1,求 dy/dx。
17. 已知参数方程x = cosθ,y = sinθ,求 dy/dx。
18. 已知参数方程 x = e^t,y = ln(t),求 dy/dx。
19. 已知参数方程x = 3cosθ,y = 3sinθ,求 dy/dx。
20. 已知参数方程 x = t^2 + 1,y = 2t + 3,求 dy/dx。
五、高阶导数21. 求函数 f(x) = x^4 的二阶导数。
22. 求函数 f(x) = e^x 的二阶导数。
23. 求函数 f(x) = sinx 的三阶导数。
24. 求函数 f(x) = ln(x^2 + 1) 的一阶和二阶导数。
25. 求函数 f(x) = arctanx 的一阶导数。
六、分段函数求导26. 求函数 f(x) = { x^2 + 1, x < 0{ 2x 3, x ≥ 0 的导数。
高考文科数学专题复习导数训练题文
![高考文科数学专题复习导数训练题文](https://img.taocdn.com/s3/m/6d92e3b076c66137ef061925.png)
高考文科数学专题复习导数训练题文Newly compiled on November 23, 2020考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x考点三:导数的几何意义的应用。
例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。
解析: 直线过原点,则()000≠=x x y k 。
由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。
又263'2+-=x x y ,∴ 在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。
导数文科测试题及答案
![导数文科测试题及答案](https://img.taocdn.com/s3/m/1f8df368bb1aa8114431b90d6c85ec3a87c28bec.png)
导数文科测试题及答案一、单项选择题(每题3分,共30分)1. 函数y=x^2的导数是()A. 2xB. x^2C. 2D. x答案:A2. 函数y=3x的导数是()A. 3B. 3xC. 1D. 0答案:A3. 函数y=x^3的导数是()A. 3x^2B. x^3C. 3D. x^2答案:A4. 函数y=sin(x)的导数是()A. cos(x)B. sin(x)C. -sin(x)D. -cos(x)答案:A5. 函数y=e^x的导数是()A. e^xB. e^(-x)C. 1D. 0答案:A6. 函数y=ln(x)的导数是()A. 1/xB. xC. ln(x)D. 1答案:A7. 函数y=1/x的导数是()A. -1/x^2B. 1/x^2C. -1/xD. 1/x答案:A8. 函数y=x^(1/2)的导数是()A. 1/2x^(-1/2)B. 1/2x^(1/2)C. 1/2D. 2x^(-1/2)答案:A9. 函数y=tan(x)的导数是()A. sec^2(x)B. tan(x)C. 1D. sec(x)答案:A10. 函数y=arcsin(x)的导数是()A. 1/sqrt(1-x^2)B. 1/xC. xD. sqrt(1-x^2)答案:A二、填空题(每题4分,共20分)11. 函数y=x^4的导数是________。
答案:4x^312. 函数y=cos(x)的导数是________。
答案:-sin(x)13. 函数y=ln(1+x)的导数是________。
答案:1/(1+x)14. 函数y=x^(-2)的导数是________。
答案:-2x^(-3)15. 函数y=arccos(x)的导数是________。
答案:-1/sqrt(1-x^2)三、解答题(每题10分,共50分)16. 求函数y=x^2-2x+1的导数。
答案:y'=2x-217. 求函数y=e^(2x)的导数。
高二文科导数求导练习题
![高二文科导数求导练习题](https://img.taocdn.com/s3/m/f8fd02af9a89680203d8ce2f0066f5335a8167fd.png)
高二文科导数求导练习题1. 求导函数:f(x) = 3x^2 - 2x + 5我们将使用导数的定义来求解这个练习题。
首先,我们需要确定函数f(x)在给定的区间内是可导的。
在这种情况下,我们不需要担心定义域或间断点。
根据导数的定义,导数f'(x)为函数f(x)在x点的极限值:f'(x) = lim(h->0) [f(x+h) - f(x)] / h我们将使用极限的性质来简化这个表达式。
首先,我们计算f(x+h):f(x+h) = 3(x+h)^2 - 2(x+h) + 5= 3(x^2 + 2xh + h^2) - 2x - 2h + 5= 3x^2 + 6xh + 3h^2 - 2x - 2h + 5接下来,我们计算f(x+h) - f(x):f(x+h) - f(x) = (3x^2 + 6xh + 3h^2 - 2x - 2h + 5) - (3x^2 - 2x + 5)= 6xh + 3h^2 - 2h现在我们可以将此结果代入到导数的定义中:f'(x) = lim(h->0) [6xh + 3h^2 - 2h] / h我们可以通过取消分式中的h来简化上述表达式:f'(x) = lim(h->0) 6x + 3h - 2最后,当h趋近于0时,只有常数项6x会影响极限的结果:f'(x) = 6x最后的结果表明,在给定的区间内,函数f(x)的导数f'(x)是6x。
2. 求导函数:g(x) = sqrt(x^3) + 2x与第一个练习题相似,我们将使用导数的定义来求解这个问题。
同样地,我们需要确定函数g(x)在给定的区间内是可导的。
根据导数的定义,导数g'(x)为函数g(x)在x点的极限值:g'(x) = lim(h->0) [g(x+h) - g(x)] / h首先,我们计算g(x+h):g(x+h) = sqrt((x+h)^3) + 2(x+h)= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h接下来,我们计算g(x+h) - g(x):g(x+h) - g(x) = (sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h) - (sqrt(x^3) + 2x)= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) + 2x + 2h - sqrt(x^3) - 2x= sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3) + 2h现在我们可以将此结果代入到导数的定义中:g'(x) = lim(h->0) [sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3) + 2h] / h将分式中的h进行约分,我们可以得到:g'(x) = lim(h->0) [(sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3)) / h + 2]当h趋近于0时,我们只需要考虑第一项中的根式部分,其他项不会影响极限的结果:g'(x) = lim(h->0) [(sqrt(x^3 + 3x^2h + 3xh^2 + h^3) - sqrt(x^3)) / h]为了使计算更加便捷,我们将使用导函数的性质。
