范德蒙行列式论文的开题报告

合集下载

范德蒙行列式及应用论文

范德蒙行列式及应用论文

范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。

范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。

范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。

范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。

范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。

首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。

通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。

其次,在微积分中,范德蒙行列式也有着重要的应用。

在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。

通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。

另外,在数论中,范德蒙行列式也有着重要的应用。

由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。

通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。

除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。

它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。

范德蒙行列式论文的开题报告

范德蒙行列式论文的开题报告

湖北文理学院毕业论文开题报告论文题目:范德蒙行列式的推广及应用系别:数学与计算机学院专业:数学与应用数学班级:数学与应用数学0911姓名:李小兵学号:2009109157二零一二年三月三日一、范德蒙行列式的理论意义和现实意义行列式在数学中,是由解线性方程组产生的一种算式。

其定义域为n×n的矩阵A,取值为一个标量,写作det(A)或| A | 。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

作为一种特殊的行列式——范德蒙行列式,是一类很重要的行列式。

范德蒙行列式作为一种重要的行列式,在计算的过程中可以将一些特殊的或者近似于范德蒙行列式的行列式转化为范德蒙行列式,从而能够简化计算,有利于行列式的计算。

范德蒙行列式的应用也比较广泛,不仅应用于一些行列式的计算当中,而且它可以应用于证明行列式的问题和一些关于多项式方面以及某些特征向量线性无关等问题上。

二、研究的方向范德蒙行列式作为一种特殊的行列式,与有关数学知识的综合应用,将行列式的定理、性质融汇于一体,贯穿于证明及计算行列式之中并加以应用,体现较高的解题技巧解决较为复杂的问题。

利用范德蒙行列式的结论计算并不复杂,难的是如何将给定的行列式化成范式的标准形式,并研究范德蒙行列式的推广及在向量空间理论、线性变换理论、多项式理论、行列式计算、微积分中的应用。

三、主要的论文内容及提纲范德蒙行列式是一个很重要的行列式,本文将通过对n阶行列式的计算,讨论他的各种位置变化规律,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧。

本文探讨了范德蒙行列式在向量空间理论、线性变换理论、多项式理论中以及行列式的计算中的应用。

同时,行列式的一个性质,即n阶准范德蒙行列式的计算方法,并使其能解决一类行列式的计算问题。

数学与应用数学毕业论文范德蒙行列式的应用研究

数学与应用数学毕业论文范德蒙行列式的应用研究

曲靖师范学院本科生毕业论文论文题目:范德蒙行列式的应用研究作者、学号:学院、年级:数学与信息科学学院2006级学科、专业:数学数学与应用数学指导教师:完成日期:2010年5月26日曲靖师范学院教务处曲靖师范学院本论文(设计)经答辩小组全体成员审查,确认符合曲靖师范学院本科(学士学位)毕业论文(设计)质量要求。

答辩小组签名答辩日期:2010年5月26日原创性声明本人声明:所呈交的论文(设计)是本人在指导教师指导下进行的研究工作成果。

除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已发表或撰写过的研究成果。

参与同一工作的其他同志对本研究所作的任何贡献已在论文(设计)中作了明确的说明并表示了谢意。

签名:日期: 2010年5月26日。

论文(设计)使用授权说明本论文(设计)作者完全了解曲靖师范学院有关保留、使用毕业(学位)论文(设计)的规定,即学校有权保留论文(设计)及送交论文(设计)复印件,允许论文(设计)被查阅和借阅;学校可以公布论文(设计)的全部或部分内容。

