(完整版)初中数学《解直角三角形》单元教学设计以及思维导图
《解直角三角形》 教学设计
《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题中的数量关系转化为解直角三角形的数学问题,并能正确选用适当的锐角三角函数关系式解决问题。
2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题和解决问题的能力。
(2)通过将实际问题转化为数学问题,体会数学建模的思想。
3、情感态度与价值观目标(1)通过数学学习,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。
(2)培养学生严谨的科学态度和合作交流的意识。
二、教学重难点1、教学重点(2)将实际问题转化为解直角三角形的数学问题。
2、教学难点将实际问题中的数量关系转化为直角三角形中元素之间的关系。
三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)提问:直角三角形的三边有什么关系?锐角之间有什么关系?边角之间有什么关系?(2)在直角三角形 ABC 中,∠C = 90°,∠A、∠B、∠C 所对的边分别为 a、b、c。
已知 a = 3,b = 4,求 c 的长度。
(3)已知∠A = 30°,斜边 c = 6,求∠A 的对边 a 的长度。
通过复习,为学习解直角三角形做好知识铺垫。
2、讲授新课(1)解直角三角形的概念在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。
直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。
只要知道其中的两个元素(至少有一个是边),就可以求出其余的三个元素。
(3)解直角三角形的方法①已知两条直角边 a、b,求斜边 c 及锐角 A、B。
由勾股定理\(c =\sqrt{a^2 + b^2}\),\(\tan A =\frac{a}{b}\),则\(A =\arctan\frac{a}{b}\),\(B = 90° A\)。
沪科版九年级数学上册第23章《解直角三角形》教学设计
沪科版九年级数学上册第23章《解直角三角形》教学设计一. 教材分析《解直角三角形》是沪科版九年级数学上册第23章的内容,主要介绍了解直角三角形的知识和方法。
本章内容在初中数学中占有重要地位,是为后续学习平面几何和高中的三角学做铺垫。
通过本章的学习,学生能够掌握直角三角形的性质,学会使用勾股定理和三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对图形的性质和运算有一定的了解。
但是,对于解直角三角形的理解和应用,部分学生可能会感到困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理和三角函数的定义。
2.学会使用勾股定理和三角函数解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.勾股定理的理解和应用。
2.三角函数的定义和应用。
3.解决实际问题时的计算和推理。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和解决问题。
2.使用多媒体辅助教学,直观展示直角三角形的性质和应用。
3.注重实践操作,让学生通过动手操作和实际计算,加深对知识的理解。
4.采用分组合作和讨论的方式,培养学生的团队合作能力。
六. 教学准备1.多媒体教学设备。
2.直角三角形的模型或图片。
3.练习题和实际问题案例。
七. 教学过程1.导入(5分钟)利用多媒体展示直角三角形的图片,引导学生回顾已学的平面几何知识,为新课的学习做好铺垫。
2.呈现(15分钟)介绍直角三角形的性质,引导学生学习勾股定理和三角函数的定义。
通过示例和讲解,让学生理解并掌握这些知识。
3.操练(15分钟)让学生分组合作,利用直角三角形的模型或图片,进行实际操作,验证勾股定理和三角函数的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括简单的基本计算、应用题等。
教师选取部分题目进行讲解和分析,帮助学生巩固所学知识。
《解直角三角形》教学设计
