高考物理复习资料高中物理综合题难题(三)高考物理压轴题
(新)高考物理典型压轴题汇总含答案解析
典型高考物理压轴题集锦含答案解析1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 =G)(2h R Mm+。
卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有 G 2rMm=m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -2132ωGM+G hR Mm +2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。
(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。
高考物理电磁感应现象压轴题综合题
高考物理电磁感应现象压轴题综合题一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。
【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】解:(1)t=2s 内MN 杆上升的距离为21 2h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为BLh ∆Φ=产生的平均感应电动势为E t ∆Φ=产生的平均电流为E I R=流过MN 杆的电量q It =代入数据解得25C 2BLat q R==(2)EF 杆刚要离开平台时有BIL Mg =此时回路中的电流为E I R=MN 杆切割磁场产生的电动势为E BLv =MN 杆运动的时间为v t a=代入数据解得224s MgRt B L a==2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】(1)由右手定则判断金属棒中的感应电流方向为由a 到b .(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯= 感应电流为1EI A R==,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =. (3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',0.820.41F I A A BL ''===⨯电阻R 消耗的功率:28P I R W ='=. 【点睛】该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.3.如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场.若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E 大小;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流I 与时间t 的关系式.【答案】(1)0.04 V ; (2)0.04 N , I =22Bv tR;【解析】 【分析】 【详解】⑴在棒进入磁场前,由于正方形区域abcd 内磁场磁感应强度B 的变化,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,在棒进入磁场前回路中的电动势为E ==0.04V⑵当棒进入磁场时,磁场磁感应强度B =0.5T 恒定不变,此时由于导体棒做切割磁感线运动,使回路中产生感应电动势和感应电流,根据法拉第电磁感应定律可知,回路中的电动势为:e =Blv ,当棒与bd 重合时,切割有效长度l =L ,达到最大,即感应电动势也达到最大e m =BLv =0.2V >E =0.04V根据闭合电路欧姆定律可知,回路中的感应电流最大为:i m ==0.2A根据安培力大小计算公式可知,棒在运动过程中受到的最大安培力为:F m =i m LB =0.04N 在棒通过三角形abd 区域时,切割有效长度l =2v (t -1)(其中,1s≤t≤+1s ) 综合上述分析可知,回路中的感应电流为:i ==(其中,1s≤t≤+1s )即:i =t -1(其中,1s≤t≤1.2s ) 【点睛】注意区分感生电动势与动生电动势的不同计算方法,充分理解B-t 图象的含义.4.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f ,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)22mg fR B a - (2)()22122Rv mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a ⎡⎤=--++⎣⎦ 【解析】 【分析】(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R=+解得:222()mg f Rv B a -=(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2mg f h mv -= 联立解得:221222()mg f Rv v mg f mg f B a+==-- (3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=- 而012v v =解得:222443[()]()()2mR Q mg f mg f a b B a=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为222443[()]()()2mR Q mg f mg f a b B a=--++ 【点睛】此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.5.如图所示,宽度L =0.5 m 的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T ,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg ,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为x 轴正方向建立坐标.金属棒从0x 1?m =处以0v 2?m /s =的初速度,沿x 轴负方向做2a 2?m /s =的匀减速直线运动,运动中金属棒仅受安培力作用.求:(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电荷量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离x ,以及0.4 s 时回路内的电阻R ,然后代入BLxq R R∆Φ==求解.指出该同学解法的错误之处,并用正确的方法解出结果. 【答案】(1)0.1 J (2)R x =(3)0.4C 【解析】【分析】 【详解】(1)金属棒仅受安培力作用,其大小0.120.2?F ma N ⨯===金属棒运动0.5 m ,框架中产生的焦耳热等于克服安培力做的功所以0.20.50.1?Q Fx J ===⨯. (2)金属棒所受安培力为F BIL =E BLv I R R ==所以22B L RF ma v==由于棒做匀减速直线运动v所以R ===(3)错误之处是把0.4 s 时回路内的电阻R 代入BLxq R=进行计算. 正确的解法是q It = 因为F BIL ma == 所以ma 0.12q t 0.40.4?C BL 0.40.5⨯⨯⨯=== 【点睛】电磁感应中的功能关系是通过安培力做功量度外界的能量转化成电能.找两个物理量之间的关系是通过物理规律一步一步实现的.用公式进行计算时,如果计算的是过程量,我们要看这个量有没有发生改变.6.如图甲所示。