签名:指导教师签名:日期: 2010年5月26日。

范德蒙行列式的应用研究摘要行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的.作为一种特殊的行列式——范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果.利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便.然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用.关键词:行列式;范德蒙行列式;应用;构造Study on Application of Vandermonde DeterminantAbstract: Determinant is an important mathematical tool, it is not only has a long history, but also more widely used. vandermonde determinant was proposed a mathematician whose name is Vandermonde in 1772. As a special determinant ——vandermonde determinant not only unique in the structure and graceful form, and it is of wide application. The right to use vandermonde determinant to solve the problem can be reached the effect of half paying double getting. The nature of using vandermonde determinant to solve problem is to make complex become simple, complicated to easy. However, it is not easy to solve the problem effectively by constructing and application vandermonde determinant is not in a right and proper way. Therefore, this thesis systematically researches the application of the vandermonde determinant and makes a little summary of its methods and techniques from six aspects: the calculation of determinant, solving n-order k loop determinant, solving problems finding roots of polynomials, linear correlation vectors answer questions, questions and answers divisible. In the hope that it can help beginners to better understand and master the vandermonde determinant and its wide range of applications.Keywords: determinant; Vandermonde determinant; applications; structure目录1 引言 (1)2 文献综述 (1)2.1 国内外研究现状 (1)2.2 国内外研究现状评价 (1)2.3 提出问题 (2)3 范德蒙行列式简介 (2)4 范德蒙行列式的应用探讨 (3)4.1 计算行列式 (3)4.2 求解n阶k循环行列式 (6)4.3 解决多项式的求根问题 (8)4.4 解答向量线性相关性问题 (9)4.5 解答整除问题 (11)4.6 解答微积分问题 (14)5 结论 (15)5.1 主要发现 (15)5.2 启示 (15)5.3 局限性 (15)5.4 努力方向 (15)参考文献 (16)1 引言行列式是一个重要的数学工具,活跃在数学的各个分支.行列式最早出现在16世纪关于求解线性方程组的问题中,行列式的研究是伴随着线性代数的发展而发展起来的.18世纪,法国著名数学家范德蒙(A,T,Vandermonde,1735—1796)将行列式的理论脱离线性方程组,放到理论高度作为专门的理论进行研究,在此基础上确立了行列式的一些性质,从而使行列式逐步发展成一门独立的数学课题.到了19世纪,数学家柯西、凯莱和西尔维斯特等人给出了真正现代意义上的行列式理论.行列式(Determinant)这个名称是柯西1815年首先使用的,随其后,凯莱于1841年使用了行列式记号| |[1].范德蒙行列式是数学家范德蒙在1772年提出的.作为一种特殊的行列式,范德蒙行列式不仅结构独特、形式优美,而且具有广泛而丰富的应用.基于范德蒙行列式结构的独特性,学习者在计算行列式时不易掌握,尤其是需要通过变换构造这一行列式来解决相关方面的问题就显得更加困难.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面来探究范德蒙行列式的应用,希望对初学者提供一定的参考.2 文献综述2.1 国内外研究现状从目前参阅的文献资料[1—20]中了解的信息来看,针对范德蒙行列式的应用,近几年来研究者们得出了许多成果.真所谓仁者见仁,智者见智,不同研究者的角度、出发点和研究方向均不相同.例如:北京大学第三版《高等代数》教材[2]和其他不同版《高等代数》教材[3、4]、习题集[5、6]中就提到了范德蒙行列式在行列式的计算和多项式根存在问题中的应用.在许多高校的学报中我们可以找到范德蒙行列式应用的文章.比如:在《范德蒙行列式应用三则》一文[7]中张文治、赵艳给出了通过构造范德蒙行列式计算缺项行列式;在《范德蒙行列式的应用》一文[8]中徐杰探讨了应用范德蒙行列式证明向量的线性相关性问题;在《范德蒙行列式在微积分中的应用》一文[9]中程伟健、贺冬冬研究了利用范德蒙行列式求高阶无穷小和证明k阶导数极限的存在问题;此外文献[10]、[11]、[12]中也提到了范德蒙行列式的相关应用,等等.2.2国内外研究现状评价综上所述,目前国内外对范德蒙行列式的应用研究虽然是比较多的,但是对应用方法技巧的总结、归纳还比较欠缺,比较零散,不够全面,系统性、规范性不足.同时对如何构造范德蒙行列式的研究不是很透彻,使初学者在实际处理具体问题时不易运用和掌握.2.3 提出问题利用范德蒙行列式解题的本质在于化复杂为简单、化繁琐为简便.正确的使用范德蒙行列式解题可以达到事半功倍的效果.虽然对范德蒙行列式在各个方面的应用研究是许多学者关注的焦点,但是对范德蒙行列式应用的方法、技巧的总结还比较欠缺、零散、不够全面.因此本毕业论文通过探讨范德蒙行列式在计算行列式、求解n 阶k 循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题中的一些应用,总结了构造范德蒙行列式解题的一些方法和技巧,希望能给广大学者提供一定的参考. 3 范德蒙行列式简介形如:113121122322213211111----=n nn n n nna a a a a a a a a a a a D的行列式称为n 级范德蒙(Vandermonde)行列式.可以证明:对任意的n ()2≥n ,n 级范德蒙(Vandermonde )行列式等于1a ,2a , ,na 这n 个数的所有可能的差()j i a a -()n i j ≤<≤1的乘积.即:()∏≤<≤-----==ni j j i n nn n n nna a a a a a a a a a a a a a D 1113121122322213211111因为D D T =,所以范德蒙行列式还可以写成:()∏≤<≤-----==ni j j i n nnnn n n a a a a a a a a a a a a a a D 1121323312222112111111从定义可以得出,范德蒙行列式等于零的充分必要条件是1a ,2a , ,n a 这n 个数中至少有两个相等.4 范德蒙行列式的应用探讨范德蒙行列式常做为行列式理论的一个教学实例而出现,虽然未被明确提出和探讨研究,但出于它结构独特、形式优美,在数学的各个分支都具有十分广泛的应用.下面将从计算行列式、求解n 阶k 循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面探讨研究范德蒙行列式的应用. 4.1 计算行列式范德蒙行列式在行列式的计算问题中起着举足轻重的作用.利用范德蒙行列式计算行列式已被确立为一种特殊的方法被广泛使用.