(完整)数学建模美赛试题

合集下载

数学建模美赛2024题目

数学建模美赛2024题目

数学建模美赛2024题目全文共四篇示例,供读者参考第一篇示例:今年的题目是关于气候变化和环境保护的议题。

题目涉及到了全球变暖对气候和环境的影响,以及如何通过有效的政策和措施来减缓这种影响。

参赛者需要结合大量的气象数据、环境数据和经济数据,建立数学模型来分析不同政策对环境的影响,并提出具体的政策建议。

题目要求参赛者首先了解全球变暖的背景和影响,包括气候变化对冰川、海平面和生态系统的影响。

然后需要收集大量的数据,包括气温、降水、二氧化碳排放量等信息,建立数学模型来模拟气候变化的趋势和影响。

在此基础上,参赛者需要分析不同政策对气候和环境的影响,比如减排政策、再生能源政策、森林保护政策等。

最终,他们需要提出具体的政策建议,用数学模型来验证这些政策的有效性和可行性。

这道题目不仅考验参赛者的数学建模能力,还要求他们具备丰富的跨学科知识和分析能力。

参赛者需要深入了解气候变化和环境问题的本质,同时还需要掌握大量的数据处理和模型建立技巧。

他们需要运用数学、统计学、计算机科学等知识,同时还要具备创新思维和团队合作能力。

通过参与这项挑战性的比赛,大学生们不仅可以提升自己的数学建模能力,还可以培养跨学科的综合能力和团队合作精神。

这对于他们未来从事科研、工程或管理等领域的工作都将大有裨益。

这也是一次展示自己才华和创造力的绝佳机会,可以让他们在学术界和工业界获得更多的认可和机会。

2024年美国大学生数学建模竞赛的题目涉及到了气候变化和环境保护这一全球性议题,要求参赛者建立数学模型来分析不同政策对环境的影响,并提出具体的政策建议。

这是一项极具挑战性和实践意义的比赛,将为参赛者提供一个全面发展和展示自己才华的平台。

希望所有参赛者都能在这场比赛中收获满满的成绩和经验!第二篇示例:2024年美国大学生数学建模竞赛(MCM/ICM)是一个全球性的高水平数学建模比赛。

在这个比赛中,参赛队伍需要在72小时内利用自己的数学建模技能解决提出的真实世界问题。

美赛历年赛题

美赛历年赛题

美赛历年赛题
美国数学建模竞赛(MCM/ICM)自1985年创办以来已有35年的历史,每年都会发布三个模型问题供参赛选手在限定时间内进行研究和解答。

经过不断发展和完善,MCM/ICM成为了世界范围内最具影响力的数学建模竞赛之一。

以下是MCM/ICM历年来的一些典型赛题:
1985年 MCM A题:研究在给定经济情况下,如何规划BMW公司未来的生产计划及车型。

1987年 MCM A题:在地球上一个非常均匀的平面,建立一个小型城市,考虑各种环境因素如何影响城市的设施和功能。

1991年 MCM D题:分析社会上性别和种族歧视。

1997年 MCM C题:分析为什么珊瑚礁的污染问题比林区污染问题显得更为严重。

2002年 MCM A题:研究货轮舱位的装载问题,最大化收益同时保证船上货物负荷均衡。

2006年 MCM A题:建立模型研究地球大气环境中的水循环,探究人类活动对水循环的影响。

2010年 MCM A题:分析美国电力网络的可靠性,研究如何在自然灾害和人为故障的情况下使电力网络正常运作。

2014年 MCM A题:分析对于Fermi问题和经济增长的数学建模,探究经济增长的限制因素和未来发展趋势。

2018年 MCM A题:研究美国国家公园的野生动植物种类和数量变化,确定如何平衡保护野生动植物和国家公园的多个目的。

从这些题目中可以看出,MCM/ICM的竞赛内容涵盖了众多领域,如管理学、环保、气象、物流、生物学等等。

这不仅考验了参赛选手的数学建模水平,更需要他们具备良好的跨学科素养。

正是这种多学科交叉融合的特性,使得MCM/ICM成为了培养未来数学、理工科人才的重要平台之一。

美国数学建模竞赛题目(1985--2009年)

美国数学建模竞赛题目(1985--2009年)

美国数学建模竞赛题目1985年:A题:动物群体的管理B题:战略物资储备的管理问题1986年:A题:海底地型测量问题B题:应急设施的优化选址问题1987年:A题:堆盐问题(盐堆稳定性问题)B题:停车场安排问题1988年:A题:确定毒品走私船位置B题:平板列车车厢的优化装载1989年:A题:蠓虫识别问题;最佳分类与隔离B题:飞机排队模型1990年:A题:脑中多巴胺的分布B题:铲雪车的路径与效率问题1991年:A题:估计水塔的水流量B题:通信网络费用问题1992年:A题:雷达系统的功率与设计式样B题:紧急修复系统的研制1993年:A题:堆肥问题B题:煤炭装卸场的最优操作1994年:A题:保温房屋设计问题B题:计算机网络的最小接通时间1996年:A题:大型水下物体的探测B题:快速遴选优胜者问题1997年:A题:恐龙捕食问题B题:会议混合安排问题1998年:A题:MRI图象处理问题B题:分数贬值问题1999年:A题:小星体撞击地球问题B题:公用设施的合法容量问题C题:确定环境污染的物质、位置、数量和时间的问题2000年:A题:空间交通管制B题:无线电信道分配C题:大象群落的兴衰2001年:A题:选择自行车车轮B题:逃避飓风怒吼C题:我们的水系-不确定的前景2002年:A题:风和喷水池B题:航空公司超员订票C题:如果我们过分扫荡自己的土地,将会失去各种各样的蜥蜴。

2003年:A题:特技演员B题:Gamma刀治疗方案C题:航空行李的扫描对策2004年:A题:指纹是独一无二的吗?B题:更快的快通系统C题:安全与否?2005年:A题:flood planningB题:tollboothsC题: Nonrenewable Resources2006年:A题:Positioning and Moving SprinklerSystems for IrrigationB题:Wheel Chair Access at AirportsC题:Trade-offs in the fight againstHIV/AIDS2007年:A题:GerrymanderingB题:The Airplane Seating ProblemC题:Organ Transplant: The Kidney Exchange Problem2008年:A题:Take a BathB题:Creating Sudoku PuzzlesC题:Finding the Good in Health Care Systems2009年:A题:Designing a Traffic CircleB题:Energy and the Cell PhoneC题:Creating Food Systems: Re-Balancing Human-Influenced Ecosystems。

美赛历年题目_pdf

美赛历年题目_pdf

马剑整理历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理 (3)MCM85问题-B 战购物资储备的管理 (3)MCM86问题-A 水道测量数据 (4)MCM86问题-B 应急设施的位置 (4)MCM87问题-A 盐的存贮 (5)MCM87问题-B 停车场 (5)MCM88问题-A 确定毒品走私船的位置 (5)MCM88问题-B 两辆铁路平板车的装货问题 (6)MCM89问题-A 蠓的分类 (6)MCM89问题-B 飞机排队 (6)MCM90-A 药物在脑内的分布 (6)MCM90问题-B 扫雪问题 (7)MCM91问题-B 通讯网络的极小生成树 (7)MCM 91问题-A 估计水塔的水流量 (7)MCM92问题-A 空中交通控制雷达的功率问题 (7)MCM 92问题-B 应急电力修复系统的修复计划 (7)MCM93问题-A 加速餐厅剩菜堆肥的生成 (8)MCM93问题-B 倒煤台的操作方案 (8)MCM94问题-A 住宅的保温 (9)MCM 94问题-B 计算机网络的最短传输时间 (9)MCM-95问题-A 单一螺旋线 (10)MCM95题-B A1uacha Balaclava学院 (10)MCM96问题-A 噪音场中潜艇的探测 (11)MCM96问题-B 竞赛评判问题 (11)MCM97问题-A Velociraptor(疾走龙属)问题 (11)MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (12)MCM98问题-A 磁共振成像扫描仪 (12)MCM98问题-B 成绩给分的通胀 (13)MCM99问题-A 大碰撞 (13)MCM99问题-B “非法”聚会 (14)MCM2000问题-A空间交通管制 (14)MCM2000问题-B: 无线电信道分配 (14)MCM2001问题- A: 选择自行车车轮 (15)MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15)MCM2001问题-C我们的水系-不确定的前景 (16)MCM2002问题-A风和喷水池 (16)MCM2002问题-B航空公司超员订票 (16)MCM2002问题-C (16)MCM2003问题-A: 特技演员 (18)MCM2003问题-B: Gamma刀治疗方案 (18)MCM2003问题-C航空行李的扫描对策 (19)MCM2004问题-A:指纹是独一无二的吗? (19)MCM2004问题-B:更快的快通系统 (19)MCM2004问题-C安全与否? (19)MCM2005问题A.水灾计划 (19)MCM2005B.Tollbooths (19)MCM2005问题C:不可再生的资源 (20)MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度 (20)MCM2006问题B: 通过机场的轮椅 (20)MCM2006问题C : 抗击艾滋病的协调 (21)MCM2007问题B :飞机就座问题 (24)MCM2007问题C:器官移植:肾交换问题 (24)MCM2008问题A:给大陆洗个澡 (28)MCM2008问题B:建立数独拼图游戏 (28)MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。