《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。
湘教版数学九年级上册4.3《解直角三角形》教学设计2
湘教版数学九年级上册4.3《解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是直角三角形相关知识的学习,这部分内容是初中数学的重要内容,也是解决实际问题的基础。
本节课主要让学生掌握直角三角形的性质,学会用勾股定理和锐角三角函数解直角三角形,为后续学习三角函数和解决实际问题打下基础。
二. 学情分析九年级的学生已具备一定的几何知识,对三角形有了一定的了解,但解直角三角形的知识和方法还需要进一步学习和掌握。
在学习过程中,学生需要通过实例感受解直角三角形在实际生活中的应用,提高学习的兴趣和动力。
三. 教学目标1.知识与技能:让学生掌握直角三角形的性质,学会用勾股定理和锐角三角函数解直角三角形。
2.过程与方法:通过观察、操作、探究等活动,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体会数学在生活中的应用,提高学生解决实际问题的能力。
四. 教学重难点1.重点:直角三角形的性质,勾股定理和锐角三角函数在解直角三角形中的应用。
2.难点:如何引导学生发现并总结解直角三角形的方法,以及如何在实际问题中灵活运用。
五. 教学方法1.采用问题驱动法,引导学生发现问题、解决问题。
2.运用实例分析法,让学生感受解直角三角形在实际生活中的应用。
3.采用合作交流法,鼓励学生相互讨论、分享心得。
4.利用多媒体辅助教学,提高学生的学习兴趣。
六. 教学准备1.准备相关实例,用于引导学生发现解直角三角形的方法。
2.准备多媒体课件,展示直角三角形的性质和应用。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量身高、计算物体距离等,引导学生思考如何解决这些问题。
通过讨论,让学生认识到解直角三角形在实际生活中的重要性。
2.呈现(10分钟)介绍直角三角形的性质,引导学生发现并总结解直角三角形的方法。
通过示例,讲解勾股定理和锐角三角函数在解直角三角形中的应用。
初中数学初三数学上册《解直角三角形》教案、教学设计
4.请家长协助监督,确保学生按时完成作业,养成良好的学习习惯。
6.差异化教学,关注个体:针对学生的个体差异,设计不同难度的练习题,使每位学生都能在原有基础上得到提高。
7.课堂小结,巩固知识:在每个知识点讲解结束后,进行课堂小结,帮助学生梳理所学知识,巩固记忆。
8.作业布置,拓展提高:布置适量的课后作业,包括基础知识和拓展提高题目。让学生在课后巩固所学知识,提高解题能力。
(二)讲授新知
1.首先,我会带领学生回顾直角三角形的基本概念,如直角三角形的定义、特点以及勾股定理等。
2.接着,引入锐角三角函数(正弦、余弦、正切)的概念,通过具体的例子让学生理解它们在直角三角形中的应用。
3.讲解锐角三角函数的表示方法,以及如何运用这些函数求解直角三角形中的边长和角度。
4.结合实际例题,演示如何使用勾股定理和锐角三角函数解决实际问题,使学生明白数学知识在实际生活中的价值。
3.小组合作,共同探究:组织学生进行小组讨论和合作,共同解决实际问题。在这个过程中,学生可以相互交流、相互学习,提高解决问题的能力。
4.拓展思维,提高能力:在教学过程中,设置一定的拓展性问题,引导学生进行思考。通过拓展性问题,培养学生的创新意识和解决问题的能力。
5.紧扣教材,注重实践:紧密围绕教材内容,结合生活实际,设计具有针对性的练习题。让学生在实践中掌握知识,提高解题能力。
4.解直角三角形:通过例题,讲解如何运用勾股定理及锐角三角函数解直角三角形。
5.实际应用:让学生分组讨论,解决实际问题,巩固所学知识。
6.总结与拓展:总结解直角三角形的步骤和方法,引导学生进行拓展思考。
7.课后作业:布置适量的练习题,巩固所学知识,提高学生的解题能力。
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
初中数学_解直角三角形教学设计学情分析教材分析课后反思
《解直角三角形(1)》教材:义务教育教科书九年级上册【教学目标】知识技能:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余勾股定理及锐角三角函数值求直角三角形的未知元素。
