(完整word版)2017上海虹口初三数学一模

合集下载

上海市2017各区中考数学一模试卷6套(包含答案解析)

上海市2017各区中考数学一模试卷6套(包含答案解析)

2017年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.三、解答题:(本大题共7题,满分78分)19.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.2017年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出cotA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=,cotA=.2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣1【考点】二次函数图象上点的坐标特征.【分析】分别求出x=0时y的值,即可判断是否过原点.【解答】解:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键.3.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米【考点】相似三角形的应用.【专题】应用题.【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同.4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =【考点】*平面向量.【分析】根据向量的定义对各选项分析判断后利用排除法求解.【解答】解:A、∥,∥,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B.【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题.5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴=,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴=,故B正确;∵AD∥BC,∴△AEF∽△EBC∴=,故D正确.∴C错误.故选C.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【考点】相似三角形的判定与性质.【分析】由△AEF∽△ABC,可知△AEF与△ABC的周长比=AE:AB,根据cosA==,即可解决问题.【解答】解:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.【考点】比例的性质.【分析】用a表示出b,然后代入比例式进行计算即可得解.【解答】解:∵ =,∴b=a,∴==.故答案为:.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.计算:(﹣3)﹣(+2)= .【考点】*平面向量.【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算.【解答】解::(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型.9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是k<1 .【考点】二次函数的性质.【分析】由开口向下可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x ﹣4)2.故答案为:y=(x﹣4)2.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】利用锐角三角函数定义求出所求即可.【解答】解:∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,故答案为:.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可.【解答】解:当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.故答案为:>【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .【考点】二次函数的性质.【分析】根据函数值相等的点到对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,故答案为:x=2.【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】CF⊥AB于点F,构成两个直角三角形.运用三角函数定义分别求出AF和BF,即可解答.【解答】解:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米故答案为:5+5.【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【专题】探究型.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.【考点】旋转的性质;解直角三角形.【分析】先解直角△ABC,得出BC=AB•cosB=9×=6,AC==3.再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN.解直角△ANC求出AN=AC•cos∠CAN=3×=2,根据等腰三角形三线合一的性质得出AE=2AN=4.【解答】解:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.故答案为4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了解直角三角形以及等腰三角形的性质.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】实数的运算;特殊角的三角函数值.【分析】直接将特殊角的三角函数值代入求出答案.【解答】解:原式====.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.【解答】解:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【点评】本题考查平面向量,需要掌握一向量在另一向量方向上的分量的定义,以及向量加法的平行四边形法则.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【考点】相似三角形的判定与性质.【分析】(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.【解答】解:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【考点】相似三角形的判定与性质.【分析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.【解答】证明:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【点评】本题考查的是二次函数知识的综合运用、相似三角形的判定和性质,掌握待定系数法求二次函数解析式的一般步骤、熟记相似三角形的判定定理和性质定理、掌握二次函数的性质、灵活运用数形结合思想是解题的关键.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【考点】四边形综合题.【分析】(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,。

∥3套精选试卷∥上海市虹口区2017-2018中考数学第一次适应性考试题

∥3套精选试卷∥上海市虹口区2017-2018中考数学第一次适应性考试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的几何体的主视图正确的是()A.B.C.D.【答案】D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.2.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9【答案】D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.3.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE【答案】C 【解析】解:∵AB=AC ,∴∠ABC=∠ACB .∵以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,∴BE=BC ,∴∠ACB=∠BEC ,∴∠BEC=∠ABC=∠ACB ,∴∠BAC=∠EBC .故选C .点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大. 6.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14B .7C .﹣2D .2 【答案】D【解析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6,x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集7.在同一直角坐标系中,函数y=kx-k 与k y x=(k≠0)的图象大致是 ( ) A . B .C.D.【答案】D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.9.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC【答案】D【解析】由全等三角形的判定方法ASA 证出△ABD ≌△ACD ,得出A 正确;由全等三角形的判定方法AAS 证出△ABD ≌△ACD ,得出B 正确;由全等三角形的判定方法SAS 证出△ABD ≌△ACD ,得出C 正确.由全等三角形的判定方法得出D 不正确;【详解】A 正确;理由:在△ABD 和△ACD 中,∵∠1=∠2,AD=AD ,∠ADB=∠ADC ,∴△ABD ≌△ACD (ASA );B 正确;理由:在△ABD 和△ACD 中,∵∠1=∠2,∠B=∠C ,AD=AD∴△ABD ≌△ACD (AAS );C 正确;理由:在△ABD 和△ACD 中,∵AB=AC ,∠1=∠2,AD=AD ,∴△ABD ≌△ACD (SAS );D 不正确,由这些条件不能判定三角形全等;故选:D .【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.10.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c【答案】C【解析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|,∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c ,故答案为a+c .故选A .二、填空题(本题包括8个小题)11.因式分解:2xy 4x -= .【答案】.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 12.计算:|-3|-1=__.【答案】2【解析】根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.13.某物流仓储公司用如图A ,B 两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20kg ,A 型机器人搬运1000kg 所用时间与B 型机器人搬运800kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为_____.【答案】100080020x x=+ 【解析】设B 型机器人每小时搬运x kg 物品,则A 型机器人每小时搬运(x+20)kg 物品,根据“A 型机器人搬运1000kg 所用时间与B 型机器人搬运800kg 所用时间相等”可列方程.【详解】设B 型机器人每小时搬运x kg 物品,则A 型机器人每小时搬运(x+20)kg 物品, 根据题意可得100080020x x=+, 故答案为100080020x x =+. 【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x 的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.14.不等式组21736x x ->⎧⎨>⎩的解集是_____. 【答案】x >1【解析】首先分别求出两个不等式的解集,再根据大大取大确定不等式组的解集.【详解】解:21736x x ->⎧⎨>⎩①② ,由①得:x >1,由②得:x >2,不等式组的解集为:x >1.故答案为:x >1.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式的方法.15.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数k y x =的图象经过点B ,则k 的值是_____.【答案】3.【解析】已知△ABO 是等边三角形,通过作高BC ,利用等边三角形的性质可以求出OB 和OC 的长度;由于Rt △OBC 中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC 的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式k y x =中,即可求出k 的值. 【详解】过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,BC=3,∴点B 的坐标是()1,3,把()1,3代入k y x=,得3k =. 故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;16.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.【答案】56.9610⨯ .【解析】试题分析:696000=6.96×1,故答案为6.96×1.考点:科学记数法—表示较大的数.17.函数y=12-x x的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 18.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_____米.【答案】10【解析】首先证明△ABP ∽△CDP ,可得AB BP =CD PD,再代入相应数据可得答案. 【详解】如图,由题意可得:∠APE=∠CPE ,∴∠APB=∠CPD ,∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP=90°,∴△ABP ∽△CDP ,∴AB BP =CD PD, ∵AB=2米,BP=3米,PD=15米,∴23=15CD , 解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.三、解答题(本题包括8个小题)19.如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0). 求该抛物线的解析式;求梯形COBD 的面积.【答案】(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形. 20.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根; (2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根21.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.【答案】(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.22.如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?【答案】(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,找出点M 、N 对应的数,再分点M 、点N 在点O 两侧和点M 、点N 重合两种情况考虑,根据M 、N 的关系列出关于x 的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B 对应的数是1.(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,此时点M 对应的数为3x-2,点N 对应的数为2x .①点M 、点N 在点O 两侧,则2-3x=2x ,解得x=2;②点M 、点N 重合,则,3x-2=2x ,解得x=2.所以经过2秒或2秒,点M 、点N 分别到原点O 的距离相等.23.先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1. 【答案】15. 【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++ 当x=1时,原式2123-=+=15. 【点睛】 本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.24.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由【答案】 (1) w =-10x 2+700x -10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A方案利润更高.【解析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较. 【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:10x50010x2025-+≥⎧⎨-≥⎩,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高25.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【答案】(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.26.剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【答案】4 9【解析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B (A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=a x与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a ->1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.2.计算:9115()515÷⨯-得( ) A .-95 B .-1125 C .-15 D .1125【答案】B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-=⎪ ⎪⎝⎭⎝⎭-1125故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.3.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣16【答案】B【解析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.4.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D3【答案】B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得510AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键. 5.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A .AC=EFB .BC=DFC .AB=DED .∠B=∠E【答案】C 【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED ,得∠B=∠D,因为CD BF =,若ABC ≌EDF ,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.6.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )A .m 1≥B .1mC .1mD .1m <【答案】D【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,解得:m <1.故选D .【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 7.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.8.如图所示,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+12AP的最小值为().A.3 B.23C.3214+D.332+【答案】A【解析】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+3x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= 12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+23x=0,得x1=0,x2=23,所以B(23,0),由于y=-x2+23x=-(x-3)2+3,所以A(3,3),所以AB=AO=23,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= 12AP,因为AP垂直平分OB,所以PO=PB,所以OP+12AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=32AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 9.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3)B.(-3,3)C.(2,3)D.(-4,6)【答案】A【解析】设反比例函数y=kx(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=kx(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-6x的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A .16cm B .13cmC .12cm D .1cm【答案】D【解析】过O 作直线OE ⊥AB ,交CD 于F ,由CD//AB 可得△OAB ∽△OCD ,根据相似三角形对应边的比等于对应高的比列方程求出CD 的值即可. 【详解】过O 作直线OE ⊥AB ,交CD 于F , ∵AB//CD ,∴OF ⊥CD ,OE=12,OF=2, ∴△OAB ∽△OCD ,∵OE 、OF 分别是△OAB 和△OCD 的高, ∴OF CD OE AB =,即2126CD=, 解得:CD=1.故选D. 【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键. 二、填空题(本题包括8个小题)11.已知二次函数y=ax 2+bx (a≠0)的最小值是﹣3,若关于x 的一元二次方程ax 2+bx+c=0有实数根,则c 的最大值是_____. 【答案】3【解析】由一元二次方程ax 2+bx+c=0有实数根,可得y=ax 2+bx (a≠0)和y=-c 有交点,由此即可解答. 【详解】∵一元二次方程ax 2+bx+c=0有实数根, ∴抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点, ∴-c≥-3,即c≤3, ∴c 的最大值为3. 故答案为:3. 【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点是解决问题的关键.12.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.【答案】(4,2).【解析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO 绕点C 逆时针旋转90°,得到△CBD′, 则BD′=OD=2,∴点D 坐标为(4,6);当将点C 与点O 重合时,点C 向下平移4个单位,得到△OAD′′, ∴点D 向下平移4个单位.故点D′′坐标为(4,2), 故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.13.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________. 【答案】2【解析】根据定义即可求出答案. 【详解】由题意可知:原式=1-i 2=1-(-1)=2 故答案为2 【点睛】。