下面先来看几个例子.例1[13]计算行列式:n n n n n n n n n n n n n nnn n ny y x y x x y y x y x x y y x y x x A 111111112122212211111111+-+++-++----=,其中0121≠⋅⋅⋅+n x x x .分析:A 不是范德蒙行列式,但仔细观察发现它具有范德蒙行列式的影子,可考虑构造范德蒙行列式.解:将第1行提出n x 1,第2行提出 ,2nx ,第n 行提出n n x ,第1+n 行提出n n x 1+,则有:nn n n n n n n n n nn nn n i n i x y x y x y x y x y x y x y x y x y x y x y x y x A ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=++-++++++--+=∏11111211112212222222111112111111111因此,构造出了一个1n +阶的范德蒙行列式:=1A nn n n n n n n n n nn nn x y x y x y x y x y x y x y x y x y x y x y x y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛++-++++++--1111121111221222222211111211111111j i j i n i j y y x x ≤<≤⎛⎫=- ⎪ ⎪⎝⎭∏()∏∏∏∏+≤<≤+=≤<≤+=-=⎪⎪⎭⎫⎝⎛-==11111111n j i i j j i n i n i j j j i i nin i n iy x y x x y x y x A x A 所以:.点评:本例的解题技巧在于从第i 行中提出n i x ()1,3,2,1+=n i ,从而构造了一个1n +阶的范德蒙行列式.例2[8]计算行列式:n nn n nn nn n n nna a a a a a a a a a a a a a a a D321223222122322213211111----=.分析:D 不是范德蒙行列式,但具有该行列式的特点,可考虑构造1n +阶范德蒙行列式,再根据范德蒙行列式的结果间接地求出D 的值.解:考察此行列式,构造1n +阶范德蒙行列式:nn nn nn n nn n nna a a a a a a a a a a a a a a a D211112112222212111111----=则行列式D 等于1D 中元素1-n a 的余子式,将行列式1D 按1n +列展开得:1,11,11,321,21,11+++-++++++++=n n n n n n n n n A a A a A a aA A D其中1-n a 的系数为:()D M M A n n n n n n n -=-=-=++++1,1,121,1即行列式D 等于1n +阶范德蒙行列式1D 的展开式中1-n a 的系数的相反数.又因为 ()()j ni j j ia a a aD --=∏≤<≤11.对()1j j na a ≤≤-∏展开得1-n a的系数为∑=-nj j a 1,因此在1D 中1-n a 的系数为:()∏∑≤<≤=--ni j jinj ja a a 11.故行列式()∏∑≤<≤=-=ni j j inj ja aa D 11.点评:本例通过添加了第n 行、第1n +列构造了1n +阶范德蒙行列式1D ,再利用行列式D 与1D 中某元素余子式的关系来计算行列式.例3[7] 计算行列式:()()()()()()()()()nn n nn nn nn nn n n nn y x y x y x y x y x y x y x y x y x A +++++++++=101110101000解:利用二项式定理的展开式()ii n ni i nny x C y x -=∑=+0和行列式的乘法规律得: 01122000010112222211110112201111n n n n n n n n n n n n n n n n n nn n n n n n n n n n n n nnnC xC x C x Cy y y C xC xC xC A y y y C x C x C x C y y y ------=⋅ ()()20000121012222111212011111111n n n n n n n n nnn n n nn nnnnx x xy y y x xx C C CCy y y x x x y y y +=-⋅()()()()()()1012200012001n n n n n nnijijj i nj i nnn n nnji ijj i nj i nC C CCx x y y C C C C xx y y +≤<≤≤<≤≤<≤≤<≤=---=--∏∏∏∏点评:本例先按照二项式定理的展开式()ii n ni i nny x C y x -=∑=+0将行列式A 中的每一个元素展开,可变为乘积之和,再根据行列式的乘法规则分别构造出1n +阶范德蒙行列式进行计算.通过对上述例题的分析,可归纳出构造范德蒙行列式计算行列式的一点技巧: (1)、观察要计算的行列式是否具有范德蒙行列式的某些结构特征; (2)、通过适当方法(如:拆项法、添项法等)构造出范德蒙行列式; (3)、结合范德蒙行列式和题目的要求进行计算. 4.2 求解n 阶k 循环行列式形如[11]:1432211121321b kb kb kb b b kb kb b b b kb b b b b B n n n n nn n ---=的行列式,称为n 阶k 循环行列式,其中123,,,,,n b b b b k 是常数且0≠k .特别地,当1=k 时,叫做n 阶循环行列式;当1-=k 时,叫做n 阶反循环行列式. 对于n 阶k 循环行列式的计算.利用范德蒙行列式可证明以下定理.定理1:对n 阶k 循环行列式1432211121321b kb kb kb b b kb kb b b b kb b b b b B n n n n nn n ---=构造多项式函数: ()21123n n f x b b x b x b x -=++++.若方程0=-k x n 的n 个根为()n i x i ,,3,2,1 =,则必有:()∏==ni i n x f B 1 .证明:考察方程0=-k x n ,设()k x x n -=ϕ,则()1'-=n nx x ϕ,由于存在()kx h 1-=,()x nkx l 1=.使得: ()()()()111111'=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--n n nxx nk k x k x x nk x k ϕϕ 故得多项式()x ϕ与()x 'ϕ互质,因此多项式()x ϕ没有重根,即方程0=-k x n 没有重根.也即方程0=-k x n 有n 个互异根.以方程0=-k x n 的n 个根()n i x i ,,3,2,1 =构造n 阶范德蒙行列式:112112222121111---=n nn n nnn x x x x x x x x x D显然0≠n D ,()n i k x n i ,,3,2,1 ==.因为()12321-++++=n n x b x b x b b x f ,故()12321-++++=n i n i i i x b x b x b b x f ()n i ,,3,2,1 =.考察⋅=---1432211121321b kb kb kb b b kb kb b b b kb b b b b D B n n n n nn n n 112112222121111---n nn n nnx x x x x x x x x=()()()()()()()()()n n n n n n n n x f x x f x x f x x f x x f x x f x x f x f x f 1212111221121---= ()()()n n D x f x f x f ⋅⋅ 21 所以()()()()∏==⋅=ni i n n x f x f x f x f B 121 .例4[14]计算行列式:11111011110=n A .解:经观察,此行列式n A 为n 阶循环行列式且1,0321=====n b b b b .设()132-++++=n x x x x x g .若方程01=-n x 的根记为()n i x i ,,3,2,1 =.不妨设11=x 则()()01111121111=++++-=--n n x x x x x 故对()n i x i ,,3,2 =必有:0112=++++-n i i i x x x .既有()()n i x g i ,,3,21 =-=,故得:()()()()()121111-==--=⋅==∏∏n ni i ni i n n x g x g x g D .n 阶k 循环行列式的解法以多项式理论为基础,结合范德蒙行列式进行探讨n 阶k循环行列式的初等解法,方法简便易行,有一定的实用价值. 