土壤养分循环.ppt

合集下载

土壤学16(土壤养分)

土壤学16(土壤养分)


碳酸磷灰石 3Ca3(PO4)2 •CaCO3

羟基磷灰石 3Ca3(PO4)2 •Ca(OH)2

氧基磷灰石 3Ca3(PO4)2 •CaO

磷酸三钙 Ca3(PO4)2

磷酸二钙 CaHPO4
磷酸一钙 Ca(HPO4)2
Chap. 16 土壤养分
2)磷酸铁和磷酸铝类化合物(Fe-P、Al-P) 主要存在于酸性土 3)闭蓄态磷(O-P) 闭蓄态磷是由氧化铁胶膜包被的磷酸盐 主要存在于酸性土 (石灰性土壤中包被的胶膜是难溶性的钙
3.土壤淹水 4.集中施肥
Chap. 16 土壤养分
§3土壤钾素
土壤钾素的来源: 母质来源
地壳含钾约为2.45%,土壤全钾在 5~25mg/kg 之间 钾肥
Chap. 16 土壤养分
土壤钾素的形态: 1.按化学组成 水溶性钾 交换性钾 非交换性钾 矿物钾 2.按植物营养有效性 速效钾、缓效钾和无效钾
钾素转化与循环
分化作用
含钾母质
分解
固定
固定作用 径流
难溶性钾
分解 固定
吸收 固定
溶解
代换性钾
代换
水溶性钾
吸收
分解
生物吸收 分解
有机体内钾
流失
Chap. 16 土壤养分
土壤钾的固定、释放与影响因素 土壤钾的固定与影响因素 土壤钾的释放与影响因素
铵的硝化
2NH4+ +3O2
2NO2- +2H2O+4H++660kJ
2NO2- +2O2
2NO3- +167kJ
硝化作用是专性微生物(亚硝化菌和硝化
菌)完成—自养硝化(中性pH、好氧条件)

4 土壤水分养分.ppt.Convertor

4 土壤水分养分.ppt.Convertor

注意:含盐量高或受到污染的水不宜用于灌溉;早春灌水时需注意水温,水 温过低影响根系活动;对于不耐湿的树种,灌水时不宜过多,以免烂根。 2.3 灌溉量 灌水量:是指一次灌水的水层深度(mm)或一次灌水单位面积的用水量 (m3/hm2);可按下式计算:
M = 0.1*r * h * (P1 – P2) / η 其中:M——设计灌水量;
☆ 缓效、速效养分均衡; ☆ 大量、中量、微量元素的比例适宜; ☆ 有机质含量高于2%。 土体构造适宜
☆ 0.4—0.6 m范围土层疏松,利用根系生长、通透性 好,保水保肥能力高;
☆ 1— 1.5 m土壤紧实,固定支撑能力强。 物理性质良好
固(矿物质、有机质、微生物)、液(水)、汽(空气)三相比例适宜,有良 好的团粒结构。 1.2 园林土壤的类型 平原肥土 低湿地 干旱地 盐碱地 废弃矿区 建筑废墟 人工土层 土壤的通气性差 土壤贫瘠,肥性低 复杂的土壤条件需要经过适当的调整改造才能适合园林树木的健康生长
元素和多种活性物质,包括激素、维生素、氨基酸、 葡萄糖、酶类等; 2)有机肥能增加土壤的腐殖质,腐熟发酵后有机肥通过 土壤的深翻填入土壤中,增加肥力; 3)有机肥中的有机胶体可增加土壤孔隙度,缓冲土壤酸 碱度,提高保水保肥能力,改善土壤的水、热、汽、 肥状况。 生产上常用的有机肥料: — 农家肥 厩肥、堆肥、禽肥、鱼肥、人粪尿、 — 饼肥 将油料的种子经榨油后剩下的残渣直接作肥料。如,豆饼、 菜籽饼、麻籽饼、棉籽饼、花生饼、… — 土杂肥 以杂草﹑垃圾﹑灰土等所沤制的肥料。土肥、泥肥、糟渣 肥、骨粉、草木灰、屠宰场废弃物及城市垃圾等。
注意:合理确定施肥量,以防烧死树木;元素比例合适,幼龄树木N 占优势,成熟树木增大P、K比例;注意卫生 根外追肥:即叶面追肥,把速效肥料配制成稀溶液,喷洒到树木枝叶上 或注射于树干内的施肥方法。用肥量小,肥效高,见效快,但不能代替 土壤追肥。幼叶较老叶、叶背较叶面吸收快,吸收率也高。 酸碱度调节 土壤酸碱度影响土壤养分吸收转化、微生物活动、土壤理化性质。 pH过低,土壤中活性Fe、Al增多,与PO43- 结合形成不溶性的沉