文科《导数》高考常考题型专题训练
![文科《导数》高考常考题型专题训练](https://img.taocdn.com/s3/m/7c71fdc4ccbff121dc3683b2.png)
文科《导数》高考常考题型专题训练1.已知函数/。
)= 6'一。
工一3(。
£/?)(1)若函数段)在函,—1))处的切线与直线木广0平行,求实数”的值;(2)当a=2, k为整数,且当Q1时,“一外/'(x) + 2x + l>0,求〃的最大值.1 .【解析】(1)由/(x) = "—ax — 3,则/'*・) = "—〃又函数7U)在(1,火1))处的切线与直线片厂0平行,则=(2)当〃=2,且当x>l 时,&一行(。
”一+ 2x + l>0等价于2), 2x+l)当x>l 时,k< x + ^—k " - 2 7m j n2x + \,-2X-3)令g(x) = x + ^-则g (幻=—:-------------------e -2 (。
”-2)-再令h(x) = e x - 2x - 3(x > 1),则/(x) = " - 2 > 0 ,所以,〃(x)在(L+o。
)上单调递增,且以l)vO,以2)>0,所以,/?(x)在(1, 2)上有唯一的零点,设该零点为小,则x°w(l,2),且e"=2%+3, 当xw。
,,q)时,〃(%)v。
,即g'(x)<。
:当xw(小,+°°)时,"(x)>。
,即g'(x)>0, 所以,g (x)在。
,小)单调递减,在(/,+8)单调递增,2( +1所以,g(X)min +c - z而x°e(L2),故一+le(2,3)且"vg(瓦),又k为整数,所以k的最大值为2.2.已知函数/(x) = 6 + sinx,其中(1)若函数”刈在区间上单调递增,求k的取值范围:⑵若k = l时,不等式/Oarcosx在区间0尚上恒成立,求实数。
的取值范围.2・1解析】(1)由题意,f\x) = k+cosx t(冗5兀।「兀5兀、因为/(”)在区间二;上单调递增,所以工£二:时,/'(x) = Z + cosxNO恒成立,即k 3 6 7 V3 6 yk>—COSX9因为函数)'= -cosx在(工:上单调递增,所以—cosxK—cos^ =无,所以攵之五. (361 6 2 2(2) 〃 = 1 时,/(x) = x + sinx,令g(x) = /(x)—ovcosx = x+sinx-arcosx, xw[o.g],则g(x)A。
高考文科数学导数真题汇编(带答案)
![高考文科数学导数真题汇编(带答案)](https://img.taocdn.com/s3/m/4bdcdff00d22590102020740be1e650e53eacf41.png)
高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。
5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。
7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。
8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。
9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。
11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。
解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。
2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。
解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。
高中文科经典导数练习题及答案
![高中文科经典导数练习题及答案](https://img.taocdn.com/s3/m/b9832c7afad6195f312ba6de.png)
高二数学导数单元练习一、选择题1.一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是()A 7米/秒B 6米/秒C 5米/秒D 8米/秒2.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为()3()f x ''()()x g x =,5.0,则7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为()A (1,0)B (2,8)C (1,0)和(1,4)--D (2,8)和(1,4)--8.函数313y x x =+-有()A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-1,极大值3D.极小值-2,极大值29对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有()A (0)(2)2(1)f f f +<B (0)(2)2(1)f f f +≤14.n 项和的1516 17.2y x =-,请解答下列问题:(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。
18.已知函数323()(2)632f x ax a x x =-++-(1)当2a >时,求函数()f x 极小值;(2)试讨论曲线()y f x =与x 轴公共点的个数。
20.已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(1)求m 与n 的关系式;(3111) )012n+,所以21n n a n =+,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和()12122212n n n S +-==--三、解答题:15.解:设切点为(,)P a b ,函数3235y xx =+-的导数为'236y x x =+ 切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到3235y x x =+-得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=16.解:设小正方形的边长为x 厘米,则盒子底面长为82x -,宽为52x -'2'10125240,0,1,3V x x V x x =-+===令得或,103x =(舍去) (1)18V V ==极大值,在定义域内仅有一个极大值, c bx ax x f ++=24182a =- (20<, 轴有三个交点;()x 的图像与x 轴只有一个交点;综上知,若0,()a f x ≥的图像与x 轴只有一个交点;若0a <,()f x 的图像与x 轴有三个交点。