4.3 解决多项式的求根问题多项式是一类最常见,最简单的函数,它的应用非常广泛.多项式理论是高等代数的重要内容,是学习代数学及其他数学分支的必要基础,是中学数学有关知识的加深和扩充.虽然它在整个高等代数中是一个相对独立而自成体系的部分,但却为高等代数的基本内容提供了理论依据.研究学习多项式、多项式根的存在问题、多项式求根等是多项式理论的重点和难点.由于多项式理论的高度抽象性,初学者在学习时不好把握.多数多项式的求根问题又与行列式相关联,巧妙的应用它们之间的联系,对解决会起到化繁为简的作用.例5[8]证明一个n 次多项式至多有n 个互异根.证明:设n 次多项式为()n n x k x k x k k x f ++++= 2210,假设()x f 有1n +个互异的根为121,,,,+n n x x x x ,则有:()()1,,2,102210+==++++=n i x k x k x k k x f n i n i i i即: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++++=++++=++++=+++++++00001212110221022222101212110n n n nn n n n n nnn n n x k x k x k k x k x k x k k x k x k x k k x k x k x k k因此,这个关于n k k k k ,,,,210 的齐次线性方程组的系数行列式为:()∏+≤<≤++++-==11121122222121111111n i j j i nn n n nnn n nnn x x x x x x x x x x x x x x A.因为121,,,,+n n x x x x 是互异的.所以01≠+n A , 因此0210=====n k k k k .矛盾.故()x f 至多有n 个互异的根,即n 次多项式至多有n 个互异根,证毕.例6[6]设()112111222211211121111-------=n n n n n n n k k k k k k k k k x x x x f. 其中121,,,-n k k k 是互不相同的数,证明:()x f 是一个关于x 的1n -次的多项式,并求出()x f 的根.证明:因为()x f 中只有第一行含有x 的幂次,而最高幂次为1n -,另外展开后1-n x 的系数为:()011111212112222221211≠-=∏-≤<≤------n i j j in n n n n n k kk k k k k k k k k故()x f 是一个关于x 的1n -次多项式.又因为当121,,,-=n k k k x 时.()()()121,,,-n k f k f k f 都有两行相同,从而()()1,,2,1,0-==n i k f i .故互不相同的数121,,,-n k k k 就是()x f 的根.在多项式理论中,很多问题都涉及求根问题,在分析题目时,范德蒙行列式起到了关键作用,再结合范德蒙行列式为零的充要条件,更起到了化繁为简的作用.若能熟练有效的运用范德蒙行列式,对我们最终解决问题会有直接帮助. 4.4 解答向量线性相关性问题向量的线性相关性是向量研究的一个重点也是一个难点,比较抽象,且对逻辑推理有较多要求,不容易理解其实质.无论是判断还是证明或者计算,初学者往往会感到困惑,难以掌握.但将其与行列式适当相结合,对于判断、证明和计算相应问题就比较容易理解、掌握,尤其是与特殊行列式—范德蒙行列式相结合,效果更显而易见.例7[10]设t ααα,,,21 是t 个互不相同的数,t n ≤.证明:向量组()211,,,,n i i i i βααα-'=线性无关,1,2,,i n =.证明:考察向量组()12',,,,1-=t i i i i αααβ ,t i ,,2,1 =,可构造一个t 阶的范德蒙行列式:121222211211111---=t t t tt t t D ααααααααα因为t ααα,,,21 是互不相同的,所以0≠t D .故()12',,,,1-=t i i i i αααβ ,t i ,,2,1 =,线性无关.在每个'i β的后面再添上t n -个分量11,,,-+n i t i t i ααα 所得向量组()112',,,,,,,1--=n i t i t i i i i αααααβ ,1,2,,i n =,仍线性无关.例8[15] 设A 是n 阶矩阵,证明:A 的不同特征值的特征向量线性无关.证明:是t ξξξ,,,21 是A 的两两不相同的t 个特征值,存在非零向量t βββ,,,21 有:i i i A βξβ=,1i t ≤≤.假设02211=+++t t y y y βββ ,那么()t j y y y A t t j ≤≤=+++1,02211βββ .所以().1,01111t j y y A y y A ti i i j i t i i ji i t i i j i t i i i j≤≤====⎪⎭⎫ ⎝⎛∑∑∑∑====βξβξββ即: ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0222111222221121222111t t t t t t t t t t t t y y y y y y y y y βξβξβξβξβξβξβξβξβξ所以 022113212232221321=⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅⎪⎪⎪⎪⎪⎭⎫ ⎝⎛t t t t tt t t t y y y βββξξξξξξξξξξξξ考察系数矩阵B ,则有⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=----1131211321211111t t t t t t t B ξξξξξξξξξξξ因为t ξξξ,,,21 是两两互不相同的特征值.所以0B ≠,因此必有0332211=====t t y y y y ββββ .于是021====t y y y ,因此t βββ,,,21 线性无关.在向量空间理论中,我们经常会碰到证明向量线性无关的问题,而有些问题需要用范德蒙行列式进行转化,通过转化,我们就很容易地得到所需要的结论,这就要求我们充分掌握范德蒙行列式及其结构特征.达到灵活应用. 4.5 解答整除问题多项式整除性理论是多项式理论中的重点,也是难点.由于多项式整除多项式的抽象性,它也成为学生学习时的难点[15].下面将结合范德蒙行列式来探讨多项式整除的相关问题.先介绍两个特殊的行列式的计算.(1)、行列式 ()()()()()()()()()()∏≤<≤----==ni j j i n n n n n n n x x x f x f x f x f x f x f x f x f x f A 1121112221212111111其中()kk k k k k t x t x x f +++=- 11.证明:因为()kk k k k k t x t x x f +++=- 11,所以⋅=------10100100011,31,21,1122211n n n n n n n t t t t t t A 112112222121111---n nn n nnx x x x x x x x x=()∏≤<≤-ni j j i x x 1.(2)、行列式()()∏≤<≤--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=n i j j i n n n n x x n n x n x n x n x x x x x x x x x B 1321321321!1!3!2!111111222211111111.证明:因为()()!11r r x x x r x +--=⎪⎪⎭⎫ ⎝⎛ ,所以 ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=1111222211111111321321321n x n x n x n x x x x x x x x x B n n n n()()()()()()()()()()212121111111!11!31!21!11222111221121+--+--+------⋅⋅=n x x x n x x x n x x x x x x x x x x x x n n n n n n n再令()()()11+--=r x x x x f r ,所以()()()()()()()()()()()()1112121222111121111111!2!3!1!1!2!3!1!n n n ijj i nn n n n f x f x f x f x f x f x B x x n n f x f x f x ≤<≤---==---∏. 