2024数学建模美赛c题

2024数学建模美赛c题

2024数学建模美赛c题
2024年美国大学生数学建模竞赛C题是关于网球中的动量的问题。

该题目
要求参赛者探讨网球中的动量,以及动量如何影响网球的弹跳和飞行。

该题目提供了一些数据,包括不同速度和重量的网球的弹跳高度和飞行距离。

参赛者需要使用这些数据来建立数学模型,以解释动量如何影响网球的弹跳和飞行。

在建立模型的过程中,可以使用不同的数学工具和软件,例如Python、Matlab、Excel等。

在解释数据时,可以使用回归分析、统计分析、机器学习等方法。

最后,参赛者需要将建立的模型应用于实际情境中,例如在网球比赛中如何使用动量来提高击球效果。

同时,还需要回答题目中提出的问题,例如“为什么动量对网球的弹跳和飞行有影响?”、“如何利用动量来提高网球比赛的表现?”等。

总之,2024年美国大学生数学建模竞赛C题是一个有趣且具有挑战性的问题,需要参赛者具备扎实的数学基础和良好的数据分析能力。

[参考]数学建模美国赛1992ab

[参考]数学建模美国赛1992ab

AMCM92问题-A 空中交通控制雷达的功率问题要求你决定一个主要城市的机场的空中交通控制雷达发射的功率。

机场行政部门希望兼顾安全性与经济性使雷达的发射功率最小。

机场行政部门限于使用现有的天线和接收线路。

唯一可以考虑的选择是改进雷达的发射电路使雷达更强大。

你要回答的问题是雷达必须发射多少功率(以瓦特为单位)反以保证能探测到100公里以内的标准客机。

技术说明:①雷达天线是一个旋转抛物面的一部分,该抛物面的焦距又1米。

它投影至与顶点相同的平面是一个长轴为6米,短轴为2米的椭圆。

从焦点发出的主能量柬是一个椭圆锥,其长轴角为1弧度,短轴角为50毫弧度。

天线和能量束的简图如图92A-1所示。

②理想化的一类飞机是具有75平方米完全雷达反射截面团飞机,亦即在你的初米的小心位于天线轴线上并垂直于该轴的100%反步模型中飞机等价于一个752射圆碟,你亦可以考虑其它模型或改进这个模型。

③接收线路的灵敏度是雷达天线反馈报警器(位于雷达天线的焦点)刘10微瓦的回波信号会作出反应。

AMCM 92问题-B 应急电力修复系统的修复计划为沿海地区服务的电力公司必须具备应急系统来处理风暴引起的电力中断。

这样的系统需要由估计的修复时间和费用与由客观准则判定的停电的“价值”构成的数据输入,过去HECO电力公司曾因缺乏优先方案而遭受传播媒介的批评。

设想你是HECO电力公司顾问。

HECO具有一个实时处理的,通常包含下述信息的服务电话的计算机数据库:报修时间;需求者类型;估计受害人数;地点(X,Y)。

有两个工程队调度所,分别位于(0,0)和(40,40),其中x, y以英里为单位。

HECO的服务区域在-65<x<65和-50<y<50之内。

因为该地区完全都市化了,有极好的道路网络。

工程队只是在上班和下班时必须回调度所。

公司的政策是:若停电的设施是铁路或医院,只要有工程队可派就立即处理,其他情形都要等暴风雨离开这一地区后才开始工作。

HECO请你为表92B-1所列的暴风雨修复请求和表92B-2所列的维修能力建立客观准则和安排工作计划。

数学建模美赛题目及翻译

数学建模美赛题目及翻译

PROBLEM A: The Keep-Right-Except-To-Pass Rule The Keep-Right-Except-To-Pass RuleIn countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane.Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important.In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirementsbe needed.Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system – either part ofthe road network or imbedded in the design of all vehicles using the roadway – to what extent would this change the results ofyour earlier analysis?问题A :除非超车否则靠右行驶的交通规则在一些汽车靠右行驶的国家(比如美国,中国等等),多车道的高速公路常常遵循以下原则:司机必须在最右侧驾驶,除非他们正在超车,超车时必须先移到左侧车道在超车后再返回。

数学建模美赛题

数学建模美赛题

2005A.水灾计划
南卡罗来纳州中部的磨累河是由北部的一个巨大水坝形成的,这是在1930年为了发电而修建的,模拟一起洪水淹没下游的事件,这起事件是由于一次灾难性的地震损毁了水坝造成的。

两个问题:
Rawls Creek是水坝下游流入Saluda河的一条终年流动的河流,则当水坝损毁后在Rawls Creek将会出现多大的洪流,洪水的波及面将有多大?
S.C.国会大厦大楼在一座小山上,在S.C.国会大厦大楼能俯视Congaree 河。

洪水能如此巨大顺流以致于水将扩展到S.C.国会大厦大楼吗?
2005B.Tollbooths(收费亭)
像Garden State Parkway,Interstate 95等等这样的长途收费公路,通常是多行道的,被分成几条高速公路,在这些高速公路上每隔一定的间隔会设立一个通行税收费广场。

因为征收通行税通常不受欢迎,所以
应该尽量减少通过通行税收费广场引起的交通混乱给汽车司机带来的烦恼。

通常,收费亭的数量要多于进入收费广场的道路的数量。

进入通行税收费广场的时候,流到大量收费亭的车辆呈扇形展开,当离开通行税收费广场的时候,车流将只能按照收费广场前行车道路的数量排队按次序通过!从而,当交通是拥挤的时,拥挤在违背通行税广场上增加。

当交通非常拥挤的时候,因为每车辆付通行费的时间要求,阻塞也会出现在通行税收费广场入口处。

建立一个模型来确定在一个容易造成阻塞的通行税收费广场中应该部署的最优的收费亭的数量。

需要保证每一个进入收费广场的交通线路上都仅有一个收费亭。

与当今的实践相比较,在什么条件下这或多或少有效?
注意:"最佳"的定义由你自己决定。

2020年数学建模美赛题目

2020年数学建模美赛题目

2020年数学建模美赛题目
1. 题目A,关于空中交通的问题,要求参赛者利用数学建模方法对航班的轨迹进行优化,以减少飞行时间和燃料消耗。

2. 题目B,关于林业管理的问题,要求参赛者利用数学建模方法对森林资源的管理和可持续利用进行分析和优化。

3. 题目C,关于自然灾害的问题,要求参赛者利用数学建模方法对地震后的救援物资调度进行优化,以提高救援效率。

每个题目都提供了大量的背景资料和数据,参赛者需要根据所提供的信息,结合数学建模理论和方法,进行问题分析、模型建立和求解,最终撰写一份完整的数学建模报告。

这些题目涉及到了航空、林业和灾害管理等不同领域,要求参赛者具备跨学科的综合能力和创新思维。

每个题目都有其独特的挑战和难点,参赛者需要全面理解问题背景,合理假设模型,运用数学工具进行分析,并给出切实可行的解决方案。

这些题目不仅考察了参赛者的数学建模能力,还要求他们具备对实际问题的深刻理解和解决问题的能力。

数学建模美国赛历年试题.

数学建模美国赛历年试题.