高考文科数学专题复习导数训练题
![高考文科数学专题复习导数训练题](https://img.taocdn.com/s3/m/d09666aebe23482fb5da4c47.png)
高考文科数学专题复习导数训练题(文)二、经典例题剖析 考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数:则(1)f '-的值是 。
解析:()2'2+=x x f :所以()3211'=+=-f 答案:3点评:本题考查多项式的求导法则。
考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+:则(1)(1)f f '+= 。
解析:因为21=k :所以()211'=f :由切线过点(1(1))M f ,:可得点M 的纵坐标为25:所以()251=f :所以()()31'1=+f f答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y :∴点(13)-,处切线的斜率为5443-=--=k :所以设切线方程为b x y +-=5:将点(13)-,带入切线方程可得2=b :所以:过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
例4.已知曲线C :x x x y 2323+-=:直线kx y l =::且直线l 与曲线C 相切于点()00,y x 00≠x :求直线l 的方程及切点坐标。
解析: 直线过原点:则()000≠=x x y k 。
由点()00,y x 在曲线C 上:则0230023x x x y +-=:∴ 2302000+-=x x x y 。
又263'2+-=x x y :∴ 在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k :∴ 26323020020+-=+-x x x x :整理得:03200=-x x :解得:230=x 或00=x (舍):此时:830-=y :41-=k 。
(完整word版)导数文科专题复习(学生版)
![(完整word版)导数文科专题复习(学生版)](https://img.taocdn.com/s3/m/c8d062d3192e45361166f5ec.png)
高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算考点一 导数的计算【例1】 求下列函数的导数:(1)y =e x ln x ;(2)y =x ⎝⎛⎭⎪⎪⎫x 2+1x +1x 3;【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.考点二 导数的几何意义 命题角度一 求切线方程【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0命题角度二求切点坐标【例3】(2017·西安调研)设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点P处的切线垂直,则P的坐标为________.【训练3】若曲线y=x ln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.命题角度三求与切线有关的参数值(或范围)【例4】(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a =________.【训练4】1.函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是________.2.点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为( )A.1B.32C.52D.2第2讲导数在研究函数中的应用知识梳理考点一利用导数研究函数的单调性【例1】设f (x )=e x (ax 2+x +1)(a >0),试讨论f (x )的单调性.【训练1】(2016·四川卷节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -eex ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.考点二 求函数的单调区间【例2】 (2015·重庆卷改编)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.【训练2】 已知函数f (x )=x 4+ax -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y=12x .(1)求a 的值;(2)求函数f (x )的单调区间.考点三已知函数的单调性求参数【例3】(2017·西安模拟)已知函数f(x)=ln x,g(x)=12ax2+2x(a≠0).(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.【训练3】已知函数f(x)=x3-ax-1.(1)若f(x)在R上为增函数,求实数a的取值范围;(2)若函数f(x)的单调减区间为(-1,1),求a的值.第3讲 导数与函数的极值、最值考点一 用导数研究函数的极值 命题角度一 根据函数图象判断极值【例1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A.函数f (x )有极大值f (2)和极小值f (1)B.函数f (x )有极大值f (-2)和极小值f (1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2) 命题角度二 求函数的极值【例2】 求函数f (x )=x -a ln x (a ∈R )的极值.命题角度三 已知极值求参数【例3】 已知关于x 的函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,试求b ,c 的值.【训练1】设函数f(x)=ax3-2x2+x+c(a>0).(1)当a=1,且函数图象过(0,1)时,求函数的极小值;(2)若f(x)在R上无极值点,求a的取值范围.考点二利用导数求函数的最值【例4】(2017·郑州模拟)已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.