数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动,体会从特殊到一般,从具体到抽象的认识过程.发展学生的演绎推理能力和发散思维以及语言表达能力。
解决问题:明确解直角三角形的对象,并让学生亲自经历探索过程,体会解决问题策略的多样性.培养学生在解决问题的过程中与他人相互交流、相互合作的创新意识。
情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐。
【教学重点】直角三角形的解法。
【教学难点】灵活运用锐角三角函数值解直角三角形。
【教学准备】课件、导学案【教学程序】一、旧知回顾提出问题:1.学过哪些三角函数,又分别是如何定义的2、特殊角的三角函数值是多少,同桌之间相互检查设计意图:此环节是先做好知识储备,为新课的知识学习做好铺垫二、创设情景,导入新课如图,已知有一个长为6m的梯子斜靠在墙上,并且梯子与地面的夹角为30度,要使人完全地攀上斜靠在墙上的梯子的顶端,那么在这种情况下,使用这个梯子最高可以攀上多高的墙?设计意图:通过提问激发强烈的好奇心和求知欲,从学生的生活实际出发,创设情境,让学生感受到数学与生活实际紧密联系;明白数学学习的必要性,同时,把思维兴奋点集中到要研究的解直角三角形上来,为下面学习新知识创造了良好开端。
三、出示目标课件出示学习目标边读边画出关键语句设计意图:明确学习目标四、预习检测说一说:如图,在Rt△ABC中,∠C=900 ,∠A,∠B,∠C的对边分别记作a,b,c. (1)、直角三角形三边之间的关系(2)、直角三角形的锐角之间的关系(3)、直角三角形的边和锐角的关系设计意图:让学生对自己预习情况有个更清晰的认识同时教师及时调整教学内容与步骤。
五、探索新知引导学生归纳议一议:在一个直角三角形中,除直角外有5个元素(3条边、2个锐角),只要知道其中的几个元素就可以求出其余的元素?设计意图:教师以合作者的身份深入到各小组中,了解学生的探教师以合作者的身份深入到各小组中,了解学生的探究过程并适当予以指导引导学生归纳(1)、在直角三角形中,除直角外有5个元素(即3条边、2个锐角),只要知道其中的2个元素(至少有1个是边),就可以求出其余的3个未知元素。
人教初中数学九下 《解直角三角形》教案 (公开课获奖)
解直角三角形教学目标:理解解直角三角形的概念和条件重点:解直角三角形难点:解直角三角形的基本类型及解法28.2.1 解直角三角形理解解直角三角形的概念和条件(1)解直角三角形在直角三角形中,由元素求出元素的过程,就是解直角三角形.(2)解直角三角形的条件在直角三角形中除直角外的五个元素中,已知其中个元素(至少有一个是),就能求出其余的个未知元素,即“知二求三”.重点一:解直角三角形解直角三角形的基本类型及解法Rt△ABC中,∠C=90°已知条件解法(选择的边角关系)斜边和一直角边c,a 由sin A=,求∠A;∠B=90°-∠A; b=两直角边a,b 由tan A=,求∠A;∠B=90°-∠A; c=斜边和一锐角c,∠A ∠B=90°-∠A;a=c·sin A;b=c·cos A一直角边和一锐角a,∠A ∠B=90°-∠A;b=; c=1.(2013兰州)△ABC中,a、b、c分别是∠A、∠B∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )(A)csin A=a (B)bcos B=c (C)atan A=b (D)ctan B=b2.(2013安顺)在Rt△ABC中,∠C=90°,tan A=,BC=8,则△ABC的面积为.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,请分别根据下列条件解直角三角形.(1)a=6,b=2;(2)c=4,∠A=60°.重点二:利用特殊角解非直角三角形非直角三角形可通过作三角形的高,构造直角三角形求解.在选择关系式时要尽量利用原始数据,直接求解,防止累积误差.4.如图所示,在△ABC中,∠A=30°,tan B=,AC=2,则AB的长是( )(A)3+(B)2+2(C)5 (D)5. (2013曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .6.等腰三角形的三边长分别为1、1、,那么它的底角为.7.如图所示,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).A层(基础)1.