例9[11]设n k k k ,,,21 是正整数,证明n 阶行列式121222211211111---=n nn nn n n k k k k k k k k k f能被()1)2(21221----n n n n 整除.证明;直接运用以上两行列式的结果得()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=121112111211!1!2!1222111n k k k n k k k n k k k n f n n n n因为()!1!2!1-n =()1)2(21221----n n n n ,所以n f 能被()1)2(21221----n n n n 整除. 例10[16]设()()()t g t g t g n 121,,,- 是1n -(2n ≥)个多项式,证明:多项式()()++n n t tg t g 21()n n n t g t 12--+ 能被211n t t t -++++整除,则每个()()1,,2,1-=n i t g i 的所有系数之和为0.证明:设()()()()()2211211n n n n n n g t tg t t g t t t t q x ---+++=++++. ①要证()t g i 的系数之和为0,即要证()01=i g . 设211n t t t -++++的1n -个根为121,,,-n r r r ,它们都是n 次单位根即有1=n i r ,现令()()1,,2,11-==n i t g i i ,并把121,,,-n r r r 依次代入①得⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---------0121321211122322221121321211n n n n n n n n n t r t r t r t t r t r t r t t r t r t r t② 这是一个关于121,,,-n t t t 的齐次线性方程组,其系数行列式212112222221211111------=n n n n n n r r r r r r r r r A是一个1-n 阶的范德蒙行列式,由于121,,,-n r r r 是互不相同的,因此0≠A ,从而方程组②只有零解,即12310n t t t t -=====即()()1,,2,101-==n i g i .因此,原命题得证.通过对上述例题的分析,可归纳出构造范德蒙行列式解此类问题的方法: (1)、变换形式,构造出范德蒙行列式; (2)、结合题目已知信息进行解题. 4.6 解答微积分问题无穷大量、无穷小量、高阶导数和极限是微积分研究的主要内容,这些概念的正确理解和掌握对学好微积分是必要的[18].然而初学者在学习掌握这些概念时常常会遇到困难.在解决此类问题时,有时构造范德蒙行列式变换一下形式,可巧妙地得到解答. 例10[19] 设()t g 至少有k 阶导数,且对某个实数r ,有()0lim =∞→t g t r t 和()()0lim =∞→t g t k r t .试证:()()()1,,2,10lim -==∞→k i t g t i r t .其中()()()t g t g =0.证明:因为()t g 至少有k 阶导数,对某个实数r ,有()0lim =∞→t g t r t 和()()0lim =∞→t g t k r t .要证()()()1,,2,10lim -==∞→k i t g t i r t ,只要将()()t g i 写成()t g 与()()t g k 的线性组合即可.利用泰勒公式[20]:()()()()()()()()()m k k k k g k m t gk m t g m t mg t g m t g ξ!!1!211"2'+-++++=+-- (*) 其中()k m m t t m ,3,2,1=+<<ξ,这是()()()()1'",,,k g t g t g t -线性方程组,其系数行列式为:()()()()()12121212122211111!11!21!11!1!11!12!2221!11!2111-----⋅=----=k k k k k k kk k k k kkk k B.故构造了一个k 阶的范德蒙行列式,其值为()!1!3!2!1-⋅⋅k ,所以1=B .于是可将方程组(*)中的()()()()t g t g t g k 1"',,,- 写成()()()()k m g m t g m k ,,2,1 =+ξ与的线性组合.我们只要证明()()()()k m g t m t g t m k r t r t ,,2,10lim lim ===+∞→∞→ξ即可.事实上,设k t x t +<<,于是()()()()()()()k i x g x x t x g x x t x g t i r x rt i r r t i r t ,00lim lim lim lim ==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=∞→∞→∞→∞→在此式中分别令0,=+=i m t x 和令k i x m ==,ξ,则得()()()()k m g t m t g t m k r t r t ,,2,10lim lim ===+∞→∞→ξ. 通过对以上例题的分析,可归纳出利用范德蒙行列式解这类问题方法:(1)、运用泰勒公式构造范德蒙行列式;(2)、结合范德蒙行列式和题目要求解题.从范德蒙行列式在以上六个方面的应用可以看出,巧妙的构造范德蒙行列式确实可化繁为简,达到事半功倍的效果.5 结论5.1 主要发现范德蒙行列式的构造,为问题的求解提供十分有效的手段.对范德蒙行式的应用,不仅需要对范德蒙行列式的形式、特点及性质熟练掌握,而且要能灵活的运用,善于将知识之间衔接起来.因此,只有不断地分析解决典型的题目,找出内在规律,对范德蒙行列式的应用才能进一步掌握.总之,以上问题出现的形式灵活多变,题目有一定难度,又有一定的技巧性,但只要我们善于思考、总结,就能找到解决问题的突破口,最终解决问题.5.2 启示范德蒙行列式应用中构造范德蒙行列式是解决问题的难点,也是关键点.要巧妙的构造范德蒙行列式进行解题,必须对高等数学的基础知识熟练掌握,能够将知识融会贯通.5.3 局限性由于本人的能力水平有限,这里提供的仅是范德蒙行列式在几方面的应用.不能提供更多的有关范德蒙行列式的应用,这是本毕业论文的不足之处.5.4 努力方向在今后的学习研究中将不断地深入探讨,发现更多范德蒙行列式的应用和构造范德蒙行列式的方法,为学习者提供更多的帮助.除了文中所涉及的几种应用外,根据问题不同可能还有其他的用法,这些方法将有待我们作进一步探讨研究,以弥补本毕业论文的不足.参考文献[1] 李文林.数学史概论[M].北京:高等教育出版社,2002:177-206.[2] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].第三版.北京:高等教育出版社,2003:55-83.[3] 姚慕生.高等代数学[M].上海:复旦大学出版社,1999:23-32.[4] 丘维声.高等代数学习指导书(上册)[M].北京:清华大学出版社,2005:42-43.[5] 刘丁西.高等代数习题精解[M].第二版.合肥:中国科学技术大学出版社,2004:38-66.[6] 杨子胥.高等代数习题解[M].济南:山东科学技术出版社,2009:307-366.[7] 张文治,赵艳.范德蒙行列式应用三则[J].北华航天工业学院学报,2007,17(4):38-39.[8] 徐杰.范德蒙行列式的应用[J].职校论坛,2009,(17):584-586.[9] 程伟健,贺冬冬.范德蒙行列式在微积分中的应用[J].大学数学,2004,20(3):127-130.[10]徐仲,陆全等.高等代数(导数.导学.导考)[M].西安:西北工业大学出版社,2004:85-130.[11]孙宗明.高等代数的内容与方法[M].兰州:兰州大学出版社,1990:109-114.[12]陈文磊,肖俊起,莫延文.一类特殊矩阵多项式计算方法浅谈[J].高等函授学报(自然科学版),2008,21(4):58-59.[13]牛海军.范德蒙行列式在行列式计算中的应用[J].中国科教创新导刊,2008,(17):140.[14]杨培国.n阶k循环行列式的初等解法[J].上海工程技术大学学报,2004,18(1):37-39.[15]王寿生.考研数学常见题型解析及模拟试题[M].西安:西北工业大学出版社,2000:216-218.[16]邓敏.多项式余数定理的推广形式[J].数学理论与应用,2006,26(3):108-110.[17]刘玉琏,傅沸仁,林玎等.数学分析讲义[M].第四版.北京:高等教育出版社,2003:97-205.[18]华青,邵之泉,俞颂.基础微积分[M].上海:知识出版社,1987:1-12.[19]斐礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993:180-181.[20]邹应.数学分析习题及其解答[M].武汉:武汉大学出版社,2001:168-169.。