历年美国大学生数学建模赛题目录MCM85问题-A 动物群体的管理 (3)MCM85问题-B 战购物资储备的管理 (3)MCM86问题-A 水道测量数据 (4)MCM86问题-B 应急设施的位置 (4)MCM87问题-A 盐的存贮 (4)MCM87问题-B 停车场 (5)MCM88问题-A 确定毒品走私船的位置 (5)MCM88问题-B 两辆铁路平板车的装货问题 (5)MCM89问题-A 蠓的分类 (5)MCM89问题-B 飞机排队 (6)MCM90-A 药物在脑内的分布 (6)MCM90问题-B 扫雪问题 (6)MCM91问题-B 通讯网络的极小生成树 (6)MCM 91问题-A 估计水塔的水流量 (7)MCM92问题-A 空中交通控制雷达的功率问题 (7)MCM 92问题-B 应急电力修复系统的修复计划 (7)MCM93问题-A 加速餐厅剩菜堆肥的生成 (7)MCM93问题-B 倒煤台的操作方案 (8)MCM94问题-A 住宅的保温 (8)MCM 94问题-B 计算机网络的最短传输时间 (9)MCM-95问题-A 单一螺旋线 (9)MCM95题-B A1uacha Balaclava学院 (10)MCM96问题-A 噪音场中潜艇的探测 (10)MCM96问题-B 竞赛评判问题 (10)MCM97问题-A Velociraptor(疾走龙属)问题 (11)MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (11)MCM98问题-A 磁共振成像扫描仪 (12)MCM98问题-B 成绩给分的通胀 (13)MCM99问题-A 大碰撞 (13)MCM99问题-B “非法”聚会 (13)MCM2000问题-A空间交通管制 (13)MCM2000问题-B: 无线电信道分配 (14)MCM2001问题- A: 选择自行车车轮 (14)MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15)MCM2001问题-C我们的水系-不确定的前景 (15)MCM2002问题-A风和喷水池 (15)MCM2002问题-B航空公司超员订票 (16)MCM2002问题-C (16)MCM2003问题-A: 特技演员 (17)MCM2003问题-B: Gamma刀治疗方案 (18)MCM2003问题-C航空行李的扫描对策 (18)MCM2004问题-A:指纹是独一无二的吗? (18)MCM2004问题-B:更快的快通系统 (18)MCM2004问题-C安全与否? (19)MCM2005问题A.水灾计划 (19)MCM2005B.Tollbooths (19)MCM2005问题C:不可再生的资源 (20)MCM2006问题A: 用于灌溉的自动洒水器的安置和移动调度 (20)MCM2006问题B: 通过机场的轮椅 (20)MCM2006问题C : 抗击艾滋病的协调 (21)MCM2008问题A:给大陆洗个澡 (23)MCM2008问题B:建立数独拼图游戏 (23)MCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。

2021数学建模美赛题目

2021数学建模美赛题目

2021数学建模美赛题目摘要:一、引言1.介绍2021 年数学建模美赛2.分析赛题的多样性和挑战性3.强调数学建模在解决实际问题中的重要性二、2021 数学建模美赛题目概述1.A 题:新冠病毒传播的模型和控制策略2.B 题:航空公司的收益管理问题3.C 题:交通拥堵问题4.D 题:机器学习中的数据不平衡问题5.E 题:绿色供应链管理三、题目详细分析1.A 题:新冠病毒传播的模型和控制策略a.问题背景和挑战b.关键建模思路c.可能的解决方案2.B 题:航空公司的收益管理问题a.问题背景和挑战b.关键建模思路c.可能的解决方案3.C 题:交通拥堵问题a.问题背景和挑战b.关键建模思路c.可能的解决方案4.D 题:机器学习中的数据不平衡问题a.问题背景和挑战b.关键建模思路c.可能的解决方案5.E 题:绿色供应链管理a.问题背景和挑战b.关键建模思路c.可能的解决方案四、结论1.总结2021 数学建模美赛题目的特点2.强调数学建模在解决实际问题中的重要性3.对参赛者的建议和期待正文:一、引言2021 年数学建模美赛如约而至,为广大数学建模爱好者带来了一场思维的盛宴。

本届赛题涵盖了多个领域,既有新冠病毒传播的模型和控制策略,也有航空公司的收益管理问题,交通拥堵、机器学习中的数据不平衡问题和绿色供应链管理。

这些题目既具有现实意义,又具有挑战性,充分体现了数学建模在解决实际问题中的重要性。

二、2021 数学建模美赛题目概述本届数学建模美赛共有五个题目,分别是:1.A 题:新冠病毒传播的模型和控制策略2.B 题:航空公司的收益管理问题3.C 题:交通拥堵问题4.D 题:机器学习中的数据不平衡问题5.E 题:绿色供应链管理三、题目详细分析1.A 题:新冠病毒传播的模型和控制策略a.问题背景和挑战:新冠病毒的传播给全球带来了严重的公共卫生危机。