虹口区中考数学第一次模试卷含答案解析

虹口区中考数学第一次模试卷含答案解析

上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30°B.45°C.60°D.不确定2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1B.y=(x﹣2)2﹣1C.y=(x﹣2)2+3D.y=(x﹣2)2﹣33.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若▱CDE与▱ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是__________.8.计算:﹣3(﹣2)=__________.9.二次函数y=x2﹣2x的图象的对称轴是直线__________.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=__________.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1__________y2.(填“>”、“<”或“=”)12.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x (2)101…y…﹣11﹣21﹣2…根据表格上的信息回答问题:当x=2时,y=__________.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为__________.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=__________.15.如图,正方形DEFG的边EF在▱ABC的边BC上,顶点D、G分别在边AB、AC 上.若▱ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为__________厘米.16.如图,在▱ABC中,▱ACB=90°,若点G是▱ABC的重心,cos▱BCG=,BC=4,则CG=__________.17.如图,在四边形ABCD中,▱B=▱D=90°,AB=3,BC=2,tanA=,则CD=__________.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将▱ABE沿AE翻折,点B落在点F处,联结FC,则cos▱ECF=__________.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.21.如图,DC▱EF▱GH▱AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)23.如图,点E是四边形ABCD的对角线BD上的一点,▱BAE=▱CBD=▱DAC.(1)求证:DE•AB=BC•AE;(2)求证:▱AED+▱ADC=180°.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A 的右侧),与轴交于点C,tan▱CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,▱BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.上海市虹口区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.1.已知α为锐角,如果sinα=,那么α等于( )A.30°B.45°C.60°D.不确定【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解.【解答】解:▱α为锐角,sinα=,▱α=45°.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是( )A.y=(x﹣2)2+1B.y=(x﹣2)2﹣1C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3【考点】二次函数的三种形式.【分析】运用配方法把二次函数的一般式化为顶点式即可.【解答】解:y=x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故选:D.【点评】本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.3.若将抛物线平移,得到新抛物线y=(x+3)2,则下列平移方法中,正确的是( ) A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),然后利用顶点的平移情况确定抛物线的平移情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),因为点(0,0)向左平移3个单位长度后得到(﹣3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是( )A.i=cosαB.i=sinαC.i=cotαD.i=tanα【考点】解直角三角形的应用-坡度坡角问题.【分析】利用把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i==tanα.【解答】解:如图所示:i=tanα.故选:D.【点评】此题主要考查了解直角三角形的应用﹣坡度坡角的定义,正确把握坡角的定义是解题关键.5.如图,▱ABCD对角线AC与BD相交于点O,如果=,=,那么下列选项中,与向量(+)相等的向量是( )A.B.C.D.【考点】*平面向量.【分析】由四边形ABCD是平行四边形根据平行四边形法则,可求得==,然后由三角形法则,求得与,继而求得答案.【解答】解:▱四边形ABCD是平行四边形,▱==,▱=+=+,=﹣=﹣,▱=﹣=﹣(+),==(+),=﹣=﹣(﹣),==(﹣).故选C.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若▱CDE与▱ABC相似,则点E的坐标不可能是( )A.(4,2)B.(6,0)C.(6,4)D.(6,5)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:▱ABC中,▱ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(4,2)时,▱CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,▱CDE▱▱ABC,故本选项不符合题意;B、当点E的坐标为(6,0)时,▱CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,▱CDE▱▱ABC,故本选项不符合题意;C、当点E的坐标为(6,4)时,▱CDE=90°,CD=2,DE=3,则AB:BC≠DE:CD,▱EDC与▱ABC不相似,故本选项符合题意;D、当点E的坐标为(6,5)时,▱CDE=90°,CD=2,DE=4,则AB:BC=CD:DE,▱CDE▱▱ABC不相似,故本选项不符合题意;故选:C.【点评】本题考查了相似三角形的判定,难度中等.牢记相似三角形的判定定理是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若x:y=5:2,则(x+y):y的值是.【考点】比例的性质.【分析】根据合比性质:=⇒=,可得答案.【解答】解:由合比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用合比性质是解题关键.8.计算:﹣3(﹣2)=﹣+6.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:﹣3(﹣2)=﹣3+6=﹣+6.故答案为:﹣+6.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.二次函数y=x2﹣2x的图象的对称轴是直线x=1.【考点】二次函数的性质.【分析】先把二次函数y=x2﹣2x写成顶点坐标式y=(x﹣1)2﹣1,进而写出图象的对称轴方程.【解答】解:▱y=x2﹣2x,▱y=(x﹣1)2﹣1,▱二次函数的图象对称轴为x=1.故答案为x=1.【点评】本题主要考查了二次函数的性质,解答本题的关键是把二次函数写出顶点坐标式,此题难度不大.10.如果抛物线y=﹣x2+3x﹣1+m经过原点,那么m=1.【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】把原点坐标代入y=﹣x2+3x﹣1+m中得到关于m的一次方程,然后解一次方程即可.【解答】解:▱抛物线y=﹣x2+3x﹣1+m经过点(0,0),▱﹣1+m=0,▱m=1.故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.11.已知点A(x1,y1)、B(x2,y2)为二次函数y=(x﹣1)2图象上的两点,若x1<x2<1,则y1>y2.(填“>”、“<”或“=”)【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】先利用顶点式得到抛物线的对称轴为直线x=1,由于抛物线开口向上,在对称轴左侧,y随x的增大而减小,于是可判断y1与y2的大小.【解答】解:▱二次函数y=(x﹣1)2图象的对称轴为直线x=1,而x1<x2<1,▱y1>y2.故答案为>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.解决本题的关键是运用二次函数的性质比较y1与y2的大小.12.用“描点法”画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x (2)101…y…﹣11﹣21﹣2…根据表格上的信息回答问题:当x=2时,y=﹣11.【考点】二次函数的性质.【分析】首先根据表格数据得到二次函数图象的对称轴为x=0,然后求出当x=2时y的值.【解答】解:由表格数据可知:当x=﹣1,y=﹣2;x=1,y=﹣2,则二次函数的图象对称轴为x=0,又知x=﹣2和x=2关于x=0对称,当x=﹣2时,y=﹣11,即当x=2时,y=﹣11.故答案为﹣11.【点评】本题主要考查了二次函数的性质的知识,解答本题的关键是根据表格数据得到二次函数图象的对称轴为x=0,此题难度不大.13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为1:4.【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形对应角平分线的比等于相似比解答即可.【解答】解:▱两个相似三角形的周长的比为1:4,▱两个相似三角形的相似比为1:4,▱周长较小的三角形与周长较大的三角形对应角平分线的比为1:4,故答案为:1:4.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.14.如图,在▱ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,=,则EC=2.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD▱BC,AD=BC,推出▱BE0▱▱DAO,根据相似三角形的性质得到,求得BE=3,即可得到结论.【解答】解:▱四边形ABCD是平行四边形,▱AD▱BC,AD=BC,▱▱BE0▱▱DAO,▱,▱AD=5,▱BE=3,▱CE=5﹣3=2,故答案为:2.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.15.如图,正方形DEFG的边EF在▱ABC的边BC上,顶点D、G分别在边AB、AC 上.若▱ABC的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为厘米.【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG▱BC得▱ADG▱▱ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:设正方形的边长为x.