在下面的条件中,不能解直角三角形的是( )(A)已知两锐角(B)已知两条边(C)已知一边和一锐角(D)已知三条边2. 如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是( )(A)(B)12 (C)14 (D)213. 如图所示,正三角形的内切圆半径为1,那么三角形的边长为( )(A)2 (B)2 (C)(D)34.若等腰三角形ABC的底边BC上的高为4,sin B=,则△ABC的周长为( )(A)24(B)16+4 (C)8+8 (D)16+85.在△ABC中,AB=4,AC=,∠B=60°,则BC的长为( )(A)1 (B)2 (C)3 (D)1或36.如图,已知Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC= .7. 如图所示,在高为2米,∠ABC为30°的楼梯上铺地毯,地毯的长度至少应有米.8. (2013陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)9. 如图所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).教学反思:15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC AB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD . 3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .DC ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=CE .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标E DC A B P明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
初中数学_解直角三角形教学设计学情分析教材分析课后反思
六.教学设计课题解直角三角形课时 1教学目标:1.了解解直角三角形的概念并能由已知条件解直角三角形及实际问题。
2.通过对全章知识的回顾引出一些解直角三角形的问题再由学生自己发现解直角三角形一般具备的三种已知条件得情况并由此掌握解直角三角形的含义和方法教学重点与.难点直角三角形的解法.教学方法一、本章知识结构图直角三角形中的边角关系____ 锐角三角函数________解直角三角形________实际问题二、回顾与思考1.(1)锐角三角形函数是如何定义的?(2)直角三角形的边角关系包括哪些内容?2. 总结直角三角形的边角关系,完成下面的表格教学内容师生行为设计意图一、复习引入教师提出问题,引起学生思考,然后有学生来回答回顾复习直角三角形中边与边、角与角、边与角之间的关系以及锐角三角函数的有关知识二、回顾汇总教师根据学生的回答归纳教师提出问题,引导提示学生思考总结回顾复习汇总,为解直角三角形打下基础三、典型例题例1在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB ?教师:1、就学生分析简要讲评。
2、有学生板书出过程,强调做题规范性然后出示解题过程,让学生自己批改,可以发现自己的不足五.学情分析通过以前的数学学习,大多数学生已能用数学思想来思考问题,能与教师或同学一起来分析问题。
但由于各种因素的影响,学生发展参差不齐。
部分学生对学过的知识点掌握不牢固,做题没有把握,讲不出原因。
八.效果分析1. 学生在数学课堂上不积极参与,缺少主动发言的热情或根本不愿意发言;另外,相当一部分学生在听课时跟不上老师的节奏。
2. 学生对数学课堂知识的理解不全面,课外花的冤枉时间多。
大部分学生对书本知识不够重视,找不到数学学科复习的有效载体,不能有效的利用课本,适时地回归课本。
3.学生缺少教师明确的指导,在复习时缺乏系统安排和科学计划,或者学习和复习没有个性化特点, 导致学习效果不明显。
初中数学《解直角三角形》单元教学设计以及思维导图
《解直角三角形》单元教学设计本单元内容包括:“探索直角三角形的边角关系”、“特殊角三角函数值”、“锐角三角函数的应用举例”三个方面。
直角三角形中边角之间的关系,是现实世界中应用广泛的关系之一,它是联系几何与代数的桥梁,在解决现实问题中有着重要的作用。