预测病毒传播、评估控制策略的有效性是解决这一问题的关键。

本题要求建立新冠病毒传播模型,分析控制策略对疫情发展的影响。

美国数学建模比赛历年试题

美国数学建模比赛历年试题

1985~2014年美国大学生数学建模竞赛题目集锦目录1985 MCM A: Animal Populations (3)1985 MCM B: Strategic Reserve Management (3)1986 MCM A: Hydrographic Data (4)1986 MCM B: Emergency-Facilities Location (4)1987 MCM A: The Salt Storage Problem (5)1987 MCM B: Parking Lot Design (5)1988 MCM A: The Drug Runner Problem (5)1988 MCM B: Packing Railroad Flatcars (6)1989 MCM A: The Midge Classification Problem (6)1989 MCM B: Aircraft Queueing (6)1990 MCM A: The Brain-Drug Problem (7)1990 MCM B: Snowplow Routing (8)1991 MCM A: Water Tank Flow (8)1991 MCM B: The Steiner Tree Problem (8)1992 MCM A: Air-Traffic-Control Radar Power (9)1992 MCM B: Emergency Power Restoration (9)1993 MCM A: Optimal Composting (11)1993 MCM B: Coal-Tipple Operations (12)1994 MCM A: Concrete Slab Floors (12)1994 MCM B: Network Design (13)1995 MCM A: Helix Construction (14)1995 MCM B: Faculty Compensation (14)1996 MCM A: Submarine Tracking (14)1996 MCM B: Paper Judging (14)1997 MCM A: The Velociraptor Problem (15)1997 MCM B: Mix Well for Fruitful Discussions (16)1998 MCM A: MRI Scanners (17)1998 MCM B: Grade Inflation (18)1999 MCM A: Deep Impact (19)1999 MCM B: Unlawful Assembly (20)2000 MCM A: Air Traffic Control (20)2000 MCM B: Radio Channel Assignments (21)2001 MCM A: Choosing a Bicycle Wheel (22)2001 MCM B: Escaping a Hurricane's Wrath (An Ill Wind...) .. (23)2002 MCM A: Wind and Waterspray (25)2002 MCM B: Airline Overbooking (26)2003 MCM A: The Stunt Person (26)2003 MCM B: Gamma Knife Treatment Planning (27)2004 MCM A: Are Fingerprints Unique? (28)2004 MCM B: A Faster QuickPass System (28)2005 MCM A: Flood Planning (29)2005 MCM B: Tollbooths (29)2006 MCM A: Positioning and Moving Sprinkler Systems for Irrigation.. 29 2006 MCM B: Wheel Chair Access at Airports (30)2007 MCM A: Gerrymandering (31)2007 MCM B: The Airplane Seating Problem (32)2008 MCM A: Take a Bath (32)2008 MCM B: Creating Sudoku Puzzles (33)2009 MCM A: Designing a Traffic Circle (33)2009 MCM B: Energy and the Cell Phone (33)2010 MCM A: The Sweet Spot (35)2010 MCM B: Criminology (35)2011 MCM A: Snowboard Course (36)2011 MCM B: Repeater Coordination (36)2012 MCM A: The Leaves of a Tree (37)2012 MCM B: Camping along the Big Long River (37)2013 MCM A: The Ultimate Brownie Pan (38)2013 MCM B: Water, Water, Everywhere (38)2014 MCM A:The Keep-Right-Except-To-Pass Rule (39)2014 MCM B:College Coaching Legends (39)1985 MCM A: Animal PopulationsChoose a fish or mammal for which appropriate data are available to model it accurately. Model the animal's natural interactions with its environment by expressing population levels of different groups in terms of the significant parameters of the environment. Then adjust the model to account for harvesting in a form consistent with the actual method by which the animal is harvested. Include any outside constraints imposed by food or space limitations that are supported by the data.Consider the value of the various quantities involved, the number harvested, and the population size itself, in order to devise a numerical quantity that represents the overall value of the harvest. Find a harvesting policy in terms of population size and time that optimizes the value of the harvest over a long period of time. Check that the policy optimizes that value over a realistic range of environmental conditions.1985 MCM B: Strategic Reserve ManagementCobalt, which is not produced in the US, is essential to a number of industries. (Defense accounted for 17% of the cobalt production in 1979.) Most cobalt comes from central Africa, a politically unstable region. The Strategic and Critical Materials Stockpiling Act of 1946 requires a cobalt reserve that will carry the US through a three-year war. The government built up a stockpile in the 1950s, sold most of it off in the early 1970s, and then decided to build it up again in the late 1970s, with a stockpile goal of 85.4 million pounds. About half of this stockpile had been acquired by 1982.Build a mathematical model for managing a stockpile of the strategic metal cobalt. You will need to consider such questions as:▪How big should the stockpile be?▪At what rate should it be acquired?▪What is a reasonable price to pay for the metal?You will also want to consider such questions as:▪At what point should the stockpile be drawn down?▪At what rate should it be drawn down?▪At what price is it reasonable to sell the metal?▪How should it be allocated?Useful Information on CobaltThe government has projected a need ot 25 million pounds of cobalt in 1985.The U.S. has about 100 million pounds of proven cobalt deposits. Production becomes economically feasible when the price reaches $22/lb (as occurred in 1981). It takes four years to get operations rolling, and thsn six million pounds per year can be produced.In 1980, 1.2 million pounds of cobalt were recycled, 7% of total consumption.1986 MCM A: Hydrographic DataThe table below gives the depth Z of water in feet for surface points with rectangular coordinates X, Y in yards [table of 14 data points omitted]. The depth measurements were taken at low tide. Your ship has a draft of five feet. What region should you avoid within the rectangle (75,200) x (-50, 150)?The township of Rio Rancho has hitherto not had its own emergency facilities. It has secured funds to erect two emergency facilities in 1986, each of which will combine ambulance, fire, and police services. Figure 1 indicates the demand [figure omitted], or number of emergencies per square block, for 1985. The ―L‖ region in the north is an obstacle, while the rectangle in the south is a part with shallow pond. It takes an emergency vehicle an average of 15 seconds to go one block in the N-S direction and 20 seconds in the E-Wdirection. Your task is to locate the two facilities so as to minimize the total response time.▪Assume that the demand is concentrated at the center of the block and that the facilities will be located on corners.▪Assume that the demand is uniformly distributed on the streets bordering each block and that the facilities may be located anywhere on the streets.1987 MCM A: The Salt Storage ProblemFor approximately 15 years, a Midwestern state has stored salt used on roads in the winter in circular domes. Figure 1 shows how salt has been stored in the past. The salt is brought into and removed from the domes by driving front-end loaders up ramps of salt leading into the domes. The salt is piled 25 to 30 ft high, using the buckets on the front-end loaders.Recently, a panel determined that this practice is unsafe. If the front-end loader gets too close to the edge of the salt pile, the salt might shift, and the loader could be thrown against the retaining walls that reinforce the dome. The panel recommended that if the salt is to be piled with the use of the loaders, then the piles should be restricted to a matimum height of 15 ft.Construct a mathematical model for this situation and find a recommended maximum height for salt in the domes.1987 MCM B: Parking Lot DesignThe owner of a paved, 100' by 200' , corner parking lot in a New England town hires you to design the layout, that is, to design how the ``lines are to be painted. You realize that squeezing as many cars into the lot as possible leads to right-angle parking with the cars aligned side by side. However, inexperienced drivers have difficulty parking their cars this way, which can give rise to expensive insurance claims. To reduce the likelihood of damage to parked vehicles, the owner might then have to hire expert drivers for ``valet parking. On the other hand, most drivers seem to have little difficulty in parking in one attempt if there is a large enough ``turning radius'' from the access lane. Of course, the wider the access lane, the fewer cars can be accommodated in the lot, leading to less revenue for the parking lot owner.1988 MCM A: The Drug Runner ProblemTwo listening posts 5.43 miles apart pick up a brief radio signal. The sensing devices were oriented at 110 degrees and 119 degrees, respectively, when the signal was detected; and they are accurate to within 2 degrees. The signalcame from a region of active drug exchange, and it is inferred that there is a powerboat waiting for someone to pick up drugs. it is dusk, the weather is calm, and there are no currents. A small helicopter leaves from Post 1 and is able to fly accurately along the 110 degree angle direction. The helicopter's speed is three times the speed of the boat. The helicopter will be heard when it gets within 500 ft of the boat. This helicopter has only one detection device, a searchlight. At 200 ft, it can just illuminate a circular region with a radius of 25 ft.▪Develop an optimal search method for the helicopter.▪Use a 95% confidence level in your calculations.1988 MCM B: Packing Railroad FlatcarsTwo railroad flatcars are to be loaded with seven types of packing crates. The crates have the same width and height but varying thickness (t, in cm) and weight (w, in kg). Table 1 gives, for each crate, the thickness, weight, and number available [table omitted]. Each car has 10.2 meters of length available for packing the crates (like slices of toast) and can carry up to 40 metric tons. There is a special constraint on the total number of C_5, C_6, and C_7 crates because of a subsequent local trucking restriction: The total space (thickness) occupied by these crates must not exceed 302.7 cm. Load the two flatcars (see Figure 1) so as to minimize the wasted floor space [figure omitted].1989 MCM A: The Midge Classification ProblemTwo species of midges, Af and Apf, have been identified by biologists Grogan and Wirth on the basis of antenna and wing length (see Figure 1). It is important to be able to classify a specimen as Af of Apf, given the antenna and wing length.1. Given a midge that you know is species Af or Apf, how would you goabout classifying it?2. Apply your method to three specimens with (antenna, wing) lengths(1.24,1.80),(1.28,1.84),(1.40,2.04).3. Assume that the species is a valuable pollinator and species Apf is acarrier of a debilitating disease. Would you modify your classificationscheme and if so, how?1989 MCM B: Aircraft QueueingA common procedure at airports is to assign aircraft (A/C) to runways on afirst-come-first-served basis. That is, as soon as an A/C is ready to leave the gate (―push-back‖), the pilot calls ground control and is added to the queue. Suppose that a control tower has access to a fast online database with the following information for each A/C:▪the time it is scheduled for pushback;▪the time it actually pushes back; the number of passengers who are scheduled to make a connection at the next stop, as well as the time to make that connection; and▪the schedule time of arrival at its next stop Assume that there are seven types of A/C with passenger capacities varying from 100 to 400 in steps of50. Develop and analyze a mathematical model that takes into accountboth the travelers' and airlines' satisfaction.1990 MCM A: The Brain-Drug ProblemResearches on brain disorders test the effects of the new medical drugs – for example, dopamine against Parkinson's disease – with intracerebral injections. To this end, they must estimate the size and the sape of the spatial distribution of the drug after the injection, in order to estimate accurately the region of the brain that the drug has affected.The research data consist of the measurements of the amounts of drug in each of 50 cylindrical tissue samples (see Figure 1 and Table 1). Each cylinder has length 0.76 mm and diameter 0.66 mm. The centers of the parallel cylinders lie on a grid with mesh 1mm X 0.76mm X 1mm, so that the sylinders touch one another on their circular bases but not along their sides, as shown in the accompanying figure. The injection was made near the center of the cylinder with the highest scintillation count. Naturally, one expects that there is a drug also between the cylinders and outside the region covered by the samples.Estimate the distribution in the region affected by the drug.One unit represents a scintillation count, or 4.753e-13 mole of dopamine. For example, the table shows that the middle rear sylinder contails 28353 units. Table 1. Amounts of drug in each of 50 cylindrical tissue samples.Rear vertical sectionThe solid lines of the map (see Figure 1) represent paved two-lane county roads in a snow removal district in Wicomico County, Maryland [figure omitted]. The broken lines are state highways. After a snowfall, two plow-trucks are dispatched from a garage that is about 4 miles west of each of the two points (*) marked on the map. Find an efficient way to use the two trucks to sweep snow from the county roads. The trucks may use the state highways to access the county roads. Assume that the trucks neither break down nor get stuck and that the road intersections require no special plowing techniques.1991 MCM A: Water Tank FlowSome state water-right agencies require from communities data on the rate of water use, in gallons per hour, and the total amount of water used each day. Many communities do not have equipment to measure the flow of water in or out of the municipal tank. Instead, they can measure only the level of water in the tank, within 0.5% accuracy, every hour. More importantly, whenever the level in the tank drops below some minimum level L, a pump fills the tank up to the maximum level, H; however, there is no measurement of the pump flow either. Thus, one cannot readily relate the level in the tank to the amount of water used while the pump is working, which occurs once or twice per day, for a couple of hours each time. Estimate the flow out of the tank f(t) at all