高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析
高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析一、带电粒子在磁场中的运动压轴题1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R OQ QC =+21v qvB m R =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
历年高考物理压轴题精选(三)详细解答
历年高考物理压轴题精选(三)详细解答————————————————————————————————作者:————————————————————————————————日期:2第 3 页 共 18 页历年高考物理压轴题精选(三)2008年(宁夏卷)23.(15分)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。
(引力常量为G ) 24.(17分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。
有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。
质点到达x 轴上A 点时,速度方向与x 轴的夹角ϕ,A 点与原点O 的距离为d 。
接着,质点进入磁场,并垂直于OC 飞离磁场。
不计重力影响。
若OC 与x 轴的夹角为ϕ,求(1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。
24.(17分)(1)质点在磁场中的轨迹为一圆弧。
由于质点飞离磁场时,速度垂直于OC ,故圆弧的圆心在OC 上。
依题意,质点轨迹与x 轴的交点为A ,过A 点作与A 点的速度方向垂直的直线,与OC 交于O '。
由几何关系知,AO '垂直于OC ',O '是圆弧的圆心。
设圆弧的半径为R ,则有R =dsin ϕ⎺由洛化兹力公式和牛顿第二定律得Rv m qvB 2=②第 4 页 共 18 页将⎺式代入②式,得ϕsin mqBdv =③(2)质点在电场中的运动为类平抛运动。
设质点射入电场的速度为v 0,在电场中的加速度为a ,运动时间为t ,则有 v 0=v cos ϕ ④v sin ϕ=at ⑤d =v 0t⑥ 联立④⑤⑥得dv a ϕϕcos sin 2=⑦设电场强度的大小为E ,由牛顿第二定律得qE =ma⑧联立③⑦⑧得ϕϕcos 3sin 2md qB E =⑨2008年(海南卷)16.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x=R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求(I)粒子到达x=R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (Ⅱ)M 点的横坐标x M .16.(I)设粒子质量、带电量和入射速度分别为m 、q 和v 0,则电场的场强E 和磁场的磁感应强度B 应满足下述条件qE=qv o B ①②现在,只有电场,入射粒子将以与电场方向相同的加速度③做类平抛运动.粒子从P(x=0,y=h)点运动到x=R o平面的时间为④粒子到达x=R0平面时速度的y分量为⑤由①②⑧④⑤式得⑥此时粒子速度大小为,⑦速度方向与x轴的夹角为⑧粒子与x轴的距离为⑨(II)撤除电场加上磁场后,粒子在磁场中做匀速圆周运动.设圆轨道半径为R,则⑩由②⑦⑩式得⑨粒子运动的轨迹如图所示,其中圆弧的圆心C位于与速度v的方向垂直的直线上,该直线与x轴和y轴的夹角均为π/4.由第 5 页共 18 页第 6 页 共 18 页几何关系及○11式知C 点的坐标为过C 点作x 轴的垂线,垂足为D 。
(精品)高考物理压轴题集及详解(63道精选题)
1、(20分)如图1所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v 1和v 2(3)磁感应强度B 的大小(4)电场强度E 的大小和方向2、(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:(1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?3、(10分)如图17,为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)4、有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m c =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
(完整版)高考物理压轴题和高中物理初赛难题汇集一
高考物理压轴题和高中物理初赛难题汇集-11. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = —GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验。
设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2=G)(2h R Mm+。
卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =—G)(2h R Mm+同步卫星在轨道上正常运行时有 G 2rMm =m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机时卫星的动能为E k x ,则E k x = E 2 - E p —21 32ωGM +G hR Mm+2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。
(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y 解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。
物理压轴题及答案