由正方形DEFG得,DG▱EF,即DG▱BC,▱AH▱BC,▱AP▱DG.由DG▱BC得▱ADG▱▱ABC▱=.▱PH▱BC,DE▱BC▱PH=ED,AP=AH﹣PH,即,由BC=40,AH=30,DE=DG=x,得,解得x=.故正方形DEFG的边长是.故答案为:.【点评】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,在▱ABC中,▱ACB=90°,若点G是▱ABC的重心,cos▱BCG=,BC=4,则CG=2.【考点】三角形的重心.【分析】延长CG交AB于D,作DE▱BC于E,根据重心的概念得到点D为AB的中点,根据直角三角形的性质得到DC=DB,根据等腰三角形的三线合一得到CE=2,根据余弦的概念求出CD,根据三角形的重心的概念得到答案.【解答】解:延长CG交AB于D,作DE▱BC于E,▱点G是▱ABC的重心,▱点D为AB的中点,▱DC=DB,又DE▱BC,▱CE=BE=BC=2,又cos▱BCG=,▱CD=3,▱点G是▱ABC的重心,▱CG=CD=2,故答案为:2.【点评】本题考查的是三角形的重心的概念和性质以及锐角三角函数的定义,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.17.如图,在四边形ABCD中,▱B=▱D=90°,AB=3,BC=2,tanA=,则CD=.【考点】解直角三角形.【分析】延长AD和BC交于点E,在直角▱ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角▱CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.▱在直角▱ABE中,tanA==,AB=3,▱BE=4,▱EC=BE﹣BC=4﹣2=2,▱▱ABE和▱CDE中,▱B=▱EDC=90°,▱E=▱E,▱▱DCE=▱A,▱直角▱CDE中,tan▱DCE=tanA==,▱设DE=4x,则DC=3x,在直角▱CDE中,EC2=DE2+DC2,▱4=16x2+9x2,解得:x=,则CD=.故答案是:.【点评】此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将▱ABE沿AE翻折,点B落在点F处,联结FC,则cos▱ECF=.【考点】翻折变换(折叠问题);解直角三角形.【分析】由矩形的性质得出▱B=90°,BC=AD=10,由勾股定理求出AE,由翻折变换的性质得出▱AFE▱▱ABE,得出▱AEF=▱AEB,EF=BE=5,因此EF=CE,由等腰三角形的性质得出▱EFC=▱ECF,由三角形的外角性质得出▱AEB=▱ECF,cos▱ECF=cos▱AEB=,即可得出结果.【解答】解:如图所示:▱四边形ABCD是矩形,▱▱B=90°,BC=AD=10,▱E是BC的中点,▱BE=CE=BC=5,▱AE===,由翻折变换的性质得:▱AFE▱▱ABE,▱▱AEF=▱AEB,EF=BE=5,▱EF=CE,▱▱EFC=▱ECF,▱▱BEF=▱EFC+▱ECF,▱▱AEB=▱ECF,▱cos▱ECF=cos▱AEB===.故答案为:.【点评】本题考查了矩形的性质、勾股定理、翻折变换的性质、等腰三角形的判定与性质、三角形的外角性质、三角函数;熟练掌握矩形的性质和翻折变换的性质,证出▱AEB=▱ECF是解决问题的关键.三、解答题(本大题共7题,满分78分)19.计算:cos245°+tan60°•cos30°﹣3cot260°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)利用待定系数法求抛物线解析式;(2)利用顶点式写出所得新抛物线的表达式.【解答】解:(1)设所求二次函数的解析式为y=ax2+bx+c,由题意得,解得.所以这个二次函数的解析式为y=x2﹣2x﹣3;(2)因为新抛物线是由抛物线y=x2﹣2x﹣3平移得到,而新抛物线的顶点坐标是(0,﹣3),所以新抛物线的解析式为y=x2﹣3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.如图,DC▱EF▱GH▱AB,AB=12,CD=6,DE:EG:GA=3:4:5.求EF和GH的长.【考点】平行线分线段成比例.【专题】计算题.【分析】过C作CQ▱AD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD 为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB﹣AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),则可计算出MF和NH,从而得到GH和EF的长【解答】解:过C作CQ▱AD,交GH于N,交EF于M,交AB于Q,如图,▱CD▱AB,▱四边形AQCD为平行四边形,▱AQ=CD=6,同理可得GN=EM=CD=6,▱BQ=AB﹣AQ=6,▱DC▱EF▱GH▱AB,▱DE:EG:GA=CF:HF:HB=3:4:5,▱MF▱NH▱BQ,▱MF:BQ=CF:CB=3:(3+4+5),NH:BQ=CH:CB=(3+4):(3+4+5),▱MF=×6=1.5,NH=×6=3.5,▱EM=EM+MF=6+1.5=7.5,HG=GN+NH=6+3.5=9.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.22.如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点C作CG▱AE,垂足为点G,由题意得▱CEF=45°=▱CEG,▱ACG=60°,设CG=x,在Rt▱ACG中,AG=CG•tan▱ACG=x,在Rt▱ECG中,EG=CG•cot▱CEG=x,根据AG+EG=AE,列方程=36﹣6,得到CF=EG=15﹣15,于是得到结论.【解答】解:过点C作CG▱AE,垂足为点G,由题意得▱CEF=45°=▱CEG,▱ACG=60°,设CG=x,在Rt▱ACG中,AG=CG•tan▱ACG=x,在Rt▱ECG中,EG=CG•cot▱CEG=x,▱AG+EG=AE,▱=36﹣6,解得:x=15﹣15,▱CF=EG=15﹣15,▱CD=15﹣15+6=15﹣9.答:该旗杆CD的高为(15﹣9)米.【点评】此题主要考查了仰角与俯角问题,正确应用锐角三角函数关系是解题关键.23.如图,点E是四边形ABCD的对角线BD上的一点,▱BAE=▱CBD=▱DAC.(1)求证:DE•AB=BC•AE;(2)求证:▱AED+▱ADC=180°.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件得到▱BAC=▱EAD,根据三角形额外角的性质得到▱ABC=▱AED,推出▱ABC▱▱AED,根据三角形的外角的性质得到结论;(2)根据相似三角形的性质得到,推出▱ABE▱▱ACD,根据相似三角形的性质得到▱AEB=▱ADC,等量代换即可得到结论.【解答】证明:(1)▱▱BAE=▱DAC,▱▱BAE+▱EAC=▱DAC+▱EAC,即▱BAC=▱EAD,▱▱ABC=▱ABE+▱CBD,▱AED=▱ABE+▱BAE,▱▱CBD=▱BAE,▱▱ABC=▱AED,▱▱ABC▱▱AED,▱,▱DE•AB=BC•AE;(2)▱▱ABC▱▱AED,▱,即,▱▱BAE=▱DAC▱▱ABE▱▱ACD,▱▱AEB=▱ADC,▱▱AED+▱AEB=180°,▱▱AED+▱ADC=180°.【点评】本题考查了相似三角形的性质和判定,邻补角的定义,三角形外角的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.在平面直角坐标系xOy中,抛物线与x轴分别交于点A(2,0)、点B(点B在点A 的右侧),与轴交于点C,tan▱CBA=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,▱BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由抛物线解析式和已知条件得出C和B的坐标,(0,3),OC=3,把A(2,0)、B(6,0)分别代入y=ax2+bx+3得出方程组,解方程即可;(2)把抛物线解析式化成顶点式得出顶点坐标,四边形ACBD的面积=▱ABC的面积+▱ABD的面积,即可得出结果;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当▱CBE=90°时;②当▱BCE=90°时;分别由三角函数得出方程,解方程即可.【解答】解:(1)▱当x=0时,▱C(0,3),OC=3,在Rt▱COB中,▱tan▱CBA=,▱=,▱OB=2OC=6,▱点B(6,0),把A(2,0)、B(6,0)分别代入y=ax2+bx+3,得:,解得:▱该抛物线表达式为y=x2﹣2x+3;(2)▱y=x2﹣2x+3=(x﹣4)2﹣1▱顶点D(4,﹣1),▱四边形ACBD的面积=▱ABC的面积+▱ABD的面积=×4×3+×4×1=8;(3)设点E的坐标为(x,x2﹣2x+3),分两种情况:①当▱CBE=90°时,作EM▱x轴于M,如图所示:则▱BEM=▱CBA,▱=tan▱BEM=tan▱CBA=,▱EM=2BM,即2(x﹣6)=x2﹣2x+3,解得:x=10,或x=6(不合题意,舍去),▱点E坐标为(10,8);②当▱BCE=90°时,作EN▱y轴于N,如图2所示:则▱ECN=▱CBA,▱=tan▱ECN=tan▱CBA=,▱CN=2EN,即2x=x2﹣2x+3﹣3,解得:x=16,或x=0(不合题意,舍去),▱点E坐标为(16,35);综上所述:点E坐标为(10,8)或(16,35).【点评】本题考查了抛物线与x轴的交点、抛物线解析式的求法、三角函数的应用、解方程等知识;本题综合性强,有一定难度,求出抛物线解析式是解决问题的关键.25.(14分)如图,在▱ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x.(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)由平行四边形ABCD,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,进而确定出三角形BEF与三角形AGF相似,由相似得比例,把x=1代入已知等式,结合比例式得到AG=BE,AD=AB,即可求出所求式子的值;(2)设AB=1,根据已知等式表示出AD与BE,由AD与BC平行,得到比例式,表示出AG与DG,利用两角相等的三角形相似得到三角形GDH与三角形ABE相似,利用相似三角形面积之比等于相似比的平方列出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当点H在边DC上时,如图1所示;②当H在DC的延长线上时,如图2所示,分别利用相似得比例列出关于x的方程,求出方程的解即可得到x的值.【解答】解:(1)在▱ABCD中,AD=BC,AD▱BC,▱▱BEF=▱GAF,▱EBF=▱AGF,▱▱BEF▱▱GAF,▱=,▱x=1,即==1,▱==1,▱AD=AB,AG=BE,▱E为BC的中点,▱BE=BC,▱AG=AB,则AG:AB=;(2)▱==x,▱不妨设AB=1,则AD=x,BE=x,▱AD▱BC,▱==x,▱AG=,DG=x﹣,▱GH▱AE,▱▱DGH=▱DAE,▱AD▱BC,▱▱DAE=▱AEB,▱▱DGH=▱AEB,在▱ABCD中,▱D=▱ABE,▱▱GDH▱▱EBA,▱=()2,▱y=()2=(x>);(3)分两种情况考虑:①当点H在边DC上时,如图1所示:▱DH=3HC,▱=,▱=,▱▱GDH▱▱EBA,▱==,即=,解得:x=;②当H在DC的延长线上时,如图2所示:▱DH=3HC,▱=,▱=,▱▱GDH▱▱EBA,▱==,即=,解得:x=2,综上所述,可知x的值为或2.【点评】此题属于相似型综合题,涉及的知识有:平行四边形的性质,相似三角形的判定与性质,以及平行线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.。