times, even when the pump is working, and estimate the total amount of water used during the day. Table 1 gives real data, from an actual small town, for oneday[ table omitted]. The table gives the time, in, since the first measurement, and the level of water in the tank, in hundredths of a foot. For example, after 3316 seconds, the depth of water in the tank reached 31.10 feet. The tank is a vertical circular cylinder, with a height of 40 feet and a diameter of 57 feet. Usually, the pump starts filling the tank when the level drops to about 27.00 feet, and the pump stops when the level rises back to about 35.50 feet.1991 MCM B: The Steiner Tree ProblemThe cost for a communication line between two stations is proportional to the length of the line. The cost for conventional minimal spanning trees of a set of stations can often be cut by introducing ―phantom‖ stations and then constructing a new Steiner tree. This device allows costs to be cut by up to13.4% (= 1- sqrt(3/4)). Moreover, a network with n stations never requires more than n-2 points to construct the cheapest Steiner tree. Two simple cases are shown in Figure 1.For local networks, it often is necessary to use rectilinear or ―checker-board‖ distances, instead of straight Euclidean lines. Distances in this metric are computed as shown in Figure 2.Suppose you wish to design a minimum costs spanning tree for a local network with 9 stations. Their rectangular coordinates are: a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0) i(10,3). You are restricted to using rectiline ar lines. Moreover, all ―phantom‖ stations must be located at lattice points (i.e., the coordinates must be integers). The cost for each line is its length.1. Find a minimal cost tree for the network.2. Suppose each stations has a cost w*d^(3/2), where d=degree of thestation. If w=1.2, find a minimal cost tree.3. Try to generalize this problem1992 MCM A: Air-Traffic-Control Radar PowerYou are to determine the power to be radiated by an air-traffic-control radar at a major metropolitan airport. The airport authority wants to minimize the power of the radar consistent with safety and cost. The authority is constrained to operate with its existing antennae and receiver circuitry. The only option that they are considering is upgrading the transmitter circuits to make the radar more powerful. The question that you are to answer is what power (in watts) must be released by the radar to ensure detection of standard passenger aircraft at a distance of 100 kilometers.1992 MCM B: Emergency Power RestorationPower companies serving coastal regions must have emergency response systems for power outages due to storms. Such systems require the input of data that allow the time and cost required for restoration to be estimated and the ―value‖ of the outage judged by objective criteria. In the past, Hypothetical Electric Company (HECO) has been criticized in the media for its lack of a prioritization scheme.You are a consultant to HECO power company. HECO possesses a computerized database with real time access to service calls that currently require the following information:▪time of report,▪type of requestor,▪estimated number of people affected, and▪location (x,y).Cre sites are located at coordinates (0,0) and (40,40), where x and y are in miles. The region serviced by HECO is within -65 < x < 60 and -50 < y < 50. The region is largely metropolitan with an excellent road network. Crews must return to their dispatch site only at the beginning and end of shift. Company policy requires that no work be initiated until the storm leaves the area, unless the facility is a commuter railroad or hospital, which may be processed immediately if crews are available.HECO has hired you to develop the objective criteria and schedule the work for the storm restoration requirements listed in Table 1 using their work force described in Table 2. Note that the first call was received at 4:20 A.M. and that the storm left the area at 6:00 A.M. Also note that many outages were not reported until much later in the day.HECO has asked for a technical rep ort for their purposes and an ―executive summary‖ in laymen's terms that can be presented to the media. Further, they would like recommendations for the future. To determine your prioritized scheduling system, you will have to make additional assumptions. Detail those assumptions. In the future, you may desire additional data. If so, detail the information desired.Table 1. Storm restoration requirements. (table incomplete)An environmentally conscious institutional cafeteria is recycling customers' uneaten food into compost by means of microorganisms. Each day, the cafeteria blends the leftover food into a slurry, mixes the slurry with crisp salad wastes from the kitchen and a small amount of shredded newspaper, and feeds the resulting mixture to a culture of fungi and soil bacteria, which digest slurry, greens, and papers into usable compost. The crisp green provide pockets of oxygen for the fungi culture, and the paper absorbs excess humidity. At times, however, the fungi culture is unable or unwilling to digest as much of the leftovers as customers leave; the cafeteria does not blame the chef for the fungi culture's lack of appetite. Also, the cafeteria has received offers for the purchase of large quantities of it compost. Therefore, the cafeteria is investigating ways to increase its production of compost. Since it cannot yet afford to build a new composting facility, the cafeteria seeks methods to accelerate the fungi culture's activity, for instance, by optimizing the fungi culture's environment (currently held at about 120 F and 100% humidity), or by optimizing the composition of the moisture fed to the fungi culture, or both. Determine whether any relation exists between the proportions of slurry, greens, and paper in the mixture fed to the fungi culture, and the rate at which the fungi culture composts the mixture. if no relation exists, state so. otherwise, determine what proportions would accelerate the fungi culture's activity. In addition to the technical report following the format prescribed in the contest instructions, provide a one-page nontechnical recommendation forimplementation for the cafeteria manager. Table 1 shows the composition of various mixtures in pounds of each ingredient kept in separate bins, and the time that it took the fungi to culture to compost the mixtures, from the date fed to the date completely composted [table omitted].1993 MCM B: Coal-Tipple OperationsThe Aspen-Boulder Coal Company runs a loading facility consisting of a large coal tipple. When the coal trains arrive, they are loaded from the tipple. The standard coal train takes 3 hours to load, and the tipple's capacity is 1.5 standard trainloads of coal. Each day, the railroad sends three standard trains to the loading facility, and they arrive at any time between 5 A.M. and 8 P.M. local time. Each of the trains has three engines. If a train arrives and sits idle while waiting to be loaded, the railroad charges a special fee, called a demurrage. The fee is $5,000 per engine per hour. In addition, a high-capacity train arrives once a week every Thursday between 11 A.M. and 1 P.M. This special train has five engines and holds twice as much coal as a standard train. An empty tipple can be loaded directly from the mine to its capacity in six hours by a single loading crew. This crew (and its associated equipment) cost $9,000 per hour. A second crew can be called out to increase the loading rate by conducting an additional tipple-loading operation at the cost of $12,000 per hour. Because of safety requirements, during tipple loading no trains can be loaded. Whenever train loading is interrupted to load the tipple, demurrage charges are in effect.The management of the Coal Company has asked you to determine the expected annual costs of this tipple's loading operations. Your analysis should include the following considerations:▪How often should the second crew be called out?▪What are the expected monthly demurrage costs?▪If the standard trains could be scheduled to arrive at precise times, what daily schedule would minimize loading costs? Would a third tipple-loading crew at $12,000 per hour reduce annual operations costs?▪Can this tipple support a fourth standard train every day?1994 MCM A: Concrete Slab FloorsThe U.S. Dept. of Housing and Urban Development (HUD) is considering constructing dwellings of various sizes, ranging from individual houses to large apartment complexes. A principal concern is to minimize recurring costs to occupants, especially the costs of heating and cooling. The region in which the construction is to take place is temperate, with a moderate variation in temperature throughout the year.Through special construction techniques, HUD engineers can build dwellings that do not need to rely on convection- that is, there is no need to rely on opening doors or windows to assist in temperature variation. The dwellings will be single-story, with concrete slab floors as the only foundation. You have been hired as a consultant to analyze the temperature variation in the concrete slab floor to determine if the temperature averaged over the floor surface can be maintained within a prescribed comfort zone throughout the year. If so, what size/shape of slabs will permit this?Part 1, Floor Temperature: Consider the temperature variation in a concrete slab given that the ambient temperature varies daily within the ranges given Table 1. Assume that the high occurs at noon and the low at midnight. Determine if slabs can be designed to maintain a temperature averaged over the floor surface within the prescribed comfort zone considering radiation only. Initially, assume that the heat transfer into the dwelling is through the exposed perimeter of the slab and that the top and bottom of the slabs are insulated. Comment on the appropriateness and sensitivity of these assumptions. If you cannot find a solution that satisfies Table 1, can you find designs that satisfy a Table 1 that you propose?and extend the analysis to temperature variation within the single-story dwelling. Can the house be kept within the comfort zone?Part 3, Cost of Construction: Suggest a design that considers HUD's objective of reducing or eliminating heating and cooling costs, considering construction restrictions and costs.1994 MCM B: Network DesignIn your company, information is shared among departments on a daily basis. This information includes the previous day's sales statistics and current production guidance. It is important to get this information out as quickly as possible. [Network diagram (with 5 nodes and 7 capacitated edges) omitted.] We are interested in scheduling transfers in an optimal way to minimize the total time it takes to complete them all. This minimum total time is called the makespan. Consider the three following situations for your company: [Three more network diagrams (on roughly 20 nodes each) omitted.]1995 MCM A: Helix ConstructionA small biotechnological company must design, prove, program and test a mathematical algorithm to locate ―in real time‖ all the inter sections of a helix and a plane in general positions in space. Design, justify, program and test a method to compute all the intersections of a plane and a helix, both in general positions (at any locations and with any orientations) in space. A segment of the helix may represent, for example, a helicoidal suspension spring or a piece of tubing in a chemical or medical apparatus. Theoretical justification of the proposed algorithm is necessary to verify the solution from several points of view, for instance, through mathematical proofs of parts of the algorithm, and through tests of the final program with known examples. Such documentation and tests will be required by government agencies for medical use.1995 MCM B: Faculty CompensationAluacha Balaclava College, and undergraduate facility, has just hired a new Provost whose first priority is the institution of a fair and reasonablefaculty-compensation plan. She has hired your consulting team to design a compensation system that reflects the following circumstances and principles: [Three paragraphs of details omitted] Design a new pay system, first without cost-of-living increases. Incorporate cost-of-living increases, and then finally, design a transition process for current faculty that will move all salaries towards your system without reducing anyone's salary. The Provost requires a detailed compensation system plan for implementation, as well as a brief, clear, executive summary outlining the model, its assumptions, strengths, weaknesses and expected results, which she can present to the Board and faculty. [A detailed table of current salaries is omitted.]1996 MCM A: Submarine TrackingThe world's oceans contain an ambient noise field. Seismic disturbances, surface shipping, and marine mammals are sources that, in different frequency ranges, contribute to this field. We wish to consider how this ambient noise might be used to detect large maving objects, e.g., submarines located below the ocean surface. Assuming that a submarine makes no intrinsic noise, develop a method for detecting the presence of a moving submarine, its speed, its size, and its direction of travel, using only information obtained by measuring changes to the ambient noise field. Begin with noise at one fixed frequency and amplitude.1996 MCM B: Paper JudgingWhen determining the winner of a competition like the Mathematical Contest in Modeling, there are generally a large number of papers to judge. Let's say there are P=100 papers. A group of J judges is collected to accomplish the。