高中物理题答案及解析1.【考点】D8:法拉第电磁感应定律;BH:焦耳定律.【专题】53C:电磁感应与电路结合.【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;(2)由功率表达式,结合闭合电路欧姆定律,即可;(3)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得。
【解答】解:(1)由法拉第电磁感应定律有:E=n得:E=n=2.5V(2)小灯泡正常发光,有:P=I2R由闭合电路欧姆定律有:E=I(R0+R)即有:R代入数据解得:R=1.25Ω(3)对线框bc边处于磁场中的部分受力分析如图,当线框恰好要运动时,磁场的磁感应强度大小为B,由力的平衡条件有:mgsinθ=F安+f=F安+μmgcosθF安=nB′I×2r由上解得线框刚要运动时,磁场的磁感应强度大小为:B′=0.4T线框在斜面上可保持静止的时间为:t=s小灯泡产生的热量为:Q=Pt=1.25×=π≈3.2J答:(1)线框不动时,回路中的感应电动势2.5V;(2)小灯泡正常发光时的电阻1.25Ω;(3)线框保持不动的时间内,小灯泡产生的热量3.2J。
【点评】考查法拉第电磁感应定律与闭合电路欧姆定律的内容,掌握平衡条件的应用,及焦耳定律的公式,注意安培力大小计算。
2.【考点】CO:霍尔效应及其应用.【专题】11 :计算题;32 :定量思想;43 :推理法;536:带电粒子在磁场中的运动专题.【分析】(1)根据左手定则,即可求解;(2)根据电场力等于洛伦兹力,结合电阻定律,即可求解;(3)根据闭合电路欧姆定律,与焦耳定律,即可求解。
【解答】解:(1)由左手定则得,N板的电势较高。
(2)当海水中流动的带电离子进入磁场后,将在两板之间形成电势差,当带电离子所受到的电场力F与洛伦兹力f相平衡时达到稳定状态,有:q=qvB代入有关数据得电动势为:E=25V。
(3)内阻为:r=ρ代入数据得:r=0.025Ω电路中的电流为:I═A=40A.答:(1)达到稳定状态时,金属N板的电势较高;(2)该磁流体发电机产生的电动势E为25V;(3)若用此发电机给一电阻为0.6Ω的航标灯供电,则流过航标灯的电流大小为40A。
高考物理压轴题
第一部分力学类综合问题第一类万有引力和天体运动1.01 2009年天津理综卷第12题1.02 2008年全国理综卷Ⅱ第25题1.03 2009年全国理综卷Ⅱ第26题第二类物体的多个运动过程1.04 2012年全国理综卷大纲版第26题1.05 2012年重庆理综卷第25题1.06 2008年四川理综卷第25题1.07 2009年浙江理综卷第24题1.08 2010年江苏物理卷第14题1.09 2009年安徽理综卷第24题第三类物体的碰撞模型1.10 2011年全国理综卷Ⅰ第26题1.11 2009年北京理综卷第24题1.12 2012年北京理综卷第24题1.13 2008年北京理综卷第24题1.14 2010年安徽理综卷第24题1.15 2012年安徽理综卷第24题1.16 2010年海南物理卷第16题1.17 2008年广东物理卷第20题第四类物体间的摩擦或通过弹簧、绳(杆)的相互作用1.18 2008年天津理综卷第24题1.19 2010年重庆理综卷第25题1.20 2009年山东理综卷第24题1.21 2008年重庆理综卷第24题1.22 2009年重庆理综卷第24题1.23 2008年全国理综卷Ⅰ第24题1.24 2011年安徽理综卷第24题1.25 2012年广东理综卷第36题1.26 2011年广东理综卷第36题第二部分带电粒子(带电体)的运动问题第一类带电粒子(带电体)在电场力作用下的运动2.01 2010年江苏物理卷第15题2.02 2008年上海物理卷第23题2.03 2009年安徽理综卷第23题2.04 2011年北京理综卷第24题2.05 2011年浙江理综卷第25题第二类带电粒子在匀强磁场中的运动2.06 2009年海南物理卷第16题2.07 2010年全国理综卷Ⅰ第26题2.08 2010年全国理综卷(新课标)第25题2.09 2010年广东理综卷第36题2.10 2009年全国理综卷Ⅰ第26题2.11 2012年海南物理卷第16题2.12 2010年浙江理综卷第24题2.13 2011年全国理综卷(新课标)第25题2.14 2008年重庆理综卷第25题第三类带电粒子分别在电场和磁场中的运动2.15 2012年全国理综卷新课标第25 2.16 2012年天津理综卷第12题2.17 2010年山东理综卷第25题2.18 2012年山东理综卷第23题2.19 2011年江苏物理卷第15题2.20 2009年山东理综卷第25题2.21 2008年山东理综卷第25题2.22 2009年宁夏理综卷第25题2.23 2009年全国理综卷Ⅱ第25题2.24 2008年海南物理卷第16题2.25 2011年山东理综卷第25题2.26 2008年宁夏理综卷第24题2.27 2008年全国理综卷Ⅰ第25题2.28 2009年重庆理综卷第25题第四类带电粒子(带电体)在多种场并存的空间的无约束运动2.29 2010年海南物理卷第15题2.30 2010年全国理综卷Ⅱ第26题2.31 2009年福建理综卷第22题2.32 2009年浙江理综卷第25题2.33 2010年安徽理综卷第23题2.34 2010年天津理综卷第12题2.35 2012年江苏物理卷第15题2.36 2011年福建理综卷第22题2.37 2011年重庆理综卷第25题第五类带电粒子(带电体)在多种场并存的空间且存在约束的运动2.38 2011年四川理综卷第25题2.39 2008年四川理综卷第24题2.40 2008年广东物理卷第19题2.41 2009年四川理综卷第25题2.42 2010年四川理综卷第25题第三部分力学与电磁感应、电路的综合问题第一类电磁感应与力学综合3.01 2008年全国理综卷Ⅱ第24题3.02 2012年上海物理卷第33题3.03 2008年上海物理卷第24题3.04 2010年上海物理卷第32题3.05 2009年上海物理卷第24题3.06 2009年江苏物理卷第15题3.07 2008年江苏物理卷第15题第二类力、电综合问题及技术应用3.08 2012年浙江理综卷第25题3.09 2010年浙江理综卷第23题3.10 2009年四川理综卷第24题3.11 2012年四川理综卷第25题3.12 2009年北京理综卷第23题3.13 2008年天津理综卷第25题3.14 2011年天津理综卷第12题3.15 2012年福建理综卷第22题3.16 2010年上海物理卷第33题3.17 2011年上海物理卷第33题第二类物体的多个运动过程1.04 2012年全国理综卷大纲版第26题26.(20分)(注意:在试题卷上作答无效.........)一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状。
《高考物理必做的36个压轴题》参考答案
ω=2π/T
M=4/3πρR3
由以上各式得
ρ=3π/GT2
代人数据解得
ρ=1.27×1014kg/m3
点拨:在天体表面万有引力等于重力只是一个近似结论,其实上物体还会受到一支持力,在赤道处,有 ,N的大小等于我们常说的重力,当 越大时,N越小,当N等于零时,叫做自我瓦解现象。
第05题 规范作图是保障,时空条件是出路
从B1到B2时间为t, + 2π= 2π,
则有t= = .