2017年上海市各区初三数学一模18题集锦(含答案)

2017年上海市各区初三数学一模18题集锦(含答案)

九年级一模18题1、(2017年杨浦区一模第18题)△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是________.【答案】12tan cot cot EFD DFB CEB ∠=∠=∠,问题的本质是在△EBC 中,已知两边EB=BC=6,∠ABC 的余弦为3,求边EC 长.可由余弦定理,或过E 点向BC 添高,得EC=1255,cos CEB ∠=1tan 2EFD ∠=.2、(2017年徐汇区一模第18题)如图,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是________.【答案】13392AP DF AQ BE ===请注意本题中面积法的作用.3、(2017年长宁区一模第18题)如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.【答案】722或以A 为原点,射线AC 为横轴正半轴,建立直角坐标系.①设AE=a ,则'DA DA =,得22(4)(3)25a a -++=,解得a =1,从而'(1,1)(8,6)A B -,,'2A B =;②22(4)(3)25a a -+-=,解得a =7,从而'(7,7)(8,6)A B ,,'2A B =.4、(2017年崇明区一模第18题)如图,已知ABC ∆中,45ABC ∠= ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为.【答案】3105△AEH 相似于△CFH ,且相似比为3:1,过H 向AC 做垂线段HM ,则11022cos 2110FC CM CH C ==⋅⋅∠=⋅⋅31035AE CH ==.5、(2017年宝山区一模第18题)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═12,那么CF:DF═________.【答案】65∵DE⊥AB,tanA═12,∴DE=12AD,∵Rt△ABC中,AC═8,tanA═12,∴BC=4,AB=4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE=5,∴CE=8﹣5=3,∴Rt△BCE中,BE=5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.6、(2017年奉贤区一模第18题)如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP 所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是________.【答案】1∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG=5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=23(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为________.【答案】13PQ垂直平分CD,故CM=6,∠PMC=∠QMC=90°,注意到∠PCM=∠A,∠QCM=∠B,于是32tan tan661323PQ PM QM CM PCM CM QCM=+=⋅∠+⋅∠=⨯+⨯=.8、(2017年闵行区一模第18题)如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD=________.【答案】32-作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得BD=2﹣2.如图,在Rt △ABC 中,∠C=90°,∠B=60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B'、C'处,联结BC'与AC 边交于点D ,那么'BD DC=________.【答案】2过C ’作C’H ⊥AC 于点H,则33'''22BC a CA C A C H C A a =====,,,于是23''32BD BC a DC C H a ===.10、(2017年普陀区一模第18题)如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE =,那么S △DPQ :S △CPE 的值是________.【答案】115由重心定理及条件,易知DP :PE :BC=1:3:6,于是△DPQ 与△EPC 的高之比为1:5,从而S △DPQ :S △CPE 1115315=⨯=.如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连接BD ,如果∠DAC=∠DBA ,那么BD AB的值是________.【答案】512-如图,由旋转的性质得到AB=AD ,∠CAB=∠DAB ,∴∠ABD=∠ADB ,∵∠CAD=∠ABD ,∴∠ABD=∠ADB=2∠BAD ,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D 作∠ADB 的平分线DF ,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD ,∴△ABD ∽△DBF ,∴,即,解得=.12、(2017年松江区一模第18题)如图,在△ABC 中,∠ACB=90°,AB=9,cosB=23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为________.【答案】过C 作CH ⊥AB 于H ,△ACE 相似于△BCE ,相似比为2,所以2222cos cos 93AE BD BH BC B AB B ⎛⎫===⋅∠=⋅∠=⨯= ⎪⎝⎭.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,BC=3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为________.【答案】23CP 垂直平分线段BD ,CD=CB=3,从而得到,设AP=x ,则-x ,在△APD中,由勾股定理得2221)x x +=,解得255x =,BP=355,于是sin ∠ADP=23..14、(2017年黄浦区一模第18题)如图,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =.D NMC BA 【答案】23。

2017上海虹口初三数学一模

2017上海虹口初三数学一模

九年级中考数学(模拟一) 2017虹口区数学一模(满分150分,考试时间100分钟) 2017.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]A.; B.; C.; D..3.计算的结果是A.; B.; C.; D..4.抛物线顶点的坐标是A.(2,4); B.(2,-4); C.(-2,4); D.(-2,-4).5.抛物线上有两点、,下列说法中,正确的是A.若,则; B.若,则;C.若,则; D.若,则.A.3; B.6; C.9; D.12.二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]8.如果向量与单位向量方向相反,且长度为2,那么用向量表示= ▲.9.如果抛物线开口向下,那么的取值范围是▲.10.如果抛物线经过点(0,1),那么= ▲.11.若将抛物线向左平移3个单位,则所得到的新抛物线表达式为▲.12.如图,抛物线的对称轴为直线,如果点A(0,4)为此抛物线上一点,那么当时, = ▲.13.已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,BE、B1E1分别是∠B、∠B1的对应角平分线,如果AB:A1B1=2:3,那么BE:B1E1=▲.14.如图,在△ABC中,∠C = 90°,如果AB = 13,AC = 5,那么tanA= ▲.16.如图,已知点O为△ABC内一点,点D、E分别在边AB和AC上,且,18.如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,点P是边AB上一点,如果把△BCP沿折痕CP向上翻折,点B恰好与点D重合,那么sin∠ADP为▲.19.(本题满分10分)计算:.20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知二次函数的图像经过A(1,0)、B(-1,16)、C(0,10)三点.(2)用配方法将该函数解析式化为的形式.21.(本题满分10分)求证:.22.(本题满分10分)如图,在大楼AB的正前方有一斜坡CD长为13米,坡度为,高为DE.在斜坡底的点C处测得楼顶B的仰角为64°,在斜坡顶的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上,求斜坡的高DE与大楼AB的高度.(参考数据:sin64°≈0.9, tan64°≈2)23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC中,点D、E分别在边AB、AC上,,∠BAC的平分线AG分别交线段DE、BC于点F、G.(1)求证:△ADF∽△ACG;.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,抛物线与x轴交于点A和点B(5,0),与y轴交于点C,抛物线的顶点为点P.(1)求抛物线的表达式并写出顶点P的坐标;(2)在x轴上方的抛物线上有一点D,若∠ABD=∠ABP,试求出点D的坐标;25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为边BC上一动点(不与点B、C重合),联结AD,过点C作CF⊥AD,分别交AB、AD于点E、F,设DC=x,.(1)当时,求的值;(2)求y关于x的函数关系式,并写出x的取值范围;(3)当时,在边AC上取点G,联结BG,分别交CE、AD于点M、N.当△MNF∽△ABC时,请直接写出AG的长.虹口区2016学年第一学期初三数学学科期终教学质量监控测试题评分参考建议2017.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)三、解答题(本大题共7题,满分78分)∴该二次函数解析式为………………………………………(1分)……………………………………………………………(2分)22.解:过点D作DF⊥AB,垂足为点F∵又∵∴∴设DE=5k,EC=12k …………………………………………………………(1分)在Rt△DEC中,…………………………………(1分)∵DC=13 ∴k=1 ∴DE=5…………………………………………………(1分)可得EC=12 ………………………………………………………………………(1分)设CA=x,则AE=x+12 …………………………………………………………(1分)可得四边形AEDF为矩形,∴DF=AE=x+12,AF=DE=5在Rt△ABC中,∠BCA=64°,∴…………………………………………………(1分)在Rt△BDF中,∠BDF=45°,∴……………………………………………………………(1分)∵BF=AB-AF ∴x+12=2x-5………………………………………………(1分)解得x=17∴AB≈2x≈34 ……………………………………………………………………(1分)答:斜坡的高度DE为5米,大楼AB的高度约为34米.………………………(1分)23.(1)证明:∵又∵∠DAE=∠CAB∴∠ADE=∠C…………………………………………………………………(2分)∵AG平分∠BAC ∴∠DAF=∠CAG(2)解:∵∠AGD=∠B 又∵∠DAG=∠GAB ∴…………………………………………………………………(1分)∴∴……………………………………………(1分)∵∴AC=8 ………………………………………………………………………(1分)24.解:(1)把点B(5,0)代入得解得 b=-6………………………………………………(1分)∴抛物线表达式为…………………………………………(1分)。