土壤学第九章-土壤养分循环ppt课件

土壤学第九章-土壤养分循环ppt课件

土壤学
资源环境学院土地资源与农业化学系
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
反硝化的临界Eh约为334mv,最适pH为7.0~8.2, pH小于5.2~5.8的酸性土壤,或高于8.2~9.0的碱性 土壤,反硝化作用显著下降。
有机肥
养分资源


淋 洗
地下水
土壤学
资源环境学院土地资源与农业化学系
土壤养分的基本概念
土壤养分-指植物所必需的,主要是土壤来提供的营养元 素就叫做土壤养分。土壤养分是土壤肥力的物质基础,是土 壤肥力的重要组成因素。
有效养分-能够直接或经过转化被植物吸收利用的土壤养 分。
速效养分-在作物生长季节内,能够直接、迅速为植物吸 收利用的土壤养分,称速效养分。
(3)这种养料元素在植物的代谢过程中具有直接 的作用。
土壤学
资源环境学院土地资源与农业化学系
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
土壤养分循环是“土壤圈”物质循环的重 要组成部分,也是陆地生态系统中维持生物生 命周期的必要条件。
有机质C/N
>30
30~15
<15
氮的固定量>矿化量 固定量=矿化量 固定量<矿化量
补充化肥
补充有机质
(2)应用“激发效应”调节土壤有机质和氮素平 衡
有机质丰富的土壤,施用绿肥等新鲜有机肥 产生正激发效应。
有机质缺乏的土壤,施用富含木质素的粗有
机肥,产生负激发效应。

土壤养分循环

土壤养分循环

3、避免有害物质—NO2-的积累
亚硝酸盐是人的致癌物质和植物的有害物质。其产生
和积累条件:
(1)Eh NH4+→NO2-(亚硝化过程) E0=0.345V
NO2-→NO3- (硝化过程) E0=0.421V
(2)pH
硝化细菌比亚硝化细菌对pH反应敏感。
NO2-易在pH>7.3的碱性环境积累。
(3)游离NH4+的影响 氨对硝化细菌的抑制作用大于对亚硝化细菌,大量施 用铵态氮肥(特别是NH4HCO3),易造成NO2-积累。 旱育秧NO2-可使水稻幼苗出现青枯病
第十二章
土壤养分循环
土壤养分循环
是“土壤圈”物质循环的重要组成部分,也 是陆地生态系统中维持生物生命周期的必要 条件。 大量营养元素:N、P、K、Ca、Mg、S(中量营养元素)
微量营养元素:Fe、Mn、Zn——生物残体归还土壤形成有 机质——土壤微生物分解有机质释放无机养分——养分
4、铵离子的矿物固定
NH4+离子半径为0.148nm,与2∶1型粘土矿物晶层 表面六角形孔穴半径0.140nm接近,陷入层间的孔穴后 ,转化为固定态铵。
三、土壤氮的损失
1、淋洗损失(NO3-的淋失) NH4+、NO3-易溶于水,带负电荷的土壤胶体表面 对NH4+为正吸附,而保持于土壤中;对NO3-为负吸 附(排斥作用),易被淋失。
高 (>1.5)
中等 (1.5~1.0)
较低 (1.0~0.75)
低 (≤0.75)
17.8
58.4
20.9
2.9
旱地土壤
14.9
22.7
28.2
34.2
全省水田土壤全氮分级面积是高、低两头小,中等大; 旱地土壤则以低等和较低为主(占62.4%)。