【训练2】 设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎢⎢⎡⎦⎥⎥⎤1e ,e 上的最大值.考点三 函数极值与最值的综合问题【例5】 已知函数f (x )=ax 2+bx +ce x(a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.【训练3】(2017·衡水中学月考)已知函数f(x)=ax-1-ln x(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的最大值.第4讲导数与函数的综合应用考点一利用导数研究函数的性质【例1】(2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.【训练1】设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝ ⎛⎭⎪⎪⎫23,+∞上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.考点二 利用导数研究函数的零点或方程的根【例2】 (2015·北京卷)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.【训练2】(2016·北京卷节选)设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围.考点三导数在不等式中的应用命题角度一不等式恒成立问题【例3】(2017·合肥模拟)已知f(x)=x ln x,g(x)=x3+ax2-x+2.(1)如果函数g (x )的单调递减区间为⎝ ⎛⎭⎪⎪⎫-13,1,求函数g (x )的解析式; (2)对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.【训练3】已知函数f (x )=x 2-ln x -ax ,a ∈R .(1)当a =1时,求f (x )的最小值;(2)若f (x )>x ,求a 的取值范围.命题角度二 证明不等式【例4】 (2017·昆明一中月考)已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.【训练4】 (2017·泰安模拟)已知函数f (x )=ln x .(1)求函数F (x )=f (x )x +12的最大值;(2)证明:f (x )x +12<x -f (x );。
高考文科数学试卷导数大题
![高考文科数学试卷导数大题](https://img.taocdn.com/s3/m/63e35d59a7c30c22590102020740be1e640ecc08.png)
一、题目已知函数$f(x) = x^3 - 3x^2 + 2x + 1$,求:(1)函数$f(x)$在$x=1$处的切线方程;(2)函数$f(x)$的极值点。
二、解题过程(1)求切线方程首先,我们需要求出函数$f(x)$在$x=1$处的导数,即切线的斜率。
由导数的定义,我们有:$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$对于函数$f(x) = x^3 - 3x^2 + 2x + 1$,我们有:$$f'(x) = \lim_{\Delta x \to 0} \frac{(x+\Delta x)^3 - 3(x+\Delta x)^2 + 2(x+\Delta x) + 1 - (x^3 - 3x^2 + 2x + 1)}{\Delta x}$$展开并化简上式,得到:$$f'(x) = \lim_{\Delta x \to 0} \frac{3x^2\Delta x + 3x\Delta x^2 +\Delta x^3 - 6x\Delta x - 6\Delta x^2 + 2\Delta x}{\Delta x}$$化简后得到:$$f'(x) = 3x^2 + 3x - 6x - 6 + 2$$进一步化简,得到:$$f'(x) = 3x^2 - 3x - 4$$将$x=1$代入上式,得到切线的斜率$k$:$$k = f'(1) = 3 \times 1^2 - 3 \times 1 - 4 = -4$$接下来,我们需要求出切点的纵坐标。
将$x=1$代入原函数$f(x)$,得到:$$f(1) = 1^3 - 3 \times 1^2 + 2 \times 1 + 1 = 1$$因此,切点为$(1, 1)$。
最后,我们可以写出切线方程。
由于切线的斜率为$k=-4$,切点为$(1, 1)$,所以切线方程为:$$y - 1 = -4(x - 1)$$化简后得到:$$y = -4x + 5$$(2)求极值点为了求出函数$f(x)$的极值点,我们需要找到函数的导数$f'(x)$的零点。
高考数学导数专项练习及答案(文科)
![高考数学导数专项练习及答案(文科)](https://img.taocdn.com/s3/m/1200bf13b7360b4c2f3f6404.png)
高考数学导数专项练习及答案(文科)1、已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数.(Ⅰ)求a ,c 的值; (08年高考)(Ⅱ)求函数()f x 的单调区间2、设函数3()3(0)f x x ax b a =-+≠. (09年高考)(Ⅰ)若曲线()y f x =在点(2,(2))f 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.3、设定函数32()(0)3a f x x bx cx d a =+++ ,且方程'()90f x x -=的两个根分别为1,4。
(10年高考) (Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式;(Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。
4、已知函数()()x f x x k e =-。
(11年高考) (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值。
5、已知函数2()1(0)f x ax a =+>,3()g x x bx =+。
(12年高考)(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (Ⅱ)当3,9a b ==-时,若函数()()f x g x +在区间[,2]k 上的最大值为28,求k 的取值范围。