2017年上海各区初三数学一模卷

2017年上海各区初三数学一模卷

2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A. 100tan α B. 100cot α C. 100sin α D. 100cos α 3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B. 22(1)1y x =-+ C. 22(1)3y x =++ D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=r r r ,2a b c -=r r r ,那么a =r (用b r表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =u u u r r ,AC b =u u u r r ,试用向量a r 和b r 表示向量AG u u u r; (2)在图中求作向量AG u u u r 与AB u u u r的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积.22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2AC AD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅;24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ; (1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域; (3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B二. 填空题7. 8. (4,0)-9. 减小10.32x=11.2312.1213. 2014. 45br15. 6016. 2.417. 318.12三. 解答题19.(1)2233AG a b=-u u u r r r;(2)略;20.(1)223y x x=-++;(2)向上平移4个单位;21.(1)6BD=;(2)26;22.2t=;23.(1)略;(2)略;24.(1)(2,3)D、(2,0)M;(2)32a=-或12a=-;25.(1)13;(2)344x xy-=(02)x<<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( ) (A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( ) (A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x . 二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r,B =b ρ,那么=____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)图3F ABCDE 图2ABCDA B C D EF图119.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =u u u r r,=b ρ. 求:(1)向量DC (用向量a r 、b r表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).图4ABCDEF23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.图6ABCD E25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.B AC备用图图8QPDB AC E2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r ,B =b ρ,那么=__b a ϖϖ-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)图3 F A B C D E图2 AB CD A B C DEF 图1解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(. (2)过点D 作y DA ⊥轴,垂足为A . ∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =. ∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB ϖ=,=EC b BC ϖ2121=;∴b a DC ϖϖ21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里; 它从B 处到达小岛C 的航行时间约为3.7小时. 23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =. 24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO ,︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;QPD BAC E F∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( )A. 34B.43C. 35D. 453.如图,下列能判断BC ED ∥的条件是( ) A.ED AD BC AB = B. ED AEBC AC=C.AD AE AB AC = D. AD ACAB AE=4.已知1O e 与2O e 的半径分别是2和6,若1O e 与2O e 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4B.2<12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a r 与b r,那么下列说法正确的是( )A. 如果a b =r r ,那么a b =r r ;B. 如果a b =-r r,那么a b r r ∥ C. 如果a b r r ∥,那么a b =r r ; D. 如果a b =-r r ,那么a b =r r6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( ) A. 相离 B. 相切 C. 相交 D.不能确定 二、填空题(本大题共12题,每题4分,满分48分)7. 如果()340x y x =≠,那么xy=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________. 9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________. 10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.第3题图DEABC12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________.13. 已知A e 的半径是2,如果B 是A e 外一点,那么线段AB 长度的取值范围是__________. 14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为_________米.OBA第17题图第16题图第15题图第14题图GEDC BDCAACD EB16. 如图,1O e 与2O e 相交于A B 、两点,1O e 与2O e 的半径分别是112O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.BAC第18题图三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒如图,在ABC ∆中,D 是AB 中点,联结CD . (1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =u u u r r ,DC b =u u u r r ,请用向量a r 、b r 表示AC u u u r和AB u u u r(直接写出结果)BA第20题图D21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D e 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D e 的半径;(2)CE 的长.第21题图B22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC的坡角为30°,坝底宽AB 为()米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.H G N MD FEBA C第22题图如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G. (1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0) (1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式; (3)O 为坐标原点,以A 为圆心OA 长为半径画A e ,以C 为圆心,12OC 长为半径画圆C e ,当A e 与C e 外切时,求此抛物线的解析式.第24题图DBGEFCA第23题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.D第25题备用图OQPD FE第25题图B CA2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( ) ;35.A ;53.B 83.C 85.D2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( ))0,2-.(A )-2,0.(B )0,2.(C )2,0.(D4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BCAB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( ) ①.A ②.B ③.C ④.D6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )13.A 132.B 23.C 32.D二、填空题 7.如果)b -a 2(3b a ρρρρ=+,用a ρ表示b ρ,那么b ρ=8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为 11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ; 13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60o ,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O e 的半径是4,ABC ∆是O e 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD V 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-o o o o o20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =u u u r r ,DC b =u u u r r . (1)请用a r 、b r 来表示DE u u u r ; (2)在原图中求作向量DE u u u r 在a r 、b r 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC V 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E . 求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F . (1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE于点F ,联结BD .(1)求证:BCCECD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案1.B2.B3.D4.C5.C6..A7.53a v8.1:2 9.2 10.3 11.120 12.内含 13.6 14.()221y x =-- .15. 19.56 20(1).2133DE a b =+u u u r r r (2)略 21.0.3米/秒 22.18平方厘米23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭25.(1)略(2)24(04)2x xy x +=<≤ (3)4或42017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC 交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF 中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB 的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;。