《土壤的生态作用》课件

《土壤的生态作用》课件

该区域土壤的生态功能
水分涵养
该区域土壤具有良好的涵养水源 的能力,能够有效地保持水分, 为植物生长提供必要的水分条件

土壤侵蚀控制
该区域土壤具有较强的抗侵蚀能力 ,能够有效地防止水土流失,保护 地表土壤和生态环境。
生物多样性维持
该区域土壤为多种植物和动物提供 了栖息地,是生物多样性的重要维 持者。
土壤氮与植物生长
土壤中的氮是植物生长的 重要养分,植物通过根部 吸收土壤中的氮来维持正 常的生理功能。
土壤氮与水体健康
土壤中的氮也是水体的重 要来源,过量的氮会导致 水体富营养化,影响水生 生物的生存。
土壤在磷循环中的作用
土壤中磷的吸附与释放
01
土壤中的磷通常以磷酸盐的形式存在,通过吸附和解吸过程来
续利用。
PART 04
案例研究:特定区域的土 壤生态状况
REPORTING
该区域的土壤组成与性质
土壤类型
该区域主要分布着黄壤、 红壤和砂质壤土等不同类 型的土壤。
土壤质地
该区域土壤质地较为多样 ,既有粘土,也有砂土和 壤土。
土壤肥力
该区域土壤肥力中等,有 机质含量较高,但部分地 区存在养分不足的问题。
土壤中的生物多样性
土壤中的生物种类繁多,包括细菌、真菌、蚯蚓、昆虫等,它们共 同构成了复杂的生物群落。
土壤对生物的保护作用
土壤能够为植物提供保护,防止其被风吹倒、动物啃食等。
土壤在碳循环中的作用
土壤中碳的储存和释放
土壤碳与农业可持续性
土壤是全球碳循环的重要组成部分, 能够储存大量的碳,并在微生物的作 用下释放到大气中。
保水能力。
土壤的有机质
土壤有机质是指存在于土壤中的所有有机物质, 包括动植物残体、微生物及其分解产物。

第十二章 土壤养分 10.19

第十二章  土壤养分 10.19

5.提高土壤中有效磷的途径
(3) 土壤淹水 土壤淹水还原pH向中性趋近(稀释作用),酸性土壤pH上升 促使活性铁、铝氧化物的沉淀,减少磷的固定;碱性土pH降 低,增加磷酸钙的溶解度。 土壤淹水Eh下降,高价铁还原成低价铁,磷酸低铁的溶解度 较高,可增加磷的有效度。
6.土壤硫的来源及含量
主要来源:母质、灌溉水、大气沉降和施肥等。 矿质土壤含硫量一般在0.1~0.5 g/kg之间,随有机质含量增加而 增加。 土壤有效硫(S)分级为:
3.土壤中磷的形态
矿质态磷:几乎全为正磷酸盐。
土 壤 磷 形 态
磷酸钙(镁)类化合物(Ca—P)
磷酸铁和磷酸铝类化合物(Fe—P及Al—P) 闭蓄态磷( O—P ):氧化铁胶膜包被着的磷酸盐。 有机态磷:含量变幅很大,一般占全磷的25-50%。 20-30%的有机磷形态不清楚。
核酸类:占有机磷5-10%。直接来源于生物残体特 别是为生物体中的核蛋白质分解物。
性的高低。
气 态 损 失 NH3
湿沉降 NO3干沉降 NOx NH4+ 4 N2 NOx
N2 收获 灌施 水肥 枯枝落叶 吸收 矿化 固持 风化 固持 粘粒矿物 地下水
NH4+
NH3
径流 氨 挥 发 硝化
NO3-
腐殖质 微生物 可交换态 固定态
淋 洗
NO3-
第一节
1.含量
土壤氮素循环
氮素是“肥料三要素”之首。
(K2O)钾含量一般0.5~2.5%,平均为1.2% ,自南向北、自 东向西增加。
土壤钾形态(占全钾%)
非交换性钾 (2~8%) 交换性钾 (1~2%) 水溶性钾 (很少)
形态
矿物钾 (90~98%)