6、已知函数()2()1e x f x ax =-⋅,a ∈R .(朝阳一模)(Ⅰ)若函数()f x 在1x =时取得极值,求a 的值;(Ⅱ)当0a ≤时,求函数()f x 的单调区间.7、已知1=x 是函数()(2)e x f x ax =-的一个极值点.(a ∈R ) (东城一模) (Ⅰ)求a 的值;(Ⅱ)当1x ,[]20,2x ∈时,证明:12()()e f x f x -≤.8、已知函数211()ln (0)22f x a x x a a =-+∈≠且R . (海淀一模) (Ⅰ)求()f x 的单调区间;(Ⅱ)是否存在实数a ,使得对任意的[)1,x ∈+∞,都有()0f x ≤?若存在,求a 的取值范围;若不存在,请说明理由.9、已知函数21()ln 2f x ax x =+,其中a ∈R . (西城期末考试题) (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 在(0,1]上的最大值是1-,求a 的值.10、已知函数21()2e 2x f x x x a =-+-.(东城二模)(Ⅰ)若1a =,求()f x 在1x =处的切线方程;(Ⅱ)若)(x f 在R 上是增函数,求实数a 的取值范围.11、已知函数22()3x a f x x a +=+(0a ≠,a ∈R ). (海淀二模) (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当1a =时,若对任意12,[3,)x x ∈-+∞,有12()()f x f x m -≤成立,求实数m 的最小值.12、已知函数2221()1ax a f x x +-=+,其中a ∈R .(西城二模)(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程;(Ⅱ)求)(x f 的单调区间.高考数学导数专项练习及答案(文科)答案1、解:(Ⅰ)因为函数()()2g x f x =-为奇函数,所以,对任意的x ∈R ,()()g x g x -=-,即()2()2f x f x --=-+.又32()3f x x ax bx c =+++所以32323232x ax bx c x ax bx c -+-+-=----+. 所以22a a c c =-⎧⎨-=-+⎩,.解得02a c ==,.(Ⅱ)由(Ⅰ)得3()32f x x bx =++.所以2()33(0)f x x b b '=+≠.当0b <时,由()0f x '=得x b =±-.x 变化时,()f x '的变化情况如下表: x()b -∞--, b -- ()b b ---, b - b -+∞(,) ()f x '+ 0 - 0 +所以,当0b <时,函数()f x 在()b -∞--,上单调递增,在()b b ---,上单调递减, 在()b -+∞,上单调递增. 当0b >时,()0f x '>,所以函数()f x 在()-∞+∞,上单调递增.2、【解析】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.(Ⅰ)()'233f x x a =-,∵曲线()y f x =在点(2,(2))f 处与直线8y =相切,∴()()()'203404,24.86828f a a b a b f ⎧=-=⎧=⎧⎪⎪⇒⇒⎨⎨⎨=-+==⎪⎩⎪⎩⎩(Ⅱ)∵()()()'230f x x a a =-≠,当0a <时,()'0fx >,函数()f x 在(),-∞+∞上单调递增,此时函数()f x 没有极值点.当0a >时,由()'0f x x a =⇒=±, 当(),x a ∈-∞-时,()'0f x >,函数()f x 单调递增, 当(),x a a ∈-时,()'0f x <,函数()f x 单调递减, 当(),x a ∈+∞时,()'0f x >,函数()f x 单调递增, ∴此时x a =-是()f x 的极大值点,x a =是()f x 的极小值点. 3、解:由32()3a f x x bx cx d =+++ 得 2()2f x ax bx c '=++ 因为2()9290f x x ax bx c x '-=++-=的两个根分别为1,4,所以290168360abc a b c ++-=⎧⎨++-=⎩(*)(Ⅰ)当3a =时,又由(*)式得2608120b c b c +-=⎧⎨++=⎩ 解得3,12b c =-=又因为曲线()y f x =过原点,所以0d =故32()312f x x x x =-+(Ⅱ)由于a>0,所以“32()3a f x x bx cx d =+++在(-∞,+∞)内无极值点”等价于“2()20f x ax bx c '=++≥在(-∞,+∞)内恒成立”。
文科导数练习题
![文科导数练习题](https://img.taocdn.com/s3/m/ac3171c8d5d8d15abe23482fb4daa58da0111c2a.png)
文科导数练习题一、单项选择题1. 函数f(x) = 2x² + 3x + 1的导数f'(x)为:A. 2x + 3B. 4x + 3C. 4x + 1D. 2x + 12. 函数g(x) = sin(x) - cos(x)的导函数g'(x)为:A. cos(x) + sin(x)B. -cos(x) - sin(x)C. -cos(x) + sin(x)D. cos(x) - sin(x)3. 函数h(x) = ln(x² + 1)的导数h'(x)为:A. 2x/(x² + 1)B. (x² + 1)/(2x)C. x/(x² + 1)D. 2x4. 函数p(x) = e^x - e^(-x)的导函数p'(x)为:A. e^x + e^(-x)B. e^x - e^(-x)C. e^x + e^(-x)D. e^x + e^(-x)5. 函数q(x) = sqrt(2x - 3)的导数q'(x)为:A. 1/sqrt(2x - 3)B. 1/(2sqrt(2x - 3))C. sqrt(2x - 3)D. 1/(2sqrt(2x - 3))二、计算题1. 求函数f(x) = x³ - 3x的导函数f'(x)。
解答:首先,对于多项式函数而言,导数的计算只需要对各项的指数进行乘积运算,然后指数减1即可。
对于f(x) = x³ - 3x,可以分别计算出各项的导数。
f'(x) = 3x² - 32. 求函数g(x) = cos(2x)的导函数g'(x)。
解答:对于三角函数而言,导数的计算需要使用链式法则,即外函数的导数乘上内函数的导数。
对于g(x) = cos(2x),外函数是cos(x),内函数是2x。
g'(x) = -sin(2x) * 2= -2sin(2x)3. 求函数h(x) = ln(x + 1)的导函数h'(x)。
高三文科数学基础题(导数、切线方程)
![高三文科数学基础题(导数、切线方程)](https://img.taocdn.com/s3/m/62657375336c1eb91a375d48.png)