(完整word版)2017上海虹口初三数学一模

(完整word版)2017上海虹口初三数学一模

2017虹口区数学一模(满分150分,考试时间100分钟) 2017.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.如图,在Rt △ABC 中,∠C=90°,∠A 、∠B 和∠C 的对边分别是a 、b 和c ,下列锐角三角比中,值为bc的是 A .sin A ;B .cos A ;C .tan A ;D .cot A .2.如图,在点B 处测得点A 处的俯角是 A .∠1;B .∠2;C .∠3;D .∠4.3.计算23()a a b --的结果是A .3a b --;B .3a b -+;C .a b -;D .a b -+.4.抛物线2(2)4y x =+-顶点的坐标是 A .(2,4);B .(2,-4);C .(-2,4);D .(-2,-4).5.抛物线221y x =-+上有两点11()x y ,、22()x y ,,下列说法中,正确的是 A .若21x x <,则12y y >; B .若12x x >,则12y y >; C .若120x x <<,则21y y <; D .若120x x >>,则12y y >. 6.如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若3DEF S ∆=, 则BCF S ∆为A .3;B .6;C .9;D .12. 二、填空题(本大题共12题,每题4分,满分48分)BCD第6题图FAE第1题图[请将结果直接填入答题纸的相应位置]7.已知线段a=4cm ,c=1cm ,则线段a 和c 的比例中项b = ▲ cm .8.如果向量a 与单位向量e 方向相反,且长度为2,那么用向量e 表示a = ▲ . 9.如果抛物线2(3)y a x =-开口向下,那么a 的取值范围是 ▲ . 10.如果抛物线21y x m =+-经过点(0,1),那么m = ▲ .11.若将抛物线22(1)y x =-向左平移3个单位,则所得到的新抛物线表达式为 ▲ .12.如图,抛物线2y x bx c =-++的对称轴为直线3x =,如果点A (0,4)为此抛物线上一点,那么当6x =时,y = ▲ .13.已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,BE 、B 1E 1分别是∠B 、∠B 1的对应角平分线,如果AB :A 1B 1=2:3,那么BE :B 1E 1= ▲ . 14.如图,在△ABC 中,∠C = 90°,如果AB = 13,AC = 5,那么tan A= ▲ .15.如图,1l ∥2l ∥3l ,如果AF=4,FB=5,CD=18,那么CE= ▲ .16.如图,已知点O 为△ABC 内一点,点D 、E 分别在边AB 和AC 上,且12AD BD =, DE ∥BC ,设OB b =,OC c =,用向量b 、c 表示DE = ▲ .17.如图,在△ABC 中,如果AB=AC ,边BC 、AC 上的中线AD 、BE 相交于点G ,如果DG=1,cot C =43,那么ABC S =△ ▲ . 18.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:22cot 304sin 452cos 30cos 60︒-︒︒-︒.20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)第12题图DF 第15题图EBA C1l 2l 3l B CD O第16题图EA B A D 第17题图 E AGA A第18题图A 第14题图第22题图第21题图 已知二次函数2y ax bx c =++的图像经过A (1,0)、B (-1,16)、C (0,10)三点. (1)求该函数解析式;(2)用配方法将该函数解析式化为2()y a x m k =++的形式.21.(本题满分10分)如图,在□ABCD 中,点G 在边BC 的延长线上,AG 与边CD 交于点E ,与对角线BD 交于点F . 求证: FG EF AF ⋅=2.22.(本题满分10分)如图,在大楼AB 的正前方有一斜坡CD 长为13米,坡度为121:5,高为DE .在斜坡底的点C 处测得楼顶B 的仰角为64°,在斜坡顶的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上,求斜坡的高DE (参考数据:sin64°≈0.9, tan64°≈2)23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,AD AEAC AB=,∠BAC 的平分 线AG 分别交线段DE 、BC 于点F 、G . (1)求证:△ADF ∽△ACG ;(2)联结DG ,若∠AGD =∠B ,AB=12,AD=4,AE=6,求AG 与AF 的长..24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)D 第23题图 AE F B如图,抛物线25y x bx =++与x 轴交于点A 和点B (5,0),与y 轴交于点C ,抛物线的顶点为点P .(1)求抛物线的表达式并写出顶点P 的坐标;(2)在x 轴上方的抛物线上有一点D ,若∠ABD =∠ABP ,试求出点D 的坐标;(3)设在直线BC 下方的抛物线上有一点Q ,若15BCQ S =△,试求出点Q 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在Rt △ABC 中,∠ACB=90°,AC =4,BC =3,点D 为边BC 上一动点(不与点B 、C 重合),联结AD ,过点C 作CF ⊥AD ,分别交AB 、AD 于点E 、F ,设DC=x ,AEBEy =.(1)当1x =时,求tan BCE ∠的值;(2)求y 关于x 的函数关系式,并写出x 的取值范围;(3)当1x =时,在边AC 上取点G ,联结BG ,分别交CE 、AD 于点M 、N . 当△MNF ∽△ABC 时,请直接写出AG 的长. 第24题图第25题图虹口区2016学年第一学期初三数学学科期终教学质量监控测试题评分参考建议2017.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.B 2.A 3.B 4.D 5.C 6.D二、填空题本大题共12题,每题4分,满分48分)7.2 8.2e - 9.3a < 10.2 11.22(2)y x =+ 12. 4 13.2:3 14.12515.8 16.1133b c -+17.12 18.23三、解答题(本大题共7题,满分78分)19.解:原式24-8分) 3=- …………………………………………………………………(2分)20.解:(1)把A (1,0)、B (-1,16)、C (0,10)分别代入2y ax bx c =++中,得:01610a b c a b c c=++⎧⎪=-+⎨⎪=⎩……………………………………………………………(3分)解得:2810a b c =-⎧⎪=-⎨⎪=⎩………………………………………………………………………(2分)∴该二次函数解析式为22810y x x =--+………………………………………(1分)(2)22(4)10y x x =-++22[(2)4]10x =-+-+ ………………………………………………………(2分) 22(2)18x =-++……………………………………………………………(2分)21.证明:在□ABCD 中,AD ∥BC ,AB ∥CD ………………………………………(2分) ∴BF DF FG AF = ………………………………………………………………(3分)E F D FA FB F=………………………………………………………………(3分) ∴AFEF FG AF = , 即2AF EF FG =⋅……………………………………(2分)22.解:过点D 作DF ⊥AB ,垂足为点F∵DE i EC =又∵121:5i = ∴512DE EC =∴设DE=5k ,EC=12k …………………………………………………………(1分)在Rt △DEC 中,13DC k =…………………………………(1分) ∵DC=13 ∴k=1 ∴DE=5…………………………………………………(1分) 可得EC=12 ………………………………………………………………………(1分)设CA=x ,则AE=x +12 …………………………………………………………(1分)可得四边形AEDF 为矩形, ∴DF=AE=x +12,AF=DE=5 在Rt △ABC 中,∠BCA =64°,∴tan 2AB AC ACB x =⋅∠≈…………………………………………………(1分)在Rt △BDF 中,∠BDF =45°,∴12BF DF x ==+……………………………………………………………(1分) ∵BF=AB -AF ∴x+12=2x -5………………………………………………(1分) 解得x=17∴AB ≈2x ≈34 ……………………………………………………………………(1分)答:斜坡的高度DE 为5米,大楼AB 的高度约为34米.………………………(1分)23.(1)证明:∵AD AEAC AB= 又∵∠DAE=∠CAB∴△ADE ∽△ACB ……………………………………………………………(2分) ∴∠ADE=∠C …………………………………………………………………(2分)∵AG 平分∠BAC ∴∠DAF=∠CAG∴△ADF ∽△ACG ……………………………………………………………(2分)(2)解:∵∠AGD =∠B 又∵∠DAG=∠GAB∴△ADG ∽△AGB ……………………………………………………………(1分) ∴AD AG AG AB=…………………………………………………………………(1分) 又∵AB=12,AD=4∴412AG AG = ∴AG =……………………………………………(1分) ∵AD AB AC AE ⋅=⋅ 又∵AB=12,AD=4,AE=6∴AC =8 ………………………………………………………………………(1分)∵△ADF ∽△ACG ∴AF ADAG AC=………………………………………(1分)∴12AF AG == …………………………………………………………(1分)24.解:(1)把点B (5,0)代入25y x bx =++得02555b =++ 解得 b=-6………………………………………………(1分)∴抛物线表达式为265y x x =-+ …………………………………………(1分)∴2(3)4y x =--∴顶点P 的坐标为(3,-4)………………………………………………(2分) (2)由题意,设D 点坐标为(x ,265x x -+)过点P 作PE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F易得PE=4,BE=2, DF=265x x -+,BF=5-x ∵∠ABD =∠ABP ∴tan ∠ABD = tan ∠ABP ∴265452x x x -+=-…………………………………………………………(2分) 解得15x =(舍) 21x =-…………………………………………………(1分)∴D 点坐标为(-1,12). …………………………………………………(1分)(3)由题意,设Q 点坐标为(x ,265x x -+)过点Q 作QG ⊥x 轴,交x 轴于点G ,交BC 于点H∴OG=x ,BG=5- x∵ C (0,5) B (5,0)∴直线CB 表达式为5y x =-+∴ H 点坐标为(x ,5x -+)……………………………………………(1分)∴225(65)5HQ x x x x x =-+--+=-+ ………………………………(1分)∴15BCQCQHBQHSSS=+=即111522HQ OG HQ BG ⋅+⋅= ∴2211(5)(5)(5)1522x x x x x x -+⋅+-+⋅-= 解得12x = , 23x =∴点Q 的坐标为(2,-3)或(3,-4)…………………………………(2分)25.解:(1)∵∠ACB=90° ∴∠DAC +∠ADC =90°∵ CE ⊥AD ∴∠BCE +∠ADC =90°∴∠BCE =∠DAC ………………………………………………………(2分)∴tan tan BCE DAC ∠=∠ ∵AC =4,DC =1∴1tan tan 4CD BCE DAC AC ∠=∠== … …………………………………(2分)(2)过点B 作BM ⊥BC 交CE 延长线于点M ………………………………(1分)由上题可知:tan tan BCE DAC ∠=∠∴BM CD BCCA=∵AC =4,DC =x ,BC =3 得34BM x = ………………………………(2分)∵ BM ⊥BC 得 ∠MBC=90° 又∠ACB=90°∴ BM ∥AC ∴AE AC BEBM=………………………………………………(1分)∴163y x=(0<x <3)………………………………………………(1分,1分)(3)AG 的长是2516或5219.………………………………………………(2分,2分)。

上海市各市县2017届中考数学试题分类汇编-初三一模18题

上海市各市县2017届中考数学试题分类汇编-初三一模18题

上海市2017届中考数学试题分类汇编初三一模18题汇编题型一:翻折问题; 性质: 翻折前后两个图形全等:边相等,角相等折痕垂直平分对应点的连线学会找等腰画图: 已知折痕:过对应点做折痕的垂线并延长已知对应点:做对应点连线的垂直平分线【2017年虹口一模18】如图,在梯形ABCD 中,BC AD ∥,BC AB ⊥,1=AD ,3=BC ,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么ADP ∠sin 为 。

【答案】32 【解析】 ∵把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合∴3==BC CD在直角梯形中,作BC DH ⊥,则1==AD BH ,2=CH作DCP ∠的角平分线交AB 于点P ,联结PD ,过点C 作CB 的垂线交AD 的延长线于点G 。

由翻折可知,90=∠=∠PBC PDC ,由作图易得△PAD ∽△DGC ,GCD ADP ∠=∠在DGC Rt △中,由勾股定理易得,3232sin sin ==∠=∠GCD ADP【2017年奉贤一模18】 如图,在矩形ABCD 中,6AB =,=3AD ,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边DC 相交于点G ,如果DG CG 2=,那么DP 的长是 【答案】2【解析】21315423354cos cos 23,33,90,5343,423213214,22,//3,422=-=∴==+-==∠=∠∴∠=∠=∠+=-==∴-==︒=∠=∠=∴∆∆=+=∴===⇒=====∴=====AP x x x BG CG CGB FPE CGBFGD FPE x PF x AP PE xAP x DP A PEB AP PE PEFABP BG BC CG DF DF CG DG BC DF CG DG DGCG BC AD BC AD CD AB 解得即易证则设翻折得到即【2017年崇明一模18】如图,已知△ABC 中,∠45=ABC ,BC AH ⊥于点H ,点D 在AH 上,且CH DH =,联结BD ,将△BHD 绕点H 旋转,得到△EHF (点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时(F 不与C 重合),如果4=BC ,3tan =C ,那么AE 的长为 。

2017上海初三数学一模25题(教师版)

2017上海初三数学一模25题(教师版)

上海市各市县2017届中考数学试题分类汇编2017年初三数学一模25题汇编25题常考题型解析:题型一、等腰三角形的分类讨论思路点拨:出现概率较高题型,重点。

解决此类问题主要通过两个方面解决:1.一方面从边方面入手,将此三角形的三边用x y或的表达式表示,根据腰相等建立方程求出线段长度(优点:方法简单,易理解;缺点:计算量偏大,易出错);2.另一方面从角方面入手,利用等腰产生的底角相等转化出其他的角度关系或边长关系进而建立方程求出线段的长度(优点:计算量偏小,易计算,缺点:此方法对于孩子的分析能力要求较高,适合一部分程度较好的学生)。

题型二、动点产生的相似综合思路点拨:1.首先寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.然后注意分类讨论,先找到对应相等的角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件).题型三、动点产生的直角三角形问题思路点拨:当判断一个动三角形为直角三角形时,首先注意分类讨论。

其次就是利用这个直角来求解线段长度或角度问题,可以考虑用一下两种方法:1.直角三角形的基本性质,包括锐角互余关系,三边勾股关系,斜中定理关系,以及30°角性质等;2.利用产生的直角,利用锐角三角比或构造一线三直角利用相似关系来解题。