点拨:恰好看到或恰好看不到卫星,是个临界问题,此时观测者与卫星的连线恰好是地球的切线。
第06题 双星三星与四星,破解方法均基本
1.解析(1)对于第一种运动情况,以某个运动星体为研究对象,根据牛顿第二定律和万有引力定律有:
F1=
F1+F2=mv2/R
第03题 时空顺序拆联合,复杂过程不复杂
1.解析(1)“A鱼”在入水前做自由落体运动,有
vA12-0=2gH
得:vA1=
(2)“A鱼”在水中运动时受重力、浮力和阻力的作用,做匀减速运动,设加速度为aA,有
F合=F浮+fA-mg
F合=maA
0-vA12=-2aAhA
由题意:F浮= mg
综合上述各式,得fA=mg
M′= πρ(R-d)3⑤
在矿井底部此单摆的周期为
T′=2π ⑥
由题意
T=kT′⑦
联立以上各式得d=R(1-k2)⑧
点拨:物体在深度为d的矿井底部的重力等于半径为R-d的球体对物体的万有引力。可以证明,范围为d的那部分质量对物体的引力合为零。
2.解析(1)由竖直上抛运动规律可得在地球表面t= ,
在星球表面5t= ,
2.解析(1)设绳断后球飞行时间为t,由平抛运动规律,有
2024届高考物理压轴题专项训练:用力学三大观点处理多过程问题(解析版)(共23页)
压轴题用力学三大观点处理多过程问题1.用力学三大观点(动力学观点、能量观点和动量观点)处理多过程问题在高考物理中占据核心地位,是检验学生物理思维能力和综合运用知识解决实际问题能力的重要标准。
2.在命题方式上,高考通常会通过设计包含多个物理过程、涉及多个力学观点的复杂问题来考查学生的综合能力。
这些问题可能涉及物体的运动状态变化、能量转换和守恒、动量变化等多个方面,要求考生能够灵活运用力学三大观点进行分析和解答。
3.备考时,学生应首先深入理解力学三大观点的基本原理和应用方法,掌握相关的物理公式和定理。
其次,要通过大量的练习来提高自己分析和解决问题的能力,特别是要注重对多过程问题的训练,学会将复杂问题分解为多个简单过程进行分析和处理。
考向一:三大观点及相互联系考向二:三大观点的选用原则力学中首先考虑使用两个守恒定律。
从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x,时间t)问题,不能解决力(F)的问题。
(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。
(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理。
(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。
(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动特别方便。
考向三:用三大观点的解物理题要掌握的科学思维方法1.多体问题--要正确选取研究对象,善于寻找相互联系选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象后需根据不同的条件采用隔离法,即把研究对象从其所在的系统中抽离出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体进行研究;或将隔离法与整体法交叉使用。
通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法。
高考物理压轴题30道
高考物理压轴题(30道)1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。
当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷?(2)物体与挡板碰撞前后的速度v1和v2(3)磁感应强度B的大小(4)电场强度E的大小和方向图121.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg=qBv2…………………………………………………………①(2)离开电场后,按动能定理,有:-μmg 4L =0-21mv 2………………………………②由①式得:v 2=22 m/s (3)代入前式①求得:B =22T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向水平向右,且:(Eq -μmg )212=Lmv 12-0……………………………………………③进入电磁场后做匀速运动,故有:Eq =μ(qBv 1+mg )……………………………④由以上③④两式得:⎩⎨⎧==N/C2.4m/s 241E v2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大?(2)到A 、B 都与挡板碰撞为止,C 的位移为多少?2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C 的速度为零,即0=C v (2)炸药爆炸时有B B A A v m v m =解得s m v B /5.1= 又B B A A s m s m =当s A =1 m 时s B =0.25m ,即当A 、C 相撞时B 与C 右板相距m s Ls B 75.02=-=A 、C 相撞时有: v m m v m C A A A )(+=解得v =1m/s ,方向向左而B v =1.5m/s ,方向向右,两者相距0.75m ,故到A ,B 都与挡板碰撞为止,C 的位移为3.0=+=BC v v svs m19.3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)3固定时示数为F 1,对小球F 1=mgsin θ ① 整体下滑:(M+m )sin θ-μ(M+m)gcos θ=(M+m)a ② 下滑时,对小球:mgsin θ-F 2=ma ③ 由式①、式②、式③得 μ=12F F tan θ4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。