“三角形”“勾股定理”“相似三角形”单元已经让学生了解了直角三角形的概念,知道了直角三角形角与角,边与边的之间关系,掌握了三角形的相似;推理证明等知识,为本单元的学习打下了一定的基础。
因此,本单元的内容是对直角三角形的边与角之间关系的进一步探究和应用,是相似的延续和升华.另外,也为高中阶段继续研究三角函数的知识奠定了基础,因此,它又是沟通初中数学和高中数学的一条通道;就中观层面分析,本单元的内容是直角三角形知识的重点部分之一,也是解决数学问题和利用数学知识解决实际问题的有效工具。
本章的学习,重点是熟练地运用三角函数解直角三角形。
难点把实际问题抽象为数学问题,建立合适的数学模型,探索解决问题的有效方法。
同时逐步渗透“数形结合” 的思想。
在本主题单元中,我设计成三个专题来组织学习活动。
专题一:锐角三角函数的定义,通过研究梯子的倾斜程度,理解锐角三角函数(正切、正弦、余弦)概念。
专题二:特殊角三角函数值及解直角三角形,专题三:锐角三角函数应用。
通过选取生活中的题材,如《测量物体的高度》,让学生进一步体会三角函数的应用。
主题单元学习目标知识与技能:1、使学生会运用锐角三角函数解直角三角形,并解决与直角三角形有关的实际问题。
2.通过实例进一步掌握锐角三角函数的定义,并能熟练掌握特殊角的三角函数值。
3.能够借助计算器由已知锐角求出它的三角函数值;或由已知三角函数值求出它对应的锐角。
过程与方法:1.经历探索直角三角形边角间关系的过程,发展观察、分析、发现问题的能力,体会数形结合的思想。
2.体会解决问题的策略的多样性,发展实践能力和创新精神。
情感态度与价值观:1.让学生在探索活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力。
初中数学《解直角三角形》大单元整体教学设计
同学们,咱们天天从国旗下经过,你知道旗杆有多高吗?猜一猜! 因为升旗的绳子老化了需要换新的,去采购就需要绳长,可是老师忘记旗杆有多高了,并且没有办法直接测量,你有办法吗?学完解直角三角形这个单元,你就可以设计好多种办法进行测量了! 本单元我们学习的内容是……
单元评价——表现性评价
纸笔测试
评价标准
单元达标测试 见附件
满分150分A+:130及以上A:100-129分B:80-99分C: 80以下
06
六、单元任务分解
单元任务分解
单元任务分解
课时
课题课型
学习目标
任务与活动(教学评活动)
1
单元起始课
1.通过实际问题,能说出解直角三角形的作用。2.通过单元脉络梳理,明确本单元学习目标。
单元任务分解
2
2.1锐角三角比
1.通过探索锐角三角比的意义,能说出直角三角形中锐角的正弦、余弦、正切的概念,会写出相应的符号。2.已知直角三角形的两条边,会求出直角三角形的锐角三角比。
任务一 锐角三角比与角的大小的关系活动1 探究相似三角形对应边的比例活动2 认识正弦、余弦、正切任务二 锐角三角比与三边关系活动1 例题学习活动2 巩固练习
单元目标
五、单元评价
表现性评价
纸笔测试
交流式评价
档案袋评价
单元评价——表现性评价
表现性评价
评价量规
学校旗杆上的升旗绳老化需要换新,购买绳子需要绳长,但是不能先拆下绳子测量。请大家以小组为单位,求学校旗杆的高度。要求:1.不直接查询或测量旗杆长度;2.可以利用竹竿、米尺、量角器等常见工具;3.建议采用多种方法,并运用报告的形式写出测量与计算方法。
初中数学《解直角三角形》单元教学设计以及思维导图4
(4)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。 过程与方法:(1)经历探索直角三角形中边角之间关系的过程;经历探索 30º,45º,60º角的三角函数值的过程。
(2)体会数、形之间的联系,逐步学习利用数形结合思想分析问题和解决问题。 情感态度与价值观:(1)发展学生观察、分析、发现问题的能力;(2)培养学生独立思考及互相合作的习惯。
(2 课时)
专题二:用计算器求锐角三角函数
(2 课时)
专题三: 解直角三角形及其应用
(8 课时)
„„„„
其中,专题三中测量物体的高度作为研究性学 2 课时
专题学习目标
(1)理解正切、正弦、余弦的意义并能举例进行说明; (2)能够运用 tanA ,sinA ,cosA 表示直角三角形中两边的比; (3)能根据直角三角形中的边角关系,进行简单的计算。
62
25
∴BC= .