文科导数、切线方程练习一、选择题1.函数()22)(x x f π=的导数是( ) A.x x f π4)(=' B.x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(=' 2.曲线2313-=x y 在点)37,1(--处的切线的倾斜角为( ) A . 30o B . 45o C . 135o D . -45o3. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( )A.1B.2C.-1D. 0 4.曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( )A. (1,0)B. (2,8)C. (1,0)和(1,4)--D. (2,8)和(1,4)--5.曲线223y x x =-+在点(1,2)处的切线方程为( )A .31y x =-B .35y x =-+C .35y x =+D .2y x =6.曲线x y e =在点A (0,1)处的切线斜率为( )A .1B .2C .eD .1e 7.曲线2y 21x x =-+在点(1,0)处的切线方程为( )A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+8.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则A .1,1a b ==B . 1,1a b =-=C .1,1a b ==-D . 1,1a b =-=-9.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294e B.22e C.2e D.22e 二、填空题 11.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________.12.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________13.若()sin cos f x x α=-,则'()f α等于_______________14.若23ln 4x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 三、解答题:13.已知a ∈R,函数f(x)=2x 3-3(a +1)x 2+6a x 若a =1,求曲线y=f(x)在点(2,f(2))处的切线方程;14.已知函数1()ln 1()a f x x ax a R x-=-+-∈)当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;15.已知函数f (x )=3231()2ax x x R -+∈,其中a >0. 若a =1,求曲线y=f (x )在 点(2,f (2))处的切线方程;16. 已知函数f (x )=3213x x ax b -++的图像在点P (0,f(0))处的切线方程为y=3x-2. 求实数a , b 的值;17. 已知函数32()23 3.f x x x =-+求曲线()y f x =在点2x =处的切线方程;18.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
人教版高考文科数学专题复习导数训练题及参考答案
![人教版高考文科数学专题复习导数训练题及参考答案](https://img.taocdn.com/s3/m/8114644a27d3240c8447ef94.png)
高考文科数学专题复习导数训练题(文)(附参考答案)一、考点回顾1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义.2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用.3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值.二、经典例题剖析考点一:求导公式例1是的导函数,则.考点二:导数的几何意义例2. 已知函数的图象在点处的切线方程是,则.考点三:导数的几何意义的应用例3.已知曲线直线且直线与曲线相切于点求直线的方程及切点坐标.考点四:函数的单调性例4.设函数在及时取得极值.(1)求的值及函数的单调区间;(2)若对于任意的都有<成立,求的取值范围.考点五:函数的最值例5.已知为实数,(1)求导数;(2)若求在区间上的最值.考点六:导数的综合性问题例6. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数(1)求的值;(2)求函数的单调递增区间,并求函数在上的最大值和最小值.例7.已知在区间上是增函数,在区间上是减函数,又.(Ⅰ)求的解析式;(Ⅱ)若在区间上恒有成立,求的取值范围.例8.设函数(),其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的极大值和极小值;(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.例9.已知在上是增函数,上是减函数,方程有三个实根,它们分别是(1)求的值,并求实数的取值范围;(2)求证:≥三、方法总结(一)方法总结导数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具.导数的概念及其运算是导数应用的基础,是高考重点考查的对象.要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法.应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景.应用导数求函数最值及极值的方法在例题讲解中已经有了比较详细的叙述.(二)高考预测导数的考查方式以客观题为主,主要考查求导数的基本公式和法则,以及导数的几何意义.也可以解答题的形式出现,即以导数的几何意义为背景设置成导数与解析几何的综合题.导数的应用是重点,侧重于利用导数确定函数的单调性和极值、最值、值域问题.四、强化训练1.已知曲线的一条切线的斜率为,则切点的横坐标为( A )A.1B.2C.3D.42.函数已知在时取得极值,则(D )(A)2(B)3(C)4(D)53.函数在区间上的最大值是(A)A.B.C.D.4.三次函数在内是增函数,则( A )A.B.C.D.5.在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是( D )A.3B.2C.1D.06.已知函数当时,取得极大值7;当时,取得极小值.求这个极小值及的值.7.设函数已知是奇函数.(1)求的值;(2)求的单调区间与极值.8.用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?9.已知函数,其中是的导函数.(I)对满足的一切的值,都有,求实数的取值范围;(II)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.10.设函数.(I)求的最小值;(II)若对恒成立,求实数的取值范围.11.设函数(I)若函数在处取得极小值求的值;(II)求函数的单调递增区间;(III)若函数在上有且只有一个极值点,求实数的取值范围.12.