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。

2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。

3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。

1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。

具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。

数学与应用数学本科毕业范文范德蒙行列式及其应用

数学与应用数学本科毕业范文范德蒙行列式及其应用

本科毕业论文论文题目:范德蒙行列式及其应用学生姓名:学号:专业:数学与应用数学指导教师:学院:年月日毕业论文(设计)内容介绍目录中文摘要 (1)英文摘要 (1)一、引言 (2)二、范德蒙行列式定义及性质 (2)三、范德蒙行列式的应用 (3)(一)范德蒙行列式在多项式理论中的应用 (3)(二)范德蒙行列式对整除问题的应用 (5)(三)范德蒙行列式在矩阵的特征值与特征向量中的应用 (6)(四)范德蒙行列式在向量空间理论中的应用 (7)(五)范德蒙行列式在线性变换理论中的应用 (8)(六)范德蒙行列式在微积分中的应用 (10)(七)范德蒙行列式在求解行列式中的应用 (13)参考文献 (16)范德蒙行列式及其应用摘要:行列式最早出现在16世纪关于线性方程组的求解问题中,时至今日行列式理论的应用却远不如此.它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;线性变换;多项式Application of Vandermonde’s DeterminantAbstrac t:The determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries,but the days up to now the theoretical in determinant was far used in lots of domains.Vandermonde’s determinant is regarded an a kind of special determinant,which not only have the special form but also have the extensive application.The article inquired into the Vandermonde’s determinant in vector space, linear transformation,polynomial theories and determinant’s calculation of application. Keywords:Vandermonde’sDeterminant;vectorspace;lineartransformation,polynomial theories; determinant’s calculation of application.一 引言在高等代数中,行列式计算及其相关的证明是一个重点,也是难点.它最早出现在线性方程组的求解问题中,时至今日,行列式理论的应用越来越广泛,它是后期学习和应用线性方程组,向量空间,矩阵和线性变换的基础.正确而快速的解决行列式问题是其他一切工作的前提,也是科研工作中最为关键的一步.行列式的计算有一定的规律性和技巧性,掌握行列式的规律性有助于我们高效准确的解决科研工作中遇到的行列式问题.而范德蒙行列式是一种重要的行列式,在行列式计算中可以把一些特殊的或者是类似于范德蒙行列式的行列式转化为范德蒙行列式进行计算.由于范德蒙行列式有着独特的构造和优美的形式而被广大科研工作者广泛的应用,因而成为一个著名的行列式.二 范德蒙行列式定义及性质1. 范德蒙行列式的定义形如12222121111211 (1)n nn n n nx x x x x x x x x ---的行列式,称为1x ,2x ,…n x 的n 阶范德蒙行列式,记作 n V (1x ,2x ,…n x ).下面以递推法为例介绍范德蒙行列式的计算n V (1x ,2x ,…n x )=21311222221331111111122133111111000n n n n n n n n n n n x x x x x xx xx x x x x x x x x x x x x x x x ---------------=2131122133112222213311()()()()()()n n n n n n n n x x x x x x x x x x x x x x x x x x x x x x x x ------------=21()x x -31()x x -…1()n x x -n-1V (2x ,…n x ).仿上做法有n-1V (2x ,…n x )=3242223()()n n n x x V x x --(x -x )(x -x ).再递推下直到11V =,故n V (1x ,2x ,…n x )=21()x x -31()x x -…1()n x x -.32422()n x x -(x -x )(x -x )(1n n x x --).1=1i j j i nx x ≤<≤-∏. 有以上的计算易得,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1n nn n n nx x x x x x x x x ---=∏(i j x x -). 有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.三 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.(一) 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助.例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0, 如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c a c a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c x c x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.(二) 范德蒙行列式对整除问题的应用多项式的根与整除性是密切相关的,所以有时候可以用范德蒙行列式的性质讨论某些多项式或者整数的整除题. 例4 设121(),(),(),n f x f x f x -是n-1个复系数多项式,满足 11n x x ++++2121()()()n n n n n f x xf x x f x --+++,证明121(1)(1)(1)0n f f f -====.证 设2121()()()n n n n n f x xf x x f x --+++=1()(1)n p x x x -+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得 212122(2)1211(1)(2)121(1)(1)(1)0,(1)(1)(1)0,(1)(1)(1)0.n n n n n n n n f f f f f f f f f ωωωωωω--------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 这个关于1(1)f ,2(1)f ,1(1)n f -的齐次线性方程组的系数行列式,因此21(,,,)0n V ωωω-=.例5 设12,,n a a a 是正整数,证明()12,,n V a a a 能被()()2121221n n n n ----整除.证明 由()()()111222111111n nn n a a a a aa I aa a --=-1!2!!n =111222112111211121n n n a a a n a a a n a a a n ---. 知()12,,n V a a a 能被1!2!!n =()()2121221n n n n ----整除.(三) 范德蒙行列式在矩阵的特征值与特征向量中的应用例 6 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 7 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11j r r A x x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.(四) 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例8 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,)n i i i i a t t t -=,i=1,2,…n,n 是n 维向量空间的一组基.证 令21111121222221111n n n n nnn a t t t a t t t A a t t t ---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为12,,,n t t t 是互不相同的实数,所以0T A A =≠,则12,,,n a a a 线性无关.例 9 设V 是数域F 上的n 维向量空间,任给正整数n m ≤,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取()2111,2,2,,2n α-=,()()()2222121,2,2,2n α-=,()()()211,2,2,2mmm n m α-=,令()()()()()()111222212121122212221222nnnk k k n k k k n n k k k n D ---=,121n k k k m ≤≤≤≤≤,()()()()()()111222212121122212221222n nnk k k n k k k n n k k k n D ---=是范德蒙行列式,且0n D ≠,所以12,,,n k k k ααα线性无关.例 10 设V 是数域F 上的n 维向量空间,则V 的有限个真子空间不能覆盖V.证明:当n=1时,显然成立.设n>1时,令12,,,n ααα是V 的一个基,设}{112n n n S k k k F V ααα-=+++∣∈⊂,其中,n F 为F 中元素之集合.令112:,n n n F S k e ke k e ϕ-→→+++,12,,,n e e e 为单位向量.则易证ϕ是双射,从而S 中有无穷多个不同的元素.设,1,2,i V i t =为V 的真子空间,则S 中的元素在i V 中的个数小于n,否则,若,1,2,j i V j n β∈=111121112,.n n n nn n n k k k k βαααβααα--⎧=+++⎪⎨⎪=+++⎩则由,,1,2,,,i j k k i j n i j ≠=≠,知系数行列式为非零的范德蒙行列式,故有,1,2,,j k V j n α∈=,进而,1,2,i V V i t ==矛盾.从而S 中只有有限多个元素在1ti i V =中,而S 中有无穷多个元素,所以存在x S ∈,但1,ti i x V =∉即V 的有限个真子空间不能覆盖其自身.(五) 范德蒙行列式在线性变换理论中的应用在高等代数的学习中,线性变换一直是一个重点,也是难点,题目的变化也比较多,在有些题目中,我们可以巧妙地利用范德蒙行列式来解决这类题目. 例11 如果12,,,s λλλ是线性变换的全部两两不同的特征值,(1,2,,)i i V s λα∈,则当120s ααα+++=时,必有12s ====0ααα.证明 注意到(1)I i i i s αλαΛ=≤≤,对等式120s ααα+++=两边逐次作用,得112222211221111220,0,0.s s s ss s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 用矩阵表示为()()111122121110,0,,01s s s s s s λλλλαααλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭(1)矩阵1111221111s s s s s B λλλλλλ---⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙行列式,由于12,,,s λλλ两两不同,从而B 是可逆矩阵.在(1)式两边右乘1B -, 得12s ====0ααα.例12 数域F 上的n 维向量V 的线性变换σ有n 个互异的特征值12,,n λλλ,则1) 与σ可交换的V 的线性变换都是21,,,n e σσσ-的线性组合,这里e 为恒等变换.2)21,,,,n V αασασασα-∀∈线性无关的充要条件为1,ni i αα==∑这里()i i i σααλ=,1,2,i n =证明:1)设δ是与σ可交换的线性变换,且(),1,2,,i i i i n σαλα==则 }{i i V k k F λα=⎪∈是δ的不变子空间.