6
25 ∴cosB= BC 6 25 5 ,
AB 65 65 13 6
sinA= BC 5 AB 13
可以得出同例 1 一样的结论. ∵∠A+∠B=90°,
∴sinA:cosB=cos(90-A),即 sinA=cos(90°-A); cosA=sinB=sin(90°-A),即 cosA=sin(90°-A).
12
如图,在 Rt△ABC 中,∠C=90°,cosA= ,AC=10,AB 等于多少?sinB 呢?cosB、sinA 呢?你还能得出类似例 1 的
13
结论吗?请用一般式表达.
分析:这是正弦、余弦定义的进一步应用,同时进一步渗透 sin(90°-A)=cosA,cos
(90°-A)=sinA.
12
初中数学《全等三角形》主题单元设计以及思维导图
初中数学《三角形》主题单元教学设计以及思维导图主题单元规划思维导图主题单元标题三角形适用年级七年级所需时间6时主题单元学习概述根据整套教科书的设计,本章在直观操作的基础上,将几何直观与简单推理相结合,更多地注重学生推理意识的树立和对推理过程的理解,注重学生用自己的方式有条理地表达推理过程,这是第三学段“图形与几何”内容中发展推理和论证能力的第一阶段。
1、三角形是最简单的多边形,它不仅是研究多边形的基础,在解决实际问题中也有着广泛的应用。
而研究三角形全等又是其中重要的部分。
,对于进一步积累数学活动经验、发展空间观念、几何直观和推理能力的培养,都有重要的价值。
2、《三角形全等》的整体单元设计有下面四部分组成:即三角形全等定义及其性质、尺规作图、三角形全等的判别方法、三角形全等的应用。
3、学习重点:三角形全等的判别方法学习难点:根据条件选择正确的判定方法进行全等的判定4、四个专题之间的关系:一个问题的研究的三个步骤无非是:是什么(概念性质)-为什么?(判定)-怎么用(应用)。
全等三角形的四个专题也存在这样的逻辑关系。
即了解三角形全等的定义,进而探究两个三角形全等的判定条件,最后运用三角形全等解决一类测距离的问题。
要说明的是余下的尺规作图专题的设计和与其他价格专题的关系。
将其放在判定之前,是因为基于学生的已有知识,要探究判定条件,只有根据定义,也就是完全重合的两个三角形全等。
所以将这一专题提前,学生通过尺规作三角形,然后进行拼比重合,进而探究说明三角形全等。
5、主要学习方式:通过测量、拼图的活动,提供学生观察、操作、交流的平台,给学生充分实践和探索的空间,注重几何直观和推理能力,注重学生分析问题能力和有条理表达6、预期的学习效果。
掌握全等三角形的性质。
会利用基本作图做三角形。
会运用(SSS、ASA、AAS、SAS)判定两个三角形全等。
主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1.了解图形全等,全等三角形的概念。
初中数学《解直角三角形》单元教学设计以及思维导图11
初中数学《解直角三角形》单元教学设计以及思维导图11 解直角三角形主题单元设计适用年初四级所需时课内8课时,课外2课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要学习方式和预期的学习成果,字数300-500。
) 本章内容是解决解直角三角形的基础,其中前两小节,又是本章的基础。
专题一,主要介绍了三类锐角三角函数的概念,明确了角度与数值之间的函数关系,为今后的正确学习本章知识打下基础;专题二,主要讲了三种特殊角的三角函数值,让学生熟记三类函数值,为今后的有关三角函数的计算题目做好准备;专题三,主要介绍了解直角三角形的几种类型,让学生熟练掌握;专题四,主要介绍了应用解直角三角形的知识要解决的几类实际生活中的问题。
通过对这部分知识的了解、应用,让学生能学以致用。
用所学知识解决简单的生产和生活中的实际问题,提高他们的学习兴趣,进一步激发他们的求知欲。
专题五,介绍了测量旗杆的高度的几种方法。