已知二次函数满足:对任意,都有≥且当时,有≤成立.(I)试求的值;(II)若求的表达式;(III)在(II)的条件下,若时,>恒成立,求实数的取值范围.13.已知函数(I)当时,求的最大值和最小值;(II)当<2且时,无论如何变化,关于的方程总有三个不同实根,求的取值范围.例题参考答案例13;例23;例3 ;例4 (1)增区间为;减区间为,(2);例5 (1) (2);例6 (1) (2);例7解:(Ⅰ),由已知,即解得,,,.(Ⅱ)令,即,,或.又在区间上恒成立,.例8解:(Ⅰ)当时,,得,且,.所以,曲线在点处的切线方程是,整理得.(Ⅱ)解:,.令,解得或.由于,以下分两种情况讨论.(1)若,当变化时,的正负如下表:因此,函数在处取得极小值,且;函数在处取得极大值,且.(2)若,当变化时,的正负如下表:因此,函数在处取得极小值,且;函数在处取得极大值,且.(Ⅲ)证明:由,得,当时,,.由(Ⅱ)知,在上是减函数,要使,只要即①设,则函数在上的最大值为.要使①式恒成立,必须,即或.所以,在区间上存在,使得对任意的恒成立.例9解:(1)在上是增函数,在上是减函数,所以当时,取得极小值,又方程有三实根,的两根分别为又在上是增函数,在上是减函数,>0在上恒成立,<0在上恒成立.由二次函数的性质知,>0且≥<≤故实数的取值范围为(2)是方程的三个实根,则可设又有<≤≥强化训练答案:6.解:.据题意,-1,3是方程的两个根,由韦达定理得∴,∴极小值7.解:(1)∵,∴。
高中文科导数练习题
![高中文科导数练习题](https://img.taocdn.com/s3/m/542e82cdd1d233d4b14e852458fb770bf78a3bae.png)
高中文科导数练习题导数是微积分中的重要概念,对于高中文科学生来说,理解和应用导数是必不可少的。
本文将提供一些文科导数的练习题,帮助学生加深对导数的理解和应用。
1. 函数的导数概念考虑函数f(x) = 2x^2 + 3x - 5,求该函数在x=2处的导数。
2. 导数的运算法则已知函数f(x) = sin(x),g(x) = e^x,求h(x) = f(x) * g(x)的导数。
3. 导数与图像的关系已知函数f(x) = x^3 - 4x^2 + 3x,绘制该函数的图像并找出其关键点,然后根据导数的定义解释这些关键点的意义。
4. 导数在最优化问题中的应用某公司每月生产x件产品,月总成本C(x)与产量的关系由函数C(x) = 0.01x^3 - 0.2x^2 + 30x + 2000给出,求最小月成本对应的产量以及最小月成本。
5. 导数在经济学中的应用考虑市场上一种产品的需求量和价格之间的关系由函数D(p) =2000/p表示,其中p为价格,D(p)为需求量。
求该产品的最大价格以及最大需求量。
6. 导数在物理学中的应用某物体在水平面上以速度v(t) = 3t^2 - 2t + 5移动,其中t为时间。
求该物体的位移函数s(t)以及物体在t=1处的瞬时速度。
7. 函数的高阶导数已知函数f(x) = 2x^3 - 5x^2 + 3x - 2,求该函数的二阶导数。
8. 隐函数求导已知方程x^2 + y^2 = 25,求dy/dx。
9. 反函数求导已知函数f(x) = ln(x),求f^{-1}(x)的导数。
10. 参数方程求导已知参数方程x = 2t^2,y = 3t,求dy/dx。
以上是一些文科导数的练习题,涵盖了导数的基本概念、运算法则以及在不同领域的应用。
希望通过这些习题的练习,学生们能够加深对导数的理解,提升解决实际问题的能力。
祝学习顺利!总结:本文给出了一系列高中文科导数练习题,涵盖了导数的基本概念、运算法则以及在不同领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学专题复习导数训练题(文)一、考点回顾1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。
考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。
2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。
选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。
3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。
二、经典例题剖析 考点一:求导公式。
例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3点评:本题考查多项式的求导法则。
考点二:导数的几何意义。
例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。
解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。
解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。
考点三:导数的几何意义的应用。
例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。
解析: 直线过原点,则()000≠=x x y k 。
由点()00,y x 在曲线C 上,则0230023x x x y +-=,∴ﻩ2302000+-=x x x y 。
又263'2+-=x x y ,∴在()00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴ﻩ26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。
所以,直线l的方程为xy 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23。
答案:直线l 的方程为xy 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23 点评:本小题考查导数几何意义的应用。
解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。
函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。
考点四:函数的单调性。
例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。
解析:函数()x f 的导数为()163'2-+=x ax x f 。
对于R x ∈都有()0'<x f 时,()x f 为减函数。
由()R x x ax ∈<-+01632可得⎩⎨⎧<+=∆<012360a a ,解得3-<a 。
所以,当3-<a 时,函数()x f 对R x ∈为减函数。