题型四、圆的综合思路点拨:圆的综合在一模试卷中出现的不多,二模中是重点题型。

与圆有关的问题主要分两类:1.一是圆中函数关系式的建立,主要要利用垂径定理和勾股定理,有时还会结合三角形的相似关系来建立关系式;2.二是考察圆中的位置关系,包括点与圆、直线与圆和圆与圆的位置关系,其中圆与圆的相切关系考察频率较高,需重点掌握。

解题方法主要是抓住代数上的等量关系再结合一下图形即可求出,切忌和学生强调不要纠结在一定要画出图形才能解题。

2017年虹口区初三一模试卷(含答案)

2017年虹口区初三一模试卷(含答案)

2017年虹口区初三一模教案(4)一、选择题(本大题共6题,每题4分,满分24分)1、如图,在Rt ABC △中,=90C ︒∠,A ∠、B ∠和C ∠的对边分别是a 、b 和c ,下列锐角三角比中, 值为bc的是( ) A 、sin A ; B 、cos A ; C 、tan A ; D 、cot A .第1题 第2题 2、如图2,在点B 处测得点A 处的俯角是( ) A 、1∠; B 、2∠; C 、3∠; D 、4∠. 3、计算23()a a b --的结果是( )A 、3a b --;B 、3a b -+;C 、a b -;D 、a b -+.4、抛物线2(2)4y x =+- 顶点的坐标是( )A 、(2,4);B 、(2,4)-;C 、(2,4)-;D 、(2,4)--.5、抛物线221y x =-+上有两点11(,)x y 、22(,)x y ,下列说法中正确的是( )A 、若12x x <,则12y y >;B 、若12x x >,则12y y >;C 、若120x x <<,则12y y <;D 、若120x x >>,则12y y >.6、如图,在ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若=3DEF S △,则B C F S △为( ) A 、3; B 、6; C 、9; D 、12.第6题二、填空题(本大题共12题,每题4分,满分48分)7、已知线段4a cm =,1c cm =,则线段a 和c 的比例中项b = cm .8、如果向量a 与单位向量e 方向相反,且长度为2,那么用向量e 表示a = . 9、如果抛物线2(3)y a x =-开口向下,那么a 的取值范围是 . 10、如果抛物线21y x m =+-经过点(0,1),那么m = .11、若将抛物线22(1)y x =-向左平移3个单位所得到的新抛物线表达式为 .12、如图,抛物线2y x bx c =-++对称轴为直线3x =,如果点(0,4)A 为此抛物线上的一点,那么当6x = 时,y = .第12题 第14题 第15题13、已知,111ABC A B C △∽△顶点A 、B 、C 分别1A 、1B 、1C 与对应,BE 、11B E 分别是B ∠、1B ∠的对应角平分线,如果11:2:3AB A B =,那么11:BE B E = .14、如图,在ABC △中,=90C ︒∠,如果=13AB ,5AC =,那么tan A = . 15、如图,123l l l ∥∥,如果4AF =,5FB =,18CD = ,那么CE = .第16题 第17题 第18题 16、如图,已知点O 为ABC △内一点,点D 、E 分别在边AB 和AC 上,且12AD BD =,设OB b =,OC c =,用b 、c 向量表示DE = .17、如图,在ABC △中,如果AB AC =,边BC 、AC 上的中线AD 、BE 相交于点G ,如果1DG =,4cot 3C =,那么=ABC S △ . 18、如图,在梯形中ABCD ,AD BC ∥,AB BC ⊥,1AD =,3BC =,点P 是边AB 上一点,如果把BCP △沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ADP =∠ .CBA三、解答题(本大题共7题,满分78分19、计算:22cot 304sin 452cos 30cos 60︒-︒︒-︒.20、已知二次函数2y ax bx c =++的图像经过(1,0)A 、(1,16)B -、(0,10)C 三点. (1)求该函数解析式;(2)用配方法将该函数解析式化为2()y a x m k =++的形式.21、如图,在ABCD 中,点G 在边BC 的延长线上,AG 与边CD 交于点E ,与对角线BD 交于点F . 求证:FG EF AF ⋅=2.22、如图,在大楼AB 的正前方有一斜坡CD 长为13米,坡度为1215:,高为DE ,在斜坡底的点C 处测得楼顶B 的仰角为64︒,在斜坡顶的点D 处测得楼顶B 的仰角为45︒,其中点A 、C 、E 在同一直线上,求斜坡DE 的高与大楼AB 的高度.(参考数据:sin640.9︒≈,tan642︒≈)23、如图,在ABC △中,点D 、E 分别在边AB 、AC 上,AD AEAC AB=,BAC ∠的平分线AG 分别交线段DE 、BC 于点F 、G .(1)求证:ADF ACG △∽△;(2)联结DG ,若=AGD B ∠∠,=12AB ,4AD =,6AE =,求AG 与AF 的长.24、如图,抛物线25y x bx =++与x 轴交于点A 与(5,0)B 点,与y 轴交于点C ,抛物线的顶点为点P (1)求抛物线的表达式并写出顶点P 的坐标;(2)在x 轴上方的抛物线上有一点D ,若ABD ABP =∠∠,试求点D 的坐标; (3)设在直线BC 下方的抛物线上有一点Q ,若=15BCQ S △,试写出点Q 坐标.25、如图,在Rt ABC △中,=90ACB ︒∠,4AC =,4BC =,点D 为边BC 上一动点,(不与点B 、C 重合),联结AD ,过点C 作CF AD ⊥,分别交AB 、AD 于点E 、F ,设=DC x ,AEy BE=. (1)当1x =时,求tan BCE ∠的值;(2)求y 与x 的函数关系式,并写出x 的取值范围;(3)当1x =时,在边AC 上取点G ,联结BG ,分别交CE 、AD 于点M 、N ,当M N F A B C △∽△时,请直接写出AG 的长.2017年虹口区初三一模参考答案一、选择题二.、填空题12三.、解答题19、3-.20、(1)22810y x x =--+; (2)22(2)18y x =-++. 21、略.22、7DE m =,34AB m =.23、(1)略; (2)AG =AF =24、(1)265y x x =-+,顶点(3,4)P -; (2)(1,12)D -; (3)(2,3)Q -或(3,4)Q -. 25、(1)14; (2)163y x =(03x <<); (3)5219AG =或2516AG =.。

虹口数学一模初三试卷

虹口数学一模初三试卷

1. 下列各数中,有理数是()A. √-3B. √2C. √-1D. √32. 下列各数中,无理数是()A. 2/3B. 1/2C. √3D. 03. 已知实数a,b满足a+b=5,ab=12,则a^2+b^2的值为()A. 37B. 49C. 25D. 214. 在直角坐标系中,点A(2,3),点B(-4,5),则线段AB的中点坐标是()A. (-1,2)B. (-1,3)C. (2,3)D. (3,4)5. 已知等差数列{an}的公差为2,且a1+a5=24,则a3的值为()A. 10B. 12C. 14D. 166. 已知函数f(x)=2x-3,则f(-1)的值为()A. -5B. -2C. 1D. 47. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,-2),则a、b、c的符号分别为()A. a>0,b<0,c<0B. a>0,b>0,c>0C. a<0,b<0,c<0D. a<0,b>0,c>08. 已知等比数列{an}的公比为q,且a1=2,a4=32,则q的值为()A. 2B. 4C. 8D. 169. 已知函数y=3x^2-4x+1的图象与x轴的交点坐标为(1,0),则该函数的顶点坐标为()A. (1,-2)B. (1,2)C. (-1,-2)D. (-1,2)10. 已知等差数列{an}的前n项和为Sn,若S3=18,S5=40,则该数列的公差为()A. 2B. 3C. 4D. 5二、填空题11. 已知实数x满足x^2-4x+3=0,则x的值为______。