高考物理电磁感应现象压轴难题综合题含答案解析
高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
高三物理力学压轴题集
1.质量为M 的平板车在光滑的水平地面上以速度v0向右做匀速直线运动:若将一个质量为m (M= 4m )的沙袋轻轻地放到平板车的右端:沙袋相对平板车滑动的最大距离等于车长的41:若将沙袋以水平向左的速度扔到平板车上:为了不使沙袋从车上滑出:沙袋的初速度最大是多少?解:设平板车长为L :沙袋在车上受到的摩擦力为f 。
沙袋轻轻放到车上时:设最终车与沙袋的速度为v′:则()v m M Mv '+=0 =-fL ()2022121Mv v m M -'+ 又M= 4m 可得:258mv fL =设沙袋以水平向左的初速度扔到车上:显然沙袋的初速度越大:在车上滑行的距离越长:沙袋刚好不从车上落下时:相对与车滑行的距离为L :其初速度为最大初速设为v :车的最终速度设为v 终:以向右为坐标的正方向:有:()终v m M mv Mv +=-0 =-fL ()2202212121mv Mv v m M --+终又M= 4m 258mv fL = 可得:v=v0(v=3v0舍去)车的最终速度设为v 终=053v 方向向左2在光滑的水平面上有一质量M=2kg 的木版A :其右端挡板上固定一根轻质弹簧:在靠近木版左端的P 处有一大小忽略不计质量m=2kg 的滑块B 。
木版上Q 处的左侧粗糙:右侧光滑。
且PQ 间距离L=2m :如图所示。
某时刻木版A 以υA=1m/s 的速度向左滑行:同时滑块B 以υB=5m/s 的速度向右滑行:当滑块B 与P 处相距L43时:二者刚好处于相对静止状态:若在二者其共同运动方向的前方有一障碍物:木块A 与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。
求B 与A 的粗糙面之间的动摩擦因数μ和滑块B 最终停在木板A 上的位置。
(g 取10m/s2)解: 设M.m 共同速度为v :由动量守恒得 mvB-MV A=(m+M)v 代入数据得: v=2m/s对AB 组成得系统:由能量守恒4143umgL=21MV A2+21mvB2—21(M+m)V2代入数据得: u=0.6木板A 与障碍物发生碰后以原速度反弹:假设B 向右滑行:并与弹簧发生相互作用:当AB 再次处于相对静止时:共同速度为u由动量守恒得mv —Mv=(m+m)u 设B 相对A 的路程为s :由能量守恒得umgs=(m+M)v2--( m+M)u2 代入数据得:s=32(m)由于s>41L :所以B 滑过Q 点并与弹簧相互作用:然后相对A 向左滑动到Q 点左边:设离Q 点距离为s1 S1=s-41L=0.17(m)3.(15分)一轻质弹簧:两端连接两滑块A 和B :已知mA=0.99kg : mB=3kg :放在光滑水平桌面上:开始时弹簧处于原长。
高考物理电磁感应现象压轴难题综合题附答案解析
高考物理电磁感应现象压轴难题综合题附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
高考物理压轴题汇编.doc
高中物理学习材料(鼎尚**整理制作)高考物理压轴题汇编1988N个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图所示(图中只画出了六个圆筒,作为示意).各筒和靶相间地连接到频率为υ、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差V1-V2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.为使正离子获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U,这就要求离子穿过每个圆筒的时间都恰好等于交流电的半个周期.由于圆筒内无电场,离子在筒内做匀速运动.设v n为离子在第n个圆筒内的速度,则有将(3)代入(2),得第n个圆筒的长度应满足的条件为:n=1,2,3……N.打到靶上的离子的能量为:评分标准:本题共9分.列出(1)式给2分;列出(2)式给3分;得出(4)式再给2分;得出(5)式给2分.1991在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间的距离大于l(l比2r大得多)时,两球之间无相互作用力:当两球心间的距离等于或小于l时,两球间存在相互作用的恒定斥力F.设A球从远离B球处以速度v0沿两球连心线向原来静止的B球运动,如图所示.欲使两球不发生接触,v0必须满足什么条件?解一:A球向B球接近至A、B间的距离小于l之后,A球的速度逐步减小,B球从静止开始加速运动,两球间的距离逐步减小.当A、B的速度相等时,两球间的距离最小.若此距离大于2r,则两球就不会接触.所以不接触的条件是v1=v2①l +s2-s1>2r②其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从l变至最小的过程中,A、B两球通过的路程.由牛顿定律得A球在减速运动而B球作加速运动的过程中,A、B两球的加速度大小为③设v0为A球的初速度,则由匀加速运动公式得联立解得⑥解二:A球向B球接近至A、B间的距离小于l之后,A球的速度逐步减小,B球从静止开始加速运动,两球间的距离逐步减小.当A、B的速度相等时,两球间的距离最小.若此距离大于2r,则两球就不会接触.所以不接触的条件是v1=v2①l+s2-s1>2r②其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从l变至最小的过程中,A、B两球通过的路程.设v0为A球的初速度,则由动量守恒定律得mv0=mv1+2mv2③由动能定理得联立解得⑥评分标准:全题共8分.得出①式给1分.得出②式给2分.若②式中">"写成"≥"的也给这2分.在写出①、②两式的条件下,能写出③、④、⑤式,每式各得1分.如只写出③、④、⑤式,不给这3分.得出结果⑥再给2分.若⑥式中"<"写成"≤"的也给这2分.1992如图所示,一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m〈M。