2当3-=a 时,()98313133323+⎪⎭⎫ ⎝⎛--=+-+-=x x x x x f 。
由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。
7当3->a 时,函数()x f 在R 上存在增区间。
所以,当3->a 时,函数()x f 在R 上不是单调递减函数。
综合(1)(2)(3)可知3-≤a 。
答案:3-≤a点评:本题考查导数在函数单调性中的应用。
对于高次函数单调性问题,要有求导意识。
考点五:函数的极值。
例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。
(1)求a、b的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。
解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.,解得3a =-,4b =。
(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--。
当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。
所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。
则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。
因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,。
答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞,,。
点评:本题考查利用导数求函数的极值。
求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。
考点六:函数的最值。
例7. 已知a 为实数,()()()a x x x f --=42。
求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。
解析:(1)()a x ax x x f 4423+--=,∴ﻩ()423'2--=ax x x f 。
(2)()04231'=-+=-a f ,21=∴a 。
()()()14343'2+-=--=∴x x x x x f令()0'=x f ,即()()0143=+-x x ,解得1-=x 或34=x , 则()x f 和()x f '在区间[]2,2-上随x 的变化情况如下表:()291=-f ,275034-=⎪⎭⎫ ⎝⎛f 。
所以,()x f 在区间[]2,2-上的最大值为275034-=⎪⎭⎫ ⎝⎛f ,最小值为()291=-f 。
答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=⎪⎭⎫ ⎝⎛f ,最小值为()291=-f 。
点评:本题考查可导函数最值的求法。
求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。
考点七:导数的综合性问题。
例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。
(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。
解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为16,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.(2)3()212f x x x =-。
2'()6126(f x x x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞,∵(1)10f -=,f =-(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。
3方法总结(一)方法总结导数是中学限选内容中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具。
导数的概念及其运算是导数应用的基础,是高考重点考查的对象。
要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法。
应用导数解决实际问题的关键是要建立恰当的数学模型,了解导数概念的实际背景。
应用导数求函数最值及极值的方法在例题讲解中已经有了比较详细的叙述。
(二)高考预测导数的考查方式以客观题为主,主要考查求导数的基本公式和法则,以及导数的几何意义。
也可以解答题的形式出现,即以导数的几何意义为背景设置成导数与解析几何的综合题。
导数的应用是重点,侧重于利用导数确定函数的单调性和极值、最值、值域问题。
4 强化训练5 选择题1. 已知曲线24xy=的一条切线的斜率为12,则切点的横坐标为( A )A.1 ﻩB.2ﻩC.3 ﻩﻩD.42. 曲线1323+-=xxy在点(1,-1)处的切线方程为ﻩ( B )ﻩA.43-=xy B.23+-=xyC.34+-=xyD.54-=xy3.函数)1()1(2-+=xxy在1=x处的导数等于(D )A.1ﻩB.2ﻩC.3ﻩD.44.已知函数)(,31)(xfxxf则处的导数为在=的解析式可能为(A)ﻩA.)1(3)1()(2-+-=xxxfﻩB.)1(2)(-=xxfﻩC.2)1(2)(-=xxfﻩD.1)(-=xxf5.函数93)(23-++=xaxxxf,已知)(xf在3-=x时取得极值,则a=(D)(A)2ﻩﻩﻩ(B)3 ﻩ(C)4 ﻩﻩﻩ(D)56.函数32()31f x x x=-+是减函数的区间为( D )(A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)8. 函数231()23f x x x=-在区间[0,6]上的最大值是(A )A.323ﻩﻩﻩB.163ﻩﻩﻩC.12ﻩD.99. 函数xxy33-=的极大值为m,极小值为n,则nm+为(A)A.0ﻩﻩB.1 C.2ﻩﻩD.410. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( A ) A . 0>aﻩB.0<a C .1=aﻩD .31=a11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是ﻩﻩﻩ( D )A .3ﻩB .2C.1D .012. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )A .1个 ﻩﻩB .2个C .3个 ﻩ ﻩD . 4个2填空题13. 曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。