重点:经历把实际问题转化为数学问题的过程,进一步体会三角函数在解决问题过程中的应用。
难点:体验数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。
主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、能够用tanA、sinA、cosA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切、正弦、余弦进行简单的计算.2、理解正切、正弦、余弦、倾斜程度、坡度的数学的意义和与现实生活的联系. 理解锐角三角函数的意义3.能根据直角三角形中的边角关系,进行简单的计算.4.能够进行30?、45?、60?角的三角函数值的计算.能够根据30?、45?、60?的三角函数值说明相应的锐角的大小.5、会解直角三角形(要求熟练准确),能将一般三角形转化为直角三角形(适当加高)6、学会将坝高问题、触礁问题转化为解直角三角形的问题,能通过解直角三角形解决实际生活问题。
初中数学教学课例《解直角三角形》教学设计及总结反思
学科
初中数学
教学课例名
《解直角三角形》
称
本课内容是在学习锐角三角函数及特殊角三角函
数的基础上,结合三角形内角和、勾股定理、直角三角
形两锐角互余,打破以往由边求边,由角求角的模式,
解直角三角形.问题是通过一个实际问题引出已知直角
三角形的一个锐角和斜边求另一条直角边,以及已知斜
再让学生分别解这两个直角三角形,最后总结解直角三 角形实际上就是求两类问题:一是已知两边,解直角三 角形;二是已知一边和一角,解直角三角形.让学生在 独立思考的基础上进行交流展示,教师对学生中出现的 不同解法给予点评,并规范书写过程.
【设计意图】分别给出已知一角一边和已知两边解 直角三角形的例题,发散学生思维,让学生选择不同的 方法解直角三角形,在对比各种方法后体会如何灵活运 用边角的关系解直角三角形.
【设计意图】让学生体会三角函数在解直角三角形
中的应用,体会用勾股定理或者三角函数都可以求边
长,感受数学方法的多样性.
2.如图,已知在△ABC 中,∠A=60゜,∠B=45゜,
AC=12,求 AC,BC 以及△ABC 的周长.
【设计意图】检测学生能否根据图象,添加辅助线,
找出要解的直角三角形,求出答案.
如果要你根据上述信息,用“塔身中心线与垂直中 心线所成的角θ”来描述比萨斜塔的倾斜度,你能完成 吗?
师生活动:学生思考,教师引导学生将实际问题转 化为数学问题,建立模型,画出图形,标出已知量和未 知量.
【设计意图】从实际情境中引出解直角三角形,建 立数学模型,将实际问题抽象数学问题.
2.共同探究,获取新知 问题 2(1)在直角三角形中,除直角外的五个元 素之间有哪些关系? (2)知道五个中的几个,就可以求其余元素? 师生活动:学生独立思考,弄清这是一个关于解直 角三角形的问题,回忆勾股定理、三角函数及直角三角 形两个锐角互余,它们分别体现了直角三角形中哪些元 素之间的关系,尝试借助这些关系解直角三角形.教师
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形
适用年级九年级
所需时间4课时
主题单元学习概述
本主题的教学活动是以测楼高为专题,在专题目标的驱动下,引导学生学习相关的知识:如何解直角三角形,同时让学生探究在直角三角形中,满足什么条件的直角三角形可以求解的分析过程,从而解决要测量楼高需要测量哪些数据?需要什么工具?最后带领学生实地进行测量,共同探讨怎样测量的问题,最后达到解决即会测、怎么测、怎么计算等问题。
学生可以经历从实际问题抽象出数学问题,建立数学模型,应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力。
主题单元规划思维导图
主题单元学习目标
知识技能:
1、理解直角三角形中各元素之间的关系;
2、会运用勾股定理直角三角形两锐角互余及锐角三角函数解直接三。