令21121n n xe x x x δσσσ--=++++且(),1,2,,i i i k i n σαα==,则由以下方程组21111211121212221221121,,.n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=++++⎪=++++⎪⎨⎪⎪=++++⎩ (1)因为方程组(1)的系数行列式是范德蒙行列式,且()1ij j i nD λλ≤<≤=-∏,所以方程组(1)有唯一解,故δ是21,,,n e σσσ-的线性组合.2)充分性因为1ni i αα==∑,所以()()()()111112212111,,,,,,1n n n n nn λλλλασασααααλλ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,并且()111122111101n i j j i nn nn λλλλλλλλ--≤<≤-=-≠∏,所以1111221111n n nn λλλλλλ---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是可逆矩阵,又因为12,,,n ααα是V 的一组基,()()1,,,n ασασα-线性无关.3)必要性 设12,,,n e e e 是分别属于1,,,n λλλ的特征向量,则12,,,n e e e 构成V 的一个基,因而有1122n n k e k e k e α=+++.若0,1,2,i k i n ≠=,则i i k e 是σ的属于i λ的特征向量,故结论成立.若存在}{1,2,,j n ∈,使0j k ≠,不妨设12,,,r k k k 去不为零,而120r r n k k k ++====,因而有1122r r k e k e k e α=+++则()()()()()111111112222212121,,,,,,,,,n n n r r n r r r r r k k k k k k e e e e e e A k k k λλλλασασαλλ----⎡⎤⎢⎥⎢⎥==•⎢⎥⎢⎥⎢⎥⎣⎦. 利用范德蒙行列式可知A 有一个r 阶子式不为零,所以秩(A )=r ,从而()()()1,,,n r ασασα-=,又因为r n <线性无关,所以()()()1,,,n ασασα-线性无关,矛盾.从而1,ni i αα==∑1,2,i n =.(六) 范德蒙行列式在微积分中的应用如果视多项式为实函数,则范德蒙行列式还可以应用到微积分领域.例13 ()f x 在[],a b 上连续,在(),a b 内存在2阶导数,证明a x b <<上有()()()()()1"2f x f a f b f a x a b a f c x b -----=-,这里(),c a b ∈.特别的,存在,(,)c a b ∈,使()()2,()2()"()24b a a bf b f f a f c -+-+=. 证 在[],a b 上构造函数()()()()()22221111y y f y a a f a F x x x f x b b f b =,为范德蒙行列式,则()f x 在[],a b 上连续,在(),a b 内存在2阶导数.因()()()0F a F x F b ===,故有中值定理,存在12a x x x b <<<<,使()()12''0F x F x ==,故再运用一次中值定理,存在()12,c x x ∈,使()''0F c =,即()()()()()''2''22002111f c a a f a F c x x f x b b f b ==0 . 展开行列式即得()()()()()1"2f x f a f b f a x a b a f c x b -----=-. 特别的,取2a bx +=,则有相应的()',c a b ∈,使上式成立,即()()()()212"22a b f f a f b f a a b b a af c a b b +⎛⎫- ⎪-⎝⎭-+--=+-,化简即得()()2,()2()"()24b a a bf b f f a f c -+-+=.反复利用微分中值定理,可以类似的证明下面更一般的结论:设()f x 在[],a b 内存在n-1阶导数,12n a x x x b <<<<=.证明存在(),c a b ∈,使()()()()()111!n ni i i j j if x f c n x x -=≠=--∑∏. 例 14 设()f x 在区间I上n 阶可导()2n ≥,若对()()()()00,,,,n n n x I f x M f x M M M ∀∈≤≤为正常数,证明:存在n-1个正常数121,,,n M M M -使对x I ∀∈,有()()()1,2,1.k k f x M k n ≤=-证明:设121,,n a a a I -∈,且()0,i i j a a a i j ≠≠≠,由泰勒公式,对于1,2,,1i n =-,有()()()()()11!!n xn k ni i i k f f f x a f x a a k n ξ-=+=++∑,有此得 ()()()()()11!!n xn kn i i i k f f a f x a f x a k n ξ-==+--∑, 因此 ()()()()()1012!!!nx n k n i i i n k f f A a f x a f x a M M k n n ξ-=≤+++≤+∑,其中11max ni i n A a ≤<-=,令()()()11,,1,2,,1!x n ki i k f a A x x I i n k -==∈=-∑,则()()02,1,2,,1!i n AA x M M x I i n n ≤+∈=-,由于方程组的系数行列式D 为()()()2311111231222223111112!3!1!2!3!1!2!3!1!n n n n n n n a a a a n a a a a n D a a a a n ---------=-=()211112122212121111111!21!1n n n n n n n a a a a a a a a a n a a a -------=-!,其中后面的行列式为121,,,n a a a -范德蒙行列式,由()i j a a i j ≠≠及0i a ≠知0D ≠,故由克莱姆法则知,存在于X无关的常数()()()()()()121,,k k k n λλλ-,使得:()()()()()11n k k i i i f x A x λ-==∑,(),1,2,,1x I i n ∀∈∀=-,由此推得,1,2,,1x I k n ∀∈∀=-,有()()()()()()()110112!n n k k k i n k i i i i A fx A x M M M n λλ--==⎡⎤≤≤+=⎢⎥⎣⎦∑∑.例15 设函数()f x 在0x =附近有连续的n 阶导数,且()()()()'00,00,,00n f f f ≠≠≠.若121,,,n c c c +为一组两两互异的实数,证明,存在唯一的一组实数121,,,n λλλ+,使得当0h →时,()()110n i i i f c h f λ-=-∑是比n h 高阶的无穷小.证明:由题设条件可得,()()1,2,1i f c h i n =+在0x =处带有皮亚诺型余项的马克劳林展开式:()()()()1100!k k nk nk h c f c h f h k ==+ο∑,()()()()2200!k k nk n k h c f c h f h k ==+ο∑,当0h →时,若()()110n i i i f c h f λ-=-∑为比n h 高阶的无穷小.则121112211222112211112211++=1,++=0,++=0,++=0.n n n n n nn nn n c c c c c c c c c λλλλλλλλλλλλ++++++++⎧⎪+⎪⎪+⎪⎨⎪⎪⎪+⎪⎩ 这是以121,,,n λλλ+为未知数的线性方程组,其系数行列式为:()121222121111211110n n ijj i n nn n n c c c D c c c c c c c c ++≤<≤++==-≠∏.故上述方程组有唯一解,即存在唯一一组实数121,,,n λλλ+,使得当0h →时,()()110n iii f c h f λ-=-∑是比nh高阶的无穷小.(七) 范德蒙行列式在求解行列式中的应用行列式的计算是高等代数的重点内用之一,在一些行列式的求解问题中,常可见到范德蒙行列式的踪影,此时提示我们可利用行列式的性质或拆项,升降等方法,将给定行列式转化为范德蒙行列式的形式,从而利用其结果,求出原行列式的值,恰当灵活的运用范德蒙行列式会大大简化某些复杂行列式的计算.例16 122222221211112111=nn n n n n n n na x a x a x D a x a x a x a x a x a x ---+++++++++.解 将原n 阶行列式升阶为一个n+1阶行列式122222221211112111110000nnn n n n n n na x a x a x D a x a x a x a x a x a x ---+++=++++++. 然后将此n+1阶行列式第一行乘以()1,2,i a i n -=加到第i+1行可得12222212121111n nnnn n na x x x D a x x x a x x x -=--=1222212122111000n nnn n nx x x x x x x x x -12222212121111n nnnn n na x x x a x x x a x x x =()()()121112nn ijiijj i ni j i nx x x x x x a x x ≤≤≤=≤≤≤•----∏∏∏.例 17 设0x y z >>>,试证明:()2221,,0xx yz f x y z y y xz xy yz xzz z xy=<++. 证明:()()()()222222312222xx yz x x yz x y z x x D yy xz c x y z c c y y xz x y z y y zz xyzz xy x y z z z +++-=+++-+++-+++- ()()()()222x x xy yz xzy y xy yz xz xy yz xz y x z x z y zz xy yz xz++=++=++---++故()2221,,x x yzf x y z y y xz xy yz xzzz xy=++=()()()y x z x z y ---. 由已知0x y z >>>,有()0y x -<,()0z y -<,()0z x -<,所以有(),,0f x y z <例18 计算行列式()()()()()()()()()0001010111101n nnn n nnn n nn nn n n n a b a b a b a b a b a b D a b a b a b +++++++=+++解:设01000111101n nn n n n n n n n n nn n n n nC C a C a C C a C aD C C a C a =,01111012111n nn n n n n nb b b b b b D ---=,对2D 进行各行依交换,就可以得到范德蒙行列式,于是()()0010112112112011111111nnn n nn n n nnnnn n nnn a a b b b a a D D D C CC b b b a a ++=•=•-=12n n nnC C C()0ijj i na a ≤<≤-∏()()121n n +-()0ijj i nb b ≤<≤-∏.参考文献[1] 同济大学数学系.线性代数(第五版).北京:高等教育出版社.2007(9)[2] 北大数学系编.王萼芳等修订.高等代数.第三版.北京:高等教育社.2003(2).[3] 郭大钧等.吉米多维奇数学分析习题集解(第三版).济南:山东科学技术出版社.2005(3).[4] 张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.1999[5] 白述伟.高等代数选讲[M].哈尔滨黑龙江教育出版社.1996.[6] 同济大学.高等代数与解析几何[M].北京:高等教育出版社.2005:223.[7] 刘丽,林谦,韩本三,等.高等代数学习指导与习题解析[M].成都:西南财经大学出版社.2009:39.170.253.[8] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社.2001:168.169.176.[9] 吴良森,毛羽辉.数学分析习题精解:多变量部分 [M].北京:科学出版社,2005.[10] 毛纲源.线性代数解题方法和技巧[M].武汉:湖南大学出版社.山东师范大学本科毕业论文(设计)题目审批表山东师范大学本科毕业论文(设计)开题报告论文题目:学院名称:专业:学生姓名:学号:指导教师:年月日山东师范大学本科毕业论文(设计)教师指导记录表指导教师意见评阅人意见答辩委员会意见学院学位分委员会意见山东师范大学本科毕业论文(设计)答辩记录表学院:(章)系别:专业:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:山东师范大学本科毕业论文(设计)摘要学院:专业:班级:。