农田土壤生态系统养分循环通则

农田土壤生态系统养分循环通则

A
1400 1200 1000 800 600 400 200 0 N
养分元素
B
元素盈亏量/[kg/(hm2.a)]
200 150 100 50 0 -50 -100 -150 N P K Ca Mg Fe Mn Si 两熟 三熟
P
K
Ca Mg Fe 养分元素
Mn
Si
图6-2 各养分元素在两种施肥条件下的平衡图(A.常规施肥;B.施用有机肥)
16
第三部分 土壤生态系统养分循环与土壤生产力
1、稳定库容,提高土壤养分的缓冲容量
无机化肥的优点:能快速增加土壤中速效养分的含量。 缺点:高浓度易溶性养分可能由于固定、汽化、渗漏等因素 造成损失;造成土壤紧实,通透性差。
有机肥的优点:含有作物需要的大部分养分;能稳定库容;提高
土壤养分的缓冲容量;改善土壤结构和透气性(土壤大孔隙增多, 容重变轻,收缩率和破碎系数变小);养分作用周期长、损失少。
8
三、养分平衡状况
土壤生态系统养分平衡状况以输入量与输出量之差表示,即:
Bk=∑Ii- ∑Oj
i=1 j=1 式中,Ii为某输入途径的养分输入量; Oj为某输出途径的养分输出量; m和n分别表示输入、输出途径数; Bk为养分平衡数值。
m
n

9
250
2 元素盈亏量/[kg/(hm .a)]
两熟
三熟
素的生物地球化学过程。
2
生物小循环:指营养元素在土壤—生物体间的循环 过程。 生物地球化学循环:指物质在一定区域内乃至整个
生物圈内的传递和转化过程,即化学元素沿着土壤
圈—水圈—大气圈之间的循环过程。 养分循环:是界于生物小循环与生物地球化学循环 之间的循环过程。

土壤养分平衡状况 (N、PO、KO)表观盈亏量(肥料养...演示课件.ppt

土壤养分平衡状况 (N、PO、KO)表观盈亏量(肥料养...演示课件.ppt

不同土壤类型的基础地力贡献率
820 644.4 781 781.6 757
土壤类型
2007年
2008年
2009年
2010年
平均
水稻土
90.92%
83.20%
88.79%
88.79%
87%
红壤
36.04%
30.00%
27.91%
26.80%
30%
vjghkjh
表5
8
vjghkjh
9
结果与分析(4)
表观盈亏量(kg/亩)
1.5 1
0.5 0
-0.5 -1
-1.5 -2
-2.5 -3
-3.5
vjghkjh
单季稻
麦-稻
主要种植制度氮素表观盈亏量
表4、表5
4
vjghkjh
5
vjghkjh
6
结果与分析(3)
• 耕地基础地力与作物产量
– 耕地基础地力的量化指标,多采用在常规的生产水 平下,不施肥(空白)区的作物产量占常规区产量 的百分比。
vjghkjh
14
主要结论(3)
• 地力贡献率
现阶段施肥仍是提高作物产量的关键农艺措施之 一。施肥较不施肥区,水稻增产率65%。从水稻 产量看,随着地力产量由高到低,土壤贡献率依 次降低,全市监测点的基础地力对产量的贡献占 到30%左右 。
vjghkjh
15
主要结论(4)
• 肥料投入比例,投入结构
vjghkjh
17
谢 谢!
vjghkjh
18
P2O5
合计 K2O
合计
N
P2O5 K2O
合计 N P2O5 K2O