全国高考物理压轴题
全国高考物理压轴题
全国高考物理压轴题一般考察学生的综合应用能力,通常涉及多个知识点和方法的综合运用。
以下是一些常见的全国高考物理压轴题:
1. 力学综合题:这类题目通常涉及多个物体和多个力的分析,要求学生能够灵活运用牛顿第二定律和运动学公式解决复杂的问题。
2. 电磁学综合题:这类题目通常涉及电场、磁场和电流等知识点,要求学生能够运用法拉第电磁感应定律、安培定律等公式解决复杂的问题。
3. 热学综合题:这类题目通常涉及热力学第一定律、热力学第二定律等知识点,要求学生能够运用这些公式解决涉及能量守恒、熵增加等方面的问题。
4. 光学综合题:这类题目通常涉及光的折射、反射和干涉等知识点,要求学生能够运用这些公式解决涉及光路设计、光学仪器等方面的问题。
5. 原子物理综合题:这类题目通常涉及原子结构和原子核等知识点,要求学生能够运用这些公式解决涉及原子能级、核反应等方面的问题。
总之,全国高考物理压轴题是考察学生综合应用能力的题目,需要学生具备扎实的基础知识、灵活的思维方式和丰富的解题经验。
通过做题、练习和总结,学生可以提高自己的解题能力和思维能力。
高考物理电磁感应现象压轴难题试卷附答案
高考物理电磁感应现象压轴难题试卷附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“”字型(如图乙)通电后使其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“”字型线圈依次通电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)(2)求列车能达到的最大速度m v ;(3)列车以最大速度运行一段时间后,断开接在“” 字型线圈上的电源,使线圈与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ⨯、磁感应强度为B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“”字型线圈时,电容器中贮存的电量Q .【答案】(1) 012() BL v v R -222210122BL B L kR v B L +-24nB Lb R ' 【解析】 【详解】解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:12EI R = 解得:01(2 )BL v v I R -=(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:B F BIL =由平衡条件得:20B f F F -= ,已知:2f F kv =解得:222210122m BL B L kR v B L v kR +-=(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:感应电动势:n E tφ∆=∆,而B Lb φ∆=' 电流:12E I R =电荷量:11Q I t =∆ 解得:12nB LbQ R '= 电磁铁通过字型线圈中间时,电路情况如图2所示:B Lb φ∆=',2222E nI R tφ∆==∆ 22Q I t =∆解得:222nB LbQ R '= 电磁铁通过字型线圈右边界时,电路情况如图3所示:n E tφ∆=∆, B Lb φ∆=',32E I R =33Q I t =∆解得:32nB LbQ R '=, 总的电荷量:123Q Q Q Q =++ 解得:24nB LbQ R '=3.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
高考物理物理解题方法:数学物理法压轴难题综合题附答案
高考物理物理解题方法:数学物理法压轴难题综合题附答案一、高中物理解题方法:数学物理法1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°,∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示)(1)这束入射光线的入射角多大?(2)该束光线第一次从棱镜出射时的折射角.【答案】(1)这束入射光线的入射角为48.6°;(2)该束光线第一次从棱镜出射时的折射角为48.6°【解析】试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°,根据n=,得:sini=nsinr=1.5×sin30°=0.75故i=arcsin0.75=48.6°(2)光路如图所示:ab光线在AB面的入射角为45°,设玻璃的临界角为C,则:sinC===0.67sin45°>0.67,因此光线ab在AB面会发生全反射光线在CD面的入射角r′=r=30°根据n=,光线在CD面的出射光线与法线的夹角:i′="i=arcsin" 0.75=48.6°2.角反射器是由三个互相垂直的反射平面所组成,入射光束被它反射后,总能沿原方向返回,自行车尾灯也用到了这一装置。