美国数学建模比赛历年试题

美国数学建模比赛历年试题

2003 MCM ProblemsPROBLEM A: The Stunt PersonAn exciting action scene in a movie is going to be filmed, and you are the stunt coordinator! A stunt person on a motorcycle will jump over an elephant and land in a pile of cardboard boxes to cushion their fall. You need to protect the stunt person, and also use relatively few cardboard boxes (lower cost, not seen by camera, etc.).Your job is to:•determine what size boxes to use•determine how many boxes to use•determine how the boxes will be stacked•determine if any modifications to the boxes would help•generalize to different bined weights (stunt person & motorcycle) and different jump heightsNote that, in "Tomorrow Never Dies", the James Bond character on a motorcycle jumps over a helicopter.PROBLEM B: Gamma Knife Treatment PlanningStereotactic radiosurgery delivers a single high dose of ionizing radiation to a radiographicallywell-defined, small intracranial 3D brain tumor without delivering any significant fraction of the prescribed dose to the surrounding brain tissue. Three modalities are monly used in this area; they are the gamma knife unit, heavy charged particle beams, and external high-energy photon beams from linear accelerators.The gamma knife unit delivers a single high dose of ionizing radiation emanating from 201 cobalt-60 unit sources through a heavy helmet. All 201 beams simultaneously intersect at the isocenter, resulting in a spherical (approximately) dose distribution at the effective dose levels. Irradiating the isocenter to deliver dose is termed a “shot.” Shots can be represented as different spheres. Four interchangeable outer collimator helmets with beam channel diameters of 4, 8, 14, and 18 mm are available for irradiating different size volumes. For a target volume larger than one shot, multiple shots can be used to cover the entire target. In practice, most target volumes are treated with 1 to 15 shots. The target volume is a bounded, three-dimensional digital image that usually consists of millions of points.The goal of radiosurgery is to deplete tumor cells while preserving normal structures. Since there are physical limitations and biological uncertainties involved in this therapy process, a treatment plan needs to account for all those limitations and uncertainties. In general, an optimal treatment plan is designed to meet the following requirements.1.Minimize the dose gradient across the target volume.2.Match specified isodose contours to the target volumes.3.Match specified dose-volume constraints of the target and critical organ.4.Minimize the integral dose to the entire volume of normal tissues or organs.5.Constrain dose to specified normal tissue points below tolerance doses.6.Minimize the maximum dose to critical volumes.In gamma unit treatment planning, we have the following constraints:1.Prohibit shots from protruding outside the target.2.Prohibit shots from overlapping (to avoid hot spots).3.Cover the target volume with effective dosage as much as possible. But at least 90% of thetarget volume must be covered by shots.e as few shots as possible.Your tasks are to formulate the optimal treatment planning for a gamma knife unit as a sphere-packing problem, and propose an algorithm to find a solution. While designing your algorithm, you must keep in mind that your algorithm must be reasonably efficient.2002 Contest ProblemsProblem AAuthors: Tjalling YpmaTitle: Wind and WatersprayAn ornamental fountain in a large open plaza surrounded by buildings squirts water high into the air. On gusty days, the wind blows spray from the fountain onto passersby. The water-flow from the fountain is controlled by a mechanism linked to an anemometer (which measures wind speed and direction) located on top of an adjacent building. The objective of this control is to provide passersby with an acceptable balance between an attractive spectacle and a soaking: The harder the wind blows, the lower the water volume and height to which the water is squirted, hence the less spray falls outside the pool area.Your task is to devise an algorithm which uses data provided by the anemometer to adjust the water-flow from the fountain as the wind conditions change.Problem BAuthors: Bill Fox and Rich WestTitle: Airline OverbookingYou're all packed and ready to go on a trip to visit your best friend in New York City. After you check in at the ticket counter, the airline clerk announces that your flight has been overbooked. Passengers need to check in immediately to determine if they still have a seat.Historically, airlines know that only a certain percentage of passengers who have made reservations on a particular flight will actually take that flight. Consequently, most airlines overbook-that is, they take more reservations than the capacity of the aircraft. Occasionally, more passengers will want to take a flight than the capacity of the plane leading to one or more passengers being bumped and thus unable to take the flight for which they had reservations.Airlines deal with bumped passengers in various ways. Some are given nothing, some are booked on later flights on other airlines, and some are given some kind of cash or airline ticket incentive.Consider the overbooking issue in light of the current situation:Less flights by airlines from point A to point BHeightened security at and around airportsPassengers' fearLoss of billions of dollars in revenue by airlines to dateBuild a mathematical model that examines the effects that different overbooking schemes have on the revenue received by an airline pany in order to find an optimal overbooking strategy, i.e., the number of people by which an airline should overbook a particular flight so that the pany's revenue is maximized. Insure that your model reflects the issues above, and consider alternatives for handling "bumped" passengers. Additionally, write a short memorandum to the airline's CEO summarizing your findings and analysis.MCM2000Problem A Air traffic ControlTo improve safety and reduce air traffic controller workload, the Federal Aviation Agency (FAA) is considering adding software to the air traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA r traffic control system that would automatically detect potential aircraft flight path conflicts and alert the controller. To that end, an analyst at the FAA has posed the following problemsRequirement A: Given two airplanes flying in space, when should the air traffic controller ld the air traffic controller consider the objects to be too close and to require intervention?Requirement B: An airspace sector is the section of three-dimensional airspace that one air traffic controller controls. Given any airspace sector, how we measure how plex it is from an air traffic workload perspective? To what extent is plexity determined by the number of we measure how plex it is from an air traffic workload perspective? To what extent is plexity determined by the number of aircraft simultaneously passing through that sector (1) at any one instant? (2) During any given interval of time? (3) During particular time of day? How does the number of potential conflicts arising during those periods affect plexity?Does the presence of additional software tools to automatically predict conflicts and alert the controller reduce or add to this plexity?In addition to the guidelines for your report, write a summary (no more than two pages) that the FAA analyst can present to Jane Garvey, the FAA Administrator, to defend your conclusionsProblem B Radio Channel AssignmentsWe seek to model the assignment of radio channels to a symmetric network of transmitter locations over a large planar area, so as to avoid interference. One basic approach is to partition the region into regular hexagons in a grid (honeyb-style), as shown in Figure 1, where a transmitter is located at the center of each hexagon.An interval of the frequency spectrum is to be allotted for transmitter frequencies. The interval will be divided into regularly spaced channels, which we represent by integers 1, 2, 3, ... . Each transmitter will be assigned one positive integer channel. The same channel can be used at many locations, provided that interference from nearby transmitters is avoided. Our goal is to minimize the width of the interval in the frequency spectrum that is needed to assign channels subject to some constraints. This is achieved with the concept of a span. The span is the minimum, over all assignments satisfying the constraints, of the largest channel used at any location. It is not required that every channel smaller than the span be used in an assignment that attains the span.Let s be the length of a side of one of the hexagons. We concentrate on the case that there are two levels of interferenceRequirement A: There are several constraints on frequency assignments. First, no two transmitters within distance of each other can be given the same channel. Second, due to spectral spreading, transmitters within distance 2s of each other must not be given the same or adjacent channels: Their channels must differ by at least 2. Under these constraints, what can we say about the span in,Requirement B: Repeat Requirement A, assuming the grid in the example spreads arbitrarily far in all directions.Requirement C: Repeat Requirements A and B, except assume now more generally that channels for transmitters within distance differ by at least some given integer k, while those at distance at most must still differ by at least one. What can we say about the span and about efficient strategies for designing assignments, as a function of k?Requirement D: Consider generalizations of the problem, such as several levels of interference or irregular transmitter placements. What other factors may be important to consider?Requirement E: Write an article (no more than 2 pages) for the local newspaper explaining your findingsMCM2000问题A 空间交通管制为加强安全并减少空中交通指挥员的工作量,联邦航空局(FAA)考虑对空中交通管制系统添加软件,以便自动探测飞行器飞行路线可能的冲突,并提醒指挥员。