土壤养分循环

土壤养分循环
第十二章
土壤养分循环
土壤养分循环 土壤养分循环
是“土壤圈”物质循环的重要组成部分,也 土壤圈”物质循环的重要组成部分, 是陆地生态系统中维持生物生命周期的必要 条件。 条件。 大量营养元素: 、 、 、 、 、 中量营养元素 中量营养元素) 大量营养元素:N、P、K、Ca、Mg、S(中量营养元素 微量营养元素: 、 微量营养元素:Fe、Mn、Zn、Cu、B、Mo、Cl 、 、 、 、 、 生物从土壤吸收无机养分——生物残体归还土壤形成有 生物残体归还 生物从土壤吸收无机养分 吸收无机养分 生物残体归还土壤形成有 机质——土壤微生物分解有机质释放无机养分 土壤微生物分解有机质释放无机养分——养分 机质 土壤微生物分解有机质释放无机养分 养分 再次被生物吸收。 次被生物吸收。 吸收
3、有机态氮 、
包括水溶性氮、水解性氮、非水解性氮。 包括水溶性氮、水解性氮、非水解性氮。大部分是腐殖物 水溶性氮 它们需经微生物分解矿化成无机氮后才能为植物吸收利用。 经微生物分解矿化成无机氮后才能为植物吸收利用 质。它们需经微生物分解矿化成无机氮后才能为植物吸收利用。
土壤氮的形态及其有效性
无机氮( 无机氮(NO3-、NH4+) 土 壤 全 氮 (N) )
据四川第二次土壤普查资料: 据四川第二次土壤普查资料:
四川耕地土壤全氮分级面积统计 土 壤 全 氮 分 级 (N,g/kg) , ) 土壤面 积构成 (%) ) 水田土壤 旱地土壤 高 (>1.5) > 中等 (1.5~1.0) ~ 较低 (1.0~0.75) ~ 低 (≤0.75)
17.8 14.9
亚硝酸微生物
2NH4++3O2 2NO2-+ O2 3、无机态氮的生物固定 、
2NO2-+2H2O+4H+