12. 在直角坐标系中,点P(3,4),点Q(-2,-1),则线段PQ的长度为______。

13. 已知函数y=√(x^2-1),则该函数的定义域为______。

14. 已知等差数列{an}的前n项和为Sn,若a1=3,d=2,则S10的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017虹口区数学一模(满分150分,考试时间100分钟) 2017.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.如图,在Rt △ABC 中,∠C=90°,∠A 、∠B 和∠C 的对边分别是a 、b 和c ,下列锐角三角比中,值为bc的是 A .sin A ;B .cos A ;C .tan A ;D .cot A .2.如图,在点B 处测得点A 处的俯角是 A .∠1;B .∠2;C .∠3;D .∠4.3.计算23()a a b --的结果是A .3a b --;B .3a b -+;C .a b -;D .a b -+.4.抛物线2(2)4y x =+-顶点的坐标是 A .(2,4);B .(2,-4);C .(-2,4);D .(-2,-4).5.抛物线221y x =-+上有两点11()x y ,、22()x y ,,下列说法中,正确的是 A .若21x x <,则12y y >; B .若12x x >,则12y y >; C .若120x x <<,则21y y <; D .若120x x >>,则12y y >. 6.如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,若3DEF S ∆=, 则BCF S ∆为A .3;B .6;C .9;D .12. 二、填空题(本大题共12题,每题4分,满分48分)BCD第6题图FAE第1题图[请将结果直接填入答题纸的相应位置]7.已知线段a=4cm ,c=1cm ,则线段a 和c 的比例中项b = ▲ cm .8.如果向量a 与单位向量e 方向相反,且长度为2,那么用向量e 表示a = ▲ . 9.如果抛物线2(3)y a x =-开口向下,那么a 的取值范围是 ▲ . 10.如果抛物线21y x m =+-经过点(0,1),那么m = ▲ .11.若将抛物线22(1)y x =-向左平移3个单位,则所得到的新抛物线表达式为 ▲ .12.如图,抛物线2y x bx c =-++的对称轴为直线3x =,如果点A (0,4)为此抛物线上一点,那么当6x =时,y = ▲ .13.已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,BE 、B 1E 1分别是∠B 、∠B 1的对应角平分线,如果AB :A 1B 1=2:3,那么BE :B 1E 1= ▲ . 14.如图,在△ABC 中,∠C = 90°,如果AB = 13,AC = 5,那么tan A= ▲ .15.如图,1l ∥2l ∥3l ,如果AF=4,FB=5,CD=18,那么CE= ▲ .16.如图,已知点O 为△ABC 内一点,点D 、E 分别在边AB 和AC 上,且12AD BD =, DE ∥BC ,设OB b =,OC c =,用向量b 、c 表示DE = ▲ .17.如图,在△ABC 中,如果AB=AC ,边BC 、AC 上的中线AD 、BE 相交于点G ,如果DG=1,cot C =43,那么ABC S =△ ▲ . 18.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:22cot 304sin 452cos 30cos 60︒-︒︒-︒.20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)第12题图DF 第15题图EBA C1l 2l 3l B CD O第16题图EA B A D 第17题图 E AGA A第18题图A 第14题图第22题图第21题图 已知二次函数2y ax bx c =++的图像经过A (1,0)、B (-1,16)、C (0,10)三点. (1)求该函数解析式;(2)用配方法将该函数解析式化为2()y a x m k =++的形式.21.(本题满分10分)如图,在□ABCD 中,点G 在边BC 的延长线上,AG 与边CD 交于点E ,与对角线BD 交于点F . 求证: FG EF AF ⋅=2.22.(本题满分10分)如图,在大楼AB 的正前方有一斜坡CD 长为13米,坡度为121:5,高为DE .在斜坡底的点C 处测得楼顶B 的仰角为64°,在斜坡顶的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上,求斜坡的高DE (参考数据:sin64°≈0.9, tan64°≈2)23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,AD AEAC AB=,∠BAC 的平分 线AG 分别交线段DE 、BC 于点F 、G . (1)求证:△ADF ∽△ACG ;(2)联结DG ,若∠AGD =∠B ,AB=12,AD=4,AE=6,求AG 与AF 的长..24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)D 第23题图 AE F B如图,抛物线25y x bx =++与x 轴交于点A 和点B (5,0),与y 轴交于点C ,抛物线的顶点为点P .(1)求抛物线的表达式并写出顶点P 的坐标;(2)在x 轴上方的抛物线上有一点D ,若∠ABD =∠ABP ,试求出点D 的坐标;(3)设在直线BC 下方的抛物线上有一点Q ,若15BCQ S =△,试求出点Q 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在Rt △ABC 中,∠ACB=90°,AC =4,BC =3,点D 为边BC 上一动点(不与点B 、C 重合),联结AD ,过点C 作CF ⊥AD ,分别交AB 、AD 于点E 、F ,设DC=x ,AEBEy =.(1)当1x =时,求tan BCE ∠的值;(2)求y 关于x 的函数关系式,并写出x 的取值范围;(3)当1x =时,在边AC 上取点G ,联结BG ,分别交CE 、AD 于点M 、N . 当△MNF ∽△ABC 时,请直接写出AG 的长. 第24题图第25题图虹口区2016学年第一学期初三数学学科期终教学质量监控测试题评分参考建议2017.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.B 2.A 3.B 4.D 5.C 6.D二、填空题本大题共12题,每题4分,满分48分)7.2 8.2e - 9.3a < 10.2 11.22(2)y x =+ 12. 4 13.2:3 14.12515.8 16.1133b c -+17.12 18.23三、解答题(本大题共7题,满分78分)19.解:原式24-8分) 3=- …………………………………………………………………(2分)20.解:(1)把A (1,0)、B (-1,16)、C (0,10)分别代入2y ax bx c =++中,得:01610a b c a b c c=++⎧⎪=-+⎨⎪=⎩……………………………………………………………(3分)解得:2810a b c =-⎧⎪=-⎨⎪=⎩………………………………………………………………………(2分)∴该二次函数解析式为22810y x x =--+………………………………………(1分)(2)22(4)10y x x =-++22[(2)4]10x =-+-+ ………………………………………………………(2分) 22(2)18x =-++……………………………………………………………(2分)21.证明:在□ABCD 中,AD ∥BC ,AB ∥CD ………………………………………(2分) ∴BF DF FG AF = ………………………………………………………………(3分)E F D FA FB F=………………………………………………………………(3分) ∴AFEF FG AF = , 即2AF EF FG =⋅……………………………………(2分)22.解:过点D 作DF ⊥AB ,垂足为点F∵DE i EC =又∵121:5i = ∴512DE EC =∴设DE=5k ,EC=12k …………………………………………………………(1分)在Rt △DEC 中,13DC k =…………………………………(1分) ∵DC=13 ∴k=1 ∴DE=5…………………………………………………(1分) 可得EC=12 ………………………………………………………………………(1分)设CA=x ,则AE=x +12 …………………………………………………………(1分)可得四边形AEDF 为矩形, ∴DF=AE=x +12,AF=DE=5 在Rt △ABC 中,∠BCA =64°,∴tan 2AB AC ACB x =⋅∠≈…………………………………………………(1分)在Rt △BDF 中,∠BDF =45°,∴12BF DF x ==+……………………………………………………………(1分) ∵BF=AB -AF ∴x+12=2x -5………………………………………………(1分) 解得x=17∴AB ≈2x ≈34 ……………………………………………………………………(1分)答:斜坡的高度DE 为5米,大楼AB 的高度约为34米.………………………(1分)23.(1)证明:∵AD AEAC AB= 又∵∠DAE=∠CAB∴△ADE ∽△ACB ……………………………………………………………(2分) ∴∠ADE=∠C …………………………………………………………………(2分)∵AG 平分∠BAC ∴∠DAF=∠CAG∴△ADF ∽△ACG ……………………………………………………………(2分)(2)解:∵∠AGD =∠B 又∵∠DAG=∠GAB∴△ADG ∽△AGB ……………………………………………………………(1分) ∴AD AG AG AB=…………………………………………………………………(1分) 又∵AB=12,AD=4∴412AG AG = ∴AG =……………………………………………(1分) ∵AD AB AC AE ⋅=⋅ 又∵AB=12,AD=4,AE=6∴AC =8 ………………………………………………………………………(1分)∵△ADF ∽△ACG ∴AF ADAG AC=………………………………………(1分)∴12AF AG == …………………………………………………………(1分)24.解:(1)把点B (5,0)代入25y x bx =++得02555b =++ 解得 b=-6………………………………………………(1分)∴抛物线表达式为265y x x =-+ …………………………………………(1分)∴2(3)4y x =--∴顶点P 的坐标为(3,-4)………………………………………………(2分) (2)由题意,设D 点坐标为(x ,265x x -+)过点P 作PE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F易得PE=4,BE=2, DF=265x x -+,BF=5-x ∵∠ABD =∠ABP ∴tan ∠ABD = tan ∠ABP ∴265452x x x -+=-…………………………………………………………(2分) 解得15x =(舍) 21x =-…………………………………………………(1分)∴D 点坐标为(-1,12). …………………………………………………(1分)(3)由题意,设Q 点坐标为(x ,265x x -+)过点Q 作QG ⊥x 轴,交x 轴于点G ,交BC 于点H∴OG=x ,BG=5- x∵ C (0,5) B (5,0)∴直线CB 表达式为5y x =-+∴ H 点坐标为(x ,5x -+)……………………………………………(1分)∴225(65)5HQ x x x x x =-+--+=-+ ………………………………(1分)∴15BCQCQHBQHSSS=+=即111522HQ OG HQ BG ⋅+⋅= ∴2211(5)(5)(5)1522x x x x x x -+⋅+-+⋅-= 解得12x = , 23x =∴点Q 的坐标为(2,-3)或(3,-4)…………………………………(2分)25.解:(1)∵∠ACB=90° ∴∠DAC +∠ADC =90°∵ CE ⊥AD ∴∠BCE +∠ADC =90°∴∠BCE =∠DAC ………………………………………………………(2分)∴tan tan BCE DAC ∠=∠ ∵AC =4,DC =1∴1tan tan 4CD BCE DAC AC ∠=∠== … …………………………………(2分)(2)过点B 作BM ⊥BC 交CE 延长线于点M ………………………………(1分)由上题可知:tan tan BCE DAC ∠=∠∴BM CD BCCA=∵AC =4,DC =x ,BC =3 得34BM x = ………………………………(2分)∵ BM ⊥BC 得 ∠MBC=90° 又∠ACB=90°∴ BM ∥AC ∴AE AC BEBM=………………………………………………(1分)∴163y x=(0<x <3)………………………………………………(1分,1分)(3)AG 的长是2516或5219.………………………………………………(2分,2分)。

相关文档
最新文档