(完整版)数学建模试卷(附答案)

(完整版)数学建模试卷(附答案)

2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。

二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。

(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。

(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。

2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。

随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。

后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。

谁料,DDT 同样杀死澳洲瓢虫。

结果,介壳虫增加起来,澳洲瓢虫反倒减少了。

试建立数学模型解释这个现象。

3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。

数学建模美赛题目

数学建模美赛题目

数学建模美赛题目近年来,数学建模比赛日益受到广泛关注。

作为一项基于数学模型的解决实际问题的比赛,数学建模能够训练我们的数学思维、问题解决能力和团队协作精神。

在众多数学建模比赛中,美国大学生数学建模竞赛(MCM)可以说是公认水平最高的一项,因其提供的题目丰富、难度适中而受到国内外数学爱好者和竞赛者的热烈追捧。

在此我们将就美赛数学建模竞赛中的题目特点和解题要领作一些总结,在帮助读者提高对美赛的认识和应对美赛的能力的同时,也能够为广大的数学建模爱好者和竞赛者提供参考和帮助。

题目类型美赛的题目类型非常多样化,主要包括:1. 算法类问题2. 统计类问题3. 数据分析类问题4. 优化类问题5. 编程类问题6. 经济、管理等类问题7. 物理、工程等类问题以上七个方面的题目覆盖了数学建模中的各个方面,体现了数学作为一门应用型学科的特点,也反映了实际问题的多样性和复杂性。

题目难度美赛的题目难度因题目而异,大部分题目在难度上都是中等偏难的,但也有不少比较容易的题目和一些非常难的题目(难度系数通常有C、M和I三级)。

根据我国参加美赛的团队的报告,在美赛中获得优秀成绩,至少需要解决一道C级难度的问题,并且需要在36小时内完成不少于两道题目的解答。

同样需要注意的是,实际参加美赛的过程与模拟训练中的情况很不一样,除了需要的专业知识和技能之外,更需要正确的应对策略和态度。

解题要领解题难度就在于解决多维、复杂实际问题,需要建立合适的数学模型,和运用统计学仪器和方法,以及合理的程序设计,还有合理思维的组织与流程。

1. 仔细分析问题数学建模的第一步是仔细分析题目,正确理解问题背景、目标与限制条件。

需要把问题描述清楚,理解清楚,包括问题所涉及的各种条件、因素与关键字等方面。

此时需要形成类似一个思维模型。

2. 构建模型模型的构建是解题的核心环节,需要依据严谨的逻辑推理,产生切实可行的模型来分析问题。

正确选用模型种类、分析各种因素、消除误差以及保证模型的健壮性,都是构建模型的核心所在。

2022年MCM美国大学生数学建模大赛题目

2022年MCM美国大学生数学建模大赛题目

PROBLEM A: Snowboard CourseDetermine the shape of a snowboard course (currently known as a “halfpipe”) to maximize the production of “vertical air” by a skilled snowboarder."Vertical air" is the maximum vertical distance above the edge of the halfpipe. Tailor the shape to optimize other possible requirements, such as maximum twist in the air.What tradeoffs may be required to develop a “practical” course?请设计一个单板滑雪场(现为“半管”或“U型池”)的形状,以便能使熟练的单板滑雪选手最大限度地产生垂直腾空。

“垂直腾空“是超出“半管”边缘以上的最大的垂直距离。

定制形状时要优化其他可能的要求,如:在空中产生最大的身体扭曲。

在制定一个“实用”的场地时哪些权衡因素可能需要?PROBLEM B: Repeater Coordinationfrequency in a repeater is either 600 kHz above or 600 kHz below the receiver frequency, and there are 54 different PL tones available.How does your solution change if there are 10,000 users?Discuss the case where there might be defects in line-of-sight propagation caused by mountainous areas.除了地理的分离、“连续编码音调控制系统”(CTCSS),有时被称为“私人专线”(PL)、通过这项技术可以减轻干扰问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地球资源的消耗速度快,越来越多的人关注人类社会的未来。

自1960年以来,已经有许多专家研究可持续发展。

然而大多数人的研究对象是整个世界,一个国家或一个地区。

几乎没有人选择48个最不发达国家(LDC)在联合国为研究对象列表。

然而,LDC国家集团共享许多相同的点.他们的发展道路也有法律的内涵。

本文选择这些国家为研究对象针对发现常规的可持续发展道路。

本文组织如下。

第二部分介绍研究的背景和本研究的意义。

第三节描述了我们对可持续发展的理解细节和显示我们的评估系统的建立过程和原理,那么我们估计每一个国家的LDC和获得可持续发展的能力和等级。

第四节提供了一个最糟糕的国家毛里塔尼亚计划指数在第三节。

第五节演示了在第四节的合理性和可用性计划。

最后在第六节总结本文的主要结论和讨论的力量和潜在的弱点。

地球上的资源是有限的。

三大能源石油、天然气和煤炭可再生。

如何避免人类的发展了资源枯竭和实现可持续发展目标是现在的一个热门话题。

在过去的两个世纪,发达国家已经路上,先污染,再控制和达到高水平的可持续发展。

发展中国家希望发展和丰富。

然而,因为他们的技术力量和低水平的经济基础薄弱,浪费和低效率的发展在这些国家是正常的.所以本文主要关注如何帮助发展中国家特别是48在联合国最不发达国家实现可持续发展是列表可持续发展的理解是解决问题的关键。

可持续发展的定义经历了一个长期发展的过程.在这里,布伦特兰可持续发展委员会的简短定义的”能力发展可持续- - — - - -以确保它既满足现代人的需求又不损害未来的能力代来满足自己的需求”[1]无疑是最被广泛接受的一个在各种内吗定义。

这个定义方面发挥了重要作用在很多国家的政策制定的过程。

然而,为了证明一个国家的现状是否可持续不可持续的,更具体的定义是必要的更具体的概念,我们认为,如果一个国家的发展是可持续的,它应该有一个基本的目前的发展水平,一个平衡的国家结构和一个光明的未来.基本的发展水平反映了国家的基础和潜力。

是否这个国家的结构(资源、农业、轻工业、重工业和服务)平衡反映其发展是否健康,我们可以确定一个发展不平衡是危险的。

发展是一个动态的过程。

因此,未来的预测可以反映这个过程。

可持续发展可能会有一个光明的未来和不可持续发展在未来将经历许多挑战。

不同的机构建立了不同的评估系统在过去的几十年里,比如幸福指数(包括88年因素)和环境可持续性指数(包括68个因素)[3]这些系统是巨大的和有效的基于一个巨大数量的数据。

考虑到我们的研究对象是48个最不发达国家(LDC),一些因素缺乏数据支持。

更重要的是,LDC需要一个单独的、动态评估体系,而不是全球性的,静态的.在这里我们选择PSR(压力状态响应)模型来解决这个问题。

PSR模型是由经济合作与发展组织(OECD)与联合国开发计划署合作(UNEP)在80年提出了可持续发展在20世纪和评价资源利用模式[4]。

PSR模型被广泛应用于评价资源的利用和可持续发展的压力指数P是用来描述导致不可持续的生产和消费模式的人类经济活动的发展或经济系统.状态指数是用来描述系统状态在可持续发展的过程。