《土壤养分循环》课件

《土壤养分循环》课件

同位素示踪法
利用同位素标记法追踪土壤养分的来 源、转化和去向,揭示养分循环的详 细过程。
数学模型模拟
建立数学模型,模拟土壤养分循环过 程,预测未来变化趋势,为实际应用 提供理论依据。
土壤养分循环研究的发展趋势
综合研究
将土壤养分循环与气候变化、土地利用方式、植 被类型等多因素相结合,进行综合研究。
高新技术应用
植物通过根部吸收土 壤中的水分和养分, 以满足其生长和发育 的需求。
植物对养分的吸收受 到土壤质地、pH值 、温度和水分等因素 的影响。
养分吸收的方式包括 离子交换、主动运输 和被动运输等。
土壤微生物对养分的利用
土壤微生物是土壤养分循环的重要参 与者,它们通过分解有机物质,将有 机养分转化为可被植物吸收的无机养 分。
利用。
养分的释放速度和程度取决于 多种因素,包括土壤pH值、土 壤温度、土壤湿度等。
在一定的环境条件下,土壤微 生物的活动也可以促进养分的 释放。
03
土壤养分的转化与迁移
土壤养分的矿化与固定
矿化
有机物质通过微生物分解转化 为简单的无机物质。
固定
土壤中的无机物质与有机物质 结合,转化为难以被植物吸收 的形式。
3
养分的矿化与腐殖化
土壤中的有机物质通过微生物的分解作用转化为 无机养分,同时也会形成较为稳定的腐殖质,储 存养分。
02
土壤养分的来源与输入
土壤养分的自然来源
01
02
03
04
自然界的土壤养分主要来源于 岩石的分解、动植物残体的分
解和微生物的合成。
岩石的分解是土壤养分的主要 来源之一,包括风化作用和侵
蚀作用。
动植物残体的分解也是土壤养 分的重要来源,通过微生物分 解有机物质,释放出其中的养
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1960-1980: from about 325 ppm to 345 ppm)
CO2 content of atmosphere in 1988 was 351 ppm and in 1992 was 356 ppm
CO2 content of atmosphere in 1996 was 363 ppm CO2 content of atmosphere in 1999 was 370 ppm
3. 土壤碳的循环转化
The Carbon Cycle
1. autotrophs fix carbon dioxide from the atmosphere during photosynthesis 2. carbon dioxide is released back into the atmosphere by respiration 3. the carbon cycle is very fast 4. Other carbon cycles are slow
•50%-90% savings for NT vs. CT
•Increased leaching •Increased fertilizer use
Soil carbon equilibrium
•Affected by many factors
• amount and type of biomass input
•Biomass
•has degradation resistant litter •provides good soil microbial habitat •has high water holding capacity •protects from oxidation •cools soil by shading/water •promotes aggregation •tight nutrient budget
土壤养分循环
第一节:土壤碳素及循环与生物 效应
• 土壤碳对植物营养的直接作用不大,植 物从大气中吸收CO2,但土壤有机碳的 转化为大气补充CO2 ,是大气碳的源和 库,调节大气中CO2浓度,特别是温室 效应直接与土壤碳的转化有关。因此, 土壤碳对植物营养、土壤肥力及环境都 很重要。
土壤中碳的形态、含量及转化
• 1.土壤碳存在的形态:
有机碳和无机碳。后者主要为碳酸盐,对环境 影响不大。
有机碳又分为水溶态和难溶态。 水溶态有机碳包括:低分子量有机酸、AA、
糖酸、羟圬酸高铁载体。 难溶态有机碳包括胡敏酸、胡敏素、木质素、
植物落叶等。 土壤中含碳化合物的来源:
最初源于光合作用
2. 土壤中碳的含量
二级:30-40 g/kg 三
• 四级:10-20 g/kg 级:<6 g/kg
五级:6-10 g/kg 六
Ecological role of பைடு நூலகம்OM
•Aggregation
•slows erosion
•Soil conditioner
• Water holding capacity • Permeability • Bulk density/penetration resistance
The cycle has a dynamic nature
The addition of CO2 to the atmosphere through fossil fuel burning in:
a) 1900 - 1 billion tons b) 1955 - 2 billion tons c) 1980 - 5 billion tons
a. carbon is diverted into wood or other durable organic material
b. can also be locked up in coal and oil deposits 5. The oceans may act as a buffer that do not allow the carbon dioxide amount in the atmosphere to vary widely 6. carbon dioxide is dissolved in water and is chemically converted to other forms. All told ocean contains 50 times the amount
Hypothesis: bioenergy plantations increase C
•Affected by many factors •amount and type of biomass input •soil microbial community •moisture regime •oxygen supply •temperature •soil texture •supply of other
•Soil organism food and function •Nutrient reserve
•Leaching protection
•Carbon sink
•Largest terrestrial pool
Effects of SOM depletion on environment
•Decreased yields •Increased erosion
自然界碳库主要有三:(1pg=1015g)
• 海洋中碳:39000pg
• 大气中碳:750pg
• 陆地中碳:2200pg
一般砂质土0-100cm含碳3.1kg/m2,而有机土含碳 77.6kg/m2,
• 土壤碳以有机碳表示,占总碳的58%左右
• 有机质含量分级:
• 一级:>40 g/kg 级:20-30 g/kg
• soil microbial community • moisture regime • oxygen supply • temperature • soil texture • supply of other nutrients
•SOM declines 20-40% after conversion to cropland
相关文档
最新文档