如图所示,自行车尾灯左侧面切割成角反射器阵列,为简化起见,假设角反射器的一个平面平行于纸面,另两个平面均与尾灯右侧面夹45角,且只考虑纸面内的入射光线。
(1)为使垂直于尾灯右侧面入射的光线在左侧面发生两次全反射后沿原方向返回,尾灯材料的折射率要满足什么条件?(2)若尾灯材料的折射率2n =,光线从右侧面以θ角入射,且能在左侧面发生两次全反射,求sin θ满足的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理复习资料高中物理综合题难题(三)高考物理压轴题高考物理复习资料高考物理压轴题汇编高中物理综合题难题汇编(3)1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于匀强磁场中,磁场方向垂直于斜面向上。
导轨和金属杆的电阻可忽略。
让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。
导轨和金属杆接触良好,重力加速度为g。
求:(1)金属杆达到最大速度时安培力的大小;(2)磁感应强度的大小;(3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。
2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。
长方体B的上表面光滑,下表面与水平面的动摩擦因数=0.05(设最大静摩擦力与滑动摩擦力相同)。
B与极板的总质量=1.0kg。
带正电的小滑块A质量=0.60kg,其受到的电场力大小F=1.2N。
假设A所带的电量不影响极板间的电场分布。
t=0时刻,小滑块A从B表面上的a点以相对地面的速度=1.6m/s 向左运动,同时,B (连同极板)以相对地面的速度=0.40m/s向右运动。
(g取10m/s2)问:(1)A和B刚开始运动时的加速度大小分别为多少?(2)若A最远能到达b点,a、b的距离L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做的功为多少?3. (18分)如图所示,一个质量为的木块,在平行于斜面向上的推力作用下,沿着倾角为的斜面匀速向上运动,木块与斜面间的动摩擦因数为.()(1)求拉力的大小;(2)若将平行于斜面向上的推力改为水平推力作用在木块上,使木块能沿着斜面匀速运动,求水平推力的大小。
4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。
质量为m=0.20kg的物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A点,再将质量相同的物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B点。
现用力沿斜面向下缓慢压乙,当其沿斜面下降到C点时将弹簧锁定,A、C两点间的距离为△L =0.06m。
一个质量也为m的小球丙从距离乙的斜面上方L=0.40m处由静止自由下滑,当小球丙与乙将要接触时,弹簧立即被解除锁定。
之后小球丙与乙发生碰撞(碰撞时间极短且无机械能损失),碰后立即取走小球丙。
当甲第一次刚要离开挡板时,乙的速度为v=2.0m/s。
(甲、乙和小球丙均可看作质点,g取10m/s2)求:(1)小球丙与乙碰后瞬间乙的速度大小。
(2)从弹簧被解除锁定至甲第一次刚要离开挡板时弹簧弹性势能的改变量。
5. (16分)如图所示,相距为d的平行金属板A、B竖直放置,在两板之间水平放置一绝缘平板。
有一质量m、电荷量q(q>0)的小物块在与金属板A相距l处静止。
若某一时刻在金属板A、B间加一电压U AB=,小物块与金属板只发生了一次碰撞,碰撞后电荷量变为-q,并以与碰前大小相等的速度反方向弹回。
已知小物块与绝缘平板间的动摩擦因数为μ,若不计小物块电荷量对电场的影响和碰撞时间。
则(1)小物块与金属板A碰撞前瞬间的速度大小是多少?(2)小物块碰撞后经过多长时间停止运动?停在何位置?6. (18分)如图所示,质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆孤轨道下滑。
B、C为圆弧的两端点,其连线水平。
已知圆弧半径R=1.0m圆弧对应圆心角,轨道最低点为O,A点距水平面的高度h=0.8m。
小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的滑动摩擦因数为=0.33(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A点的水平初速度v1;(2)小物块经过O点时对轨道的压力;(3)斜面上CD间的距离;(4)假设小物块与传送带间的动摩擦因数为0.3,传送带的速度为5m/s,则间的距离是多少?7. (18分)天文学家测得银河系中氦的含量约为25%.有关研究表明,宇宙中氦生成的途径有两条:一是在宇宙诞生后2分钟左右生成的;二是在宇宙演化到恒星诞生后,由恒星内部的氢核聚变反应生成的。
(1)把氢核反应简化为4个氢核()聚变成氦核(),同时放出2个正电子()和2个中微子(v e),请写出该氢核聚变反应的方程,并计算一次反应释放的能量;(2)研究表明,银河系的年龄约为t=3.8×1017s,每秒钟银河系产生的能量约为1×1037J(即P=1×1037J/s)。
现假定该能量全部来自上述氢核聚变反应,试估算银河系中氦的含量.(最后结果保留一位有效数字)(3)根据你的估算结果,对银河系中氦的主要生成途径作出判断。
(可能用到数据:银河系质量约为M=3×1041kg,原子质量单位1u=1.66×10-27kg,1u相当于1.5×10-10J的能量,电子质量m e=0.0005u,氦核质量mα=4.0026u,氢核质量m P=1.0078u,中微子v e质量为零)8. (16分)汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A'中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P'间的区域。