R是用来描述响应人类的对策,促进可持续发展.PSR模型按照“原因-结果—反应”思考,解释人类活动对自然世界的压力,改变环境和资源状态和决策,行为反应过程,促进生态系统的良性循环.结合PSR模型与可持续发展委员会的评估指标.我们选择30个指标我们自己从世界银行的数据,我们的模型的基础上,将这些指标分为三个部分压力压力(P)是一个动态因素影响整个系统的可持续发展,反映了传统发展模式的影响和经济和社会活动对资源和环境造成的,以及资源的限制和环境经济和社会可持续发展.这里我们选择自然人口增长率,状态状态(年代)反映了生态发展的背景和基础,即资源、环境容量、工业和社会发展基础。

这里我们选择人均国内生产总值、人口密度等。

响应响应(R)反映了政府和居民采取行动应对生态环境的压力和地方发展基金会。

在这里我们选择GDP增长,自然资源租金总额和其他一些因素。

由于尺寸、数量、积极和消极取向差异的每个索引,它使用的数据直接计算是不现实的.我们需要做的是使数据规范化.正常化,并确定每个指标的权重采用熵权法使用极值标准化方法和原始数据,使统一的尺寸和数量。

治疗后,得分为每个索引位于(0,1)。

如果x有一个负面影响可持续发展水平,那么相应的r熵权法是一种常见的方法来确定指标权重.基于“差异驱动”原理,该方法多关注当地的区别。

它反映了信息熵的实用程序,避免人为因素。

所以给出的重量是更客观。

在国家的比例指标3.1.3 PSR子系统的价值目前的发展水平3.3系统协调度的计算在PSR模型中,区域可持续发展的影响也受到压力之间的关系,状态和响应。

为了评估每一个子系统之间的相互作用,我们添加一个协调程度(CD)函数.这个函数是基于系统的大小和分散度之间的距离来判断协调程度。

协调度:首先,我们选择了H描述协调。

然而考虑到the3is最好的价值和其他值分散在两边,是不方便的排序顺序。

所以我们添加CD,反映了计算值与理想值之间的差距。

更大的CD是协调程度较小。

3。

4动态预测的可持续发展可持续发展评估体系不应该是一个静态的重点是确认图。

它应该有一个关注可持续发展的潜力。

倾向于更可持续的国家应该担心。

我们认为一个新的指标增长率(GR)。

我们计算的价值(CL)三年(2007年、2009年和2011年。

世界银行的数据)。

GR的价值是通过最小二乘法获得。

考虑到我们只用三年数据,所以增长率(GR)不能长期是准确的,但它仍然可以有用的几年内,这里就足够了。

3.5可持续发展能力指数(CSD)现在我们有三个指标(CL,CD,GR)。

这里我们再次使用极值标准化方法,给出可持续发展能力指数(CSD)作为每个国家最后的指数.更重要的是,我们选择几种典型国家(就像瑞士、印度、美国等)。

将这些国家的数据在我们的模型中,CSD。

这种方法有两个含义。

第一个是测试模型。

另一个是使用这些发展中国家或中等收入国家的CSD咨询,并使CSD的分类.4.毛里塔尼亚的20年发展计划从表2可以看出,毛里塔尼亚是最不锈的国家。

所以我们选择这个国家作为我们的研究对象.4。

1基本情况的毛里塔尼亚从模型中我们可以发现CL和CD的价值太小使直接CSD指数非常低。

这意味着国家目前的发展水平很不满意,结构不平衡。

为了发现是最重要的指标,使这个国家排名最后,我们j deemijgas指标的实际值差距在countryithen和理想价值处理30指标和痛之后,我们发现,互联网使用,永久的农田,内部可再生淡水资源人均(立方米),人均国内生产总值(当前美元),是第一个4指标中最可怕的一个指标。

基于这一发现和其他信息,我们可以有一个大致了解毛里塔尼亚的基本情况。

面积:1030700平方公里人口:3537368人(2013年人口普查)[5]气候,热带沙漠气候的贫穷率:42%的预期寿命:60成人文盲:44。

2%比例的荒漠化:2/3发展水平很低,结构不平衡。

丰富的石油、天然气、铁矿石资源.2006年成为石油生产国家4。

2 20年来发展战略的协调原则从4.1,我们可以得到一个任务的首要任务是提高当前的开发或者是直接提高GDP。

更重要的是协调整个系统也需要多关注。

在上面的三个人物中,黑色的点是实际值和蓝色的字符串是安装一个。

在这里我们可以发现与GDP提高,二氧化碳排放量也在2005年之后快速增长.直线和森林面积减少。

它将使CL指数成长和CD指数下降。

最好的解决方案来处理这种冲突与合作博弈模型,关键是要找到一个平衡点。

这里我们可以使用二氧化碳排放所代表的经济水平。

耕地面积代表生态水平。

然后会有一个表。

从第三节,当系统最大的平衡程度,将等于P。

我们这里3策略。

列出他们的利润:策略1是这个国家现状的反映。

发展,然后再考虑环境问题。

许多发达国家走这种方式。

然而,这个国家的生态系统非常脆弱的地球2/3是沙漠。

所以如果我们不首先考虑环境。

结果可能是不可救药。

更重要的是,这一事实表明,森林面积正在下降,很难恢复。

策略2的要求,我们必须发展经济不伤害环境。

这是一个努力的目标,只有这些国家的技术和足够的基金能做到。

然而,如果它没有严惩GR(增长率),它仍然是在ICM的帮助。

策略3更集中于环境。

然而,可持续发展是人类发展的本质。

只注重环境没有关于人们的感情不是明智的。

最重要的是,策略2最美丽的预期收入。

所以在这个协调游戏的最好的策略。

4。

3具体的计划和建议ICM在4.1中,我们已经知道毛里塔尼亚的最大问题是当前发展水平(CL)也和协调程度(CD)太低了.在4。

2中我们把经济和环境考虑的策略。

首先我们有一个计划来提高国内生产总值不伤害环境的太多了。

考虑到毛里塔尼亚富含石油、天然气和铁矿石资源。

因此,国家可以从这里开始。

旧的技术可能会导致严重的污染,我们的国家没有最好的技术或基金购买这些技术。

所以政策应该鼓励外国公司利用这些资源,弥补我们自己的工业体系。

第二个发展生态农业。

从图7中我们可以看到,谷物产量的变化遵循可耕地面积的变化大。

然而,这只是一个倾向。

从1980年到1995年,可耕地面积变化很大,但谷物产量改变了可耕地面积不一样大.更重要的是,谷物产量在不同年份不同甚至耕地区域是相同的。

因此我们可以得出这样的结论:农业是不先进的。

可耕地面积有倾向于变得更大的森林面积减少。

最好是通过高科技来提高谷物产量如喷灌、滴灌和雨水收集系统。

第三,促进教育.前两个方法都有一个伟大的技术需求。

在21世纪,知识就是力量。

毛里塔尼亚44。

2%的成年人是文盲.这是急需改变.最有用的方法是使免费获得受教育的机会。

这需要一个基金的支持。

从上面表格,我们可以发现产业使CD减少和生态农业使CD增加。

他们有一个协调关系,只是协调游戏原则的结论.教育的价值“0(+)”意味着教育可能没有现在对三个因素的影响,但它会使他们受益。

ICM有3个角色扮演:是一个投资者,投资对国家的可持续发展。

是一个介绍人,介绍这个国家向世界,吸引更多的国家和公司来这里投资.是一个赞助商,帮助支持技术,资金和粮食毛里塔尼亚希望如果有必要。

5。

我们国家的未来预测为了证明我们的措施是有效的。

我们需要做两个预测。

预测基于现状,预测未来将根据现有的发展模式。

预测B考虑我们的措施和随机紧急。

最后,所表现出的效果应该CSD的对比和一些特定的指数预测,B和A现状。

5.1灰色预测模型预测基于当前的情况灰色预测方法来预测包含不确定因素的系统.原始数据的选择指数。

该系统的步骤是:步骤1找出系统因素的不同发展趋势.步骤2关联分析.步骤3创建一个数据序列,并有很强的规律性步骤4第四步把微分方程模型,并预测未来发展趋势。

原始数据的选择指数5.2马尔可夫链预测方法预测B将我们的措施和随机紧急考虑作为一个定量描述的一系列随机事件动态关系,具有重要应用在自然科学、工程科学及社会科学各领域。

相关文档
最新文档