当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O'点,(O'与O点的竖直间距为d,水平间距可忽略不计.此时,在P和P'间的区域,再加上一个方向垂直于纸面向里的匀强磁场。
调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点。
已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示)。
(1)求打在荧光屏O点的电子速度的大小。
(2)推导出电子的比荷的表达式。
9. (15分)如图所示是做光电效应实验的装置简图。
在抽成真空的玻璃管内,K为阴极(用金属铯制成,发生光电效应的逸出功为1.9eV),A为阳极。
在a、b间不接任何电源,用频率为v(高于铯的极限频率)的单色光照射阴极K,会发现电流表指针有偏转。
这时,若在a、b间接入直流电源,a接正极,b接负极,并使a、b间电压从零开始逐渐增大,发现当电压表的示数增大到 2.1V时,电流表的示数刚好减小到零。
求:(1)a、b间未接直流电源时,通过电流表的电流方向;(2)从阴极K发出的光电子的最大初动能;(3)入射的单色光的频率。
10. (18分)如下图1所示,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽)。
在两板的中心各有小孔O和O’,O和O’处在同一竖直线上。
在两板之间有一带负电的质点P。
已知A、B间所加电压为U0时,质点P所受的电场力恰好与重力平衡。
现在A、B间加上如下图2所示随时间t作周期性变化的电压U,已知周期(g为重力加速度)。
在第一个周期内......的某一时刻t0,在A、B间的中点处由静止释放质点P,一段时间后质点P从金属板的小孔飞出.问:(1)t0在什么范围内,可使质点在飞出小孔之前运动的时间最短?(2)t0在哪一时刻,可使质点P从小孔飞出时的速度达到最大?超导托卡马克核聚变实验11. (17分)2007年3月1日,国家重大科学工程项目“EAST装置”在合肥顺利通过了国家发改委组织的国家竣工验收。
作为核聚变研究的实验设备,EAST可为未来的聚变反应堆进行较深入的工程和物理方面的探索,其目的是建成一个核聚变反应堆,届时从1升海水中提取氢的同位素氘,在这里和氚发生完全的核聚变反应,释放可利用能量相当于燃烧300公升汽油所获得的能量,这就相当于人类为自己制造了一个小太阳,可以得到无穷尽的清洁能源。
作为核聚变研究的实验设备,要持续发生热核反应,必须把温度高达几百万摄氏度以上的核材料约束在一定的空间内,约束的办法有多种,其中技术上相对较成熟的是用磁场约束核材料。
如图所示为EAST部分装置的简化模型:垂直纸面的有环形边界的匀强磁场b区域,围着磁感应强度为零的圆形a区域,a区域内的离子向各个方向运动,离子的速度只要不超过某值,就不能穿过环形磁场的外边界而逃逸,从而被约束。
设离子质量为m,电荷量为q,环形磁场的内半径为R1,外半径R2 =(1+)R1。
(1)将下列核反应方程补充完整,指出哪个属于核聚变方程。
并求出聚变过程中释放的核能E0。
已知H的质量为m2,H的质量为m3,α粒子的质量为mα,的质量为m n,质子质量为m P,电子质量为m e,光速为c。
A.()B.( )C.( ) D.( )(2)若要使从a区域沿任何方向,速率为v的离子射入磁场时都不能越出磁场的外边界,则b区域磁场的磁感应强度B至少为多大?(3)若b区域内磁场的磁感应强度为B,离子从a区域中心O点沿半径OM方向以某一速度射入b区,恰好不越出磁场的外边界。
请画出在该情况下离子在a、b区域内运动一个周期的轨迹,并求出周期T。
答案一、计算题1. 解析:(1)设金属杆受安培力为F A,当金属杆达到最大速度时,杆受力平衡(4分)(2)当杆达到最大速度时,感应电动势为,感应电流为I m(2分)(2分)由(2分)(3)设金属杆从静止开始至达到最大速度的过程中下降的高度为h由能量守恒(4分)得(1分)2. 解析:(1)A刚开始运动时的加速度大小方向水平向右B受电场力摩擦力B刚开始运动时的加速度大小方向水平向左(2)设B从开始匀减速到零的时间为t1,则有t1时刻A的速度A的位移此t1时间内A相对B运动的位移t1后,由于,B开始向右作匀加速运动,A继续作匀减速运动,当它们速度相等时A、B相距最远,设此过程运动时间为t2,它们速度为v,则有:对A:速度对B:加速度速度解得:t2时间内A运动的位移B运动的位移t2内A相对B的位移摩擦力对B做功为A最远到达b点a、b的距离为从t=0时刻到A运动到b点时,摩擦力对B做的功为3. 解析:(1)如图所示以木块为研究对象进行受力分析,以沿斜面方向为x轴,垂直于斜面方向为y轴建立直角坐标系,由共点力的平衡条件有平衡方程:①②③联立求解①②③得(2)因为当时木块刚好在斜面上处于静止或者匀速下滑的状态,由于,所以当平行于斜面向上的推力改为水平推力后,木块沿着斜面匀速运动时存在两种情况,一是木块匀速向下运动,二是匀速向上运动,两种情况下木块所受的摩擦力方向不同,下面分别求之:当木块向下匀速运动时,如图所示进行受力分析由平衡条件得平衡方程:④⑤⑥联立求解④⑤⑥得当木块向上匀速运动时,如图所示进行受力分析由平衡条件得平衡方程:⑦⑧⑨联立求解⑦⑧⑨得所以使木块沿着斜面匀速运动的水平推力的大小为或4. 解析:(1)对小球丙从顶端滑至乙处的过程,由动能定理得:mgL sinθ=mv02解得v0=2m/s对小球丙和乙的碰撞过程,由于二者碰撞过程时间极短,所以碰撞过程小球丙和乙组成的系统沿斜面方向动量守恒。