行列式的解法技巧-[开题报告]

行列式的解法技巧-[开题报告]

毕业论文开题报告数学与应用数学 行列式的解法技巧一、选题的背景与意义行列式理论活跃在数学的各个分支,同时也是现代物理及其他一些科学技术领域中不可缺少的工具.作为近世线性代数的一个基本分支,行列式理论却有着悠久的历史.行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同.日本数学家关孝和提出来的,他在1683年写了一部名为解伏题之法的著作,意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述.欧洲第一个提出行列式概念的是德国数学家,微积分学奠基人之一莱布尼茨.作为行列式本身而言,我们可以发现它的两个基本特征:当行列式是一个三角形行列式时,计算将变得十分简单,于是将一个行列式化为三角形行列式便是行列式计算的一个基本思想;行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内部规律也是我们的一个基本想法,即递推法.这两种方法也经常一起使用,而其它方法如:加边法、降阶法、数学归纳法、拆行(列)法、因式分解法等可以看成是它们衍生出的具体方法[1].二、研究的基本内容和拟解决的主要问题本文的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解行列式的一些计算技巧所涉及到的方法和概念.首先我们介绍一下线性方程组与行列式的关系[2-7].设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212111212111,若常数项n b b b ,,,21Λ不全为零,则称次方程组为非齐次线性方程组;若常数项n b b b ,,,21Λ全为零,此时称方程组为齐次线性方程组.下面是著名的克拉默法则.如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212111212111 (1) 的系数行列式不等于零,即0212222111211≠=nnn n nna a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛ那么线性方程组(1)有解,并且解是唯一的,解可以表示为DD x D Dx D D x D D x n n ====,,,,232211Λ. 其中j D 是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 阶行列式,即nnj n n j n n nj j j a a b a a a a b a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ1,1,111,111,111+-+-=定理1[7]如果线性方程组(1)的系数行列式0≠D ,则(1)一定有解,且解是唯一的.定理2[7] 如果线性方程组(1)无解或有两个不同的解,则它的系数行列式必为零. 用克拉默法则解方程组的两个条件 (1)方程个数等于未知量个数. (2)系数行列式不等于零.克拉默法则建立了线性方程组的解和已知的系数与常数项之间的关系.它主要适用于理论推导.接下来我们介绍一下行列式的余子式和代数余子式的概念以及与行列式计算的关系. 定义[1]在一个n 级行列式D 中任意选定k 行k 列()n k ≤,位于这些行和列的交叉点上的2k 个元素按照原来的次序组成一个k 级行列式M ,称为行列式D 的一个k 级子式;在D 中划去这k 行k 列后余下的元素按照原来的次序组成一个k n -级行列式'M 称为k 级子式M 的余子式.例 1 在四级行列式310120012104121-=D中选定第一、三行,第二、四列得到一个二级子式M ,1042=M ;M 的余子式1042'=M .定义 设D 的k 级子式M 在D 中所在的行、列指标分别为k i i i ,,,21Λ与k j j j ,,,21Λ,则M 的余子式'M 前面加上符号()()()k k j j j i i i ,,,,,,21211ΛΛ+-后称为M 的代数余子式.引理 行列式D 的任一个子式M 与它的代数余子式A 的乘积中的每一项都是行列式D 的展开式中的一项,而且符号也一致.定理 (拉普拉斯定理) 设在行列式D 中任意取定了)11(-≤≤n k k 行,由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积之和等于行列式D .定理 两个n 级行列式nnn n n n a a a a a a a a a D ΛM O M M ΛΛ2122221112111=与nnn n nn b b b b b b b b b D ΛM O M M ΛΛ2122221112112= 的乘积等于一个n 级行列式nnn n nnc c c c c c c c c C ΛM O M M ΛΛ212222111211=其中∑==n k kj ik ij b a c 1. 定义 行列式113121122322213211111----n nn n n n n x x x x x x x x x x x x ΛM M M M ΛΛΛ称为n 阶范德蒙(Vandermonde )行列式,由于行列式Tn n V V =,因此范德蒙行列式也可写为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=----121323312222112111111n n nnn n n x x x x x x x x x x x x V ΛM MM M ΛΛΛ则有∏≤<≤-=nj i i jx xV 1)(.在理解行列式有关概念及性质的基础上,我们可以通过一些合理的方法对各类型行列式的特点来求其解[1-15]。

范德蒙行列式的若干应用论文--大学毕业设计论文

范德蒙行列式的若干应用论文--大学毕业设计论文

海南师范大学目录第一章. 绪论1.1引言- - - - - - - - - - - - - - - - - - - - - 1 1.2范德蒙行列式的证明- - - - - - - - - - - - - - 11.2.1 用数学归纳法证明范德蒙行列式1.2.2 用定理证明范德蒙行列式1.3范德蒙行列式的性质- - - - - - - - - - - - - - 4 第二章. 范德蒙行列式的推广与应用- - - - - - - - - 52.1范德蒙行列式在行列式计算中的应用2.2范德蒙行列式在求解n阶k循环行列式中的应用2.3范德蒙行列式在解决多项式的求根问题中的应用2.4范德蒙行列式在解答整除问题中的应用2.5范德蒙行列式在等差数列拆项中的应用2.6范德蒙行列式在微积分中的应用参考文献致谢范德蒙行列式的若干应用作者:高亚南指导教师:黄晓芬博士摘要: 行列式是线性代数的主要内容之一,它是线性代数的决定因素,这是在矩阵,线性方程,向量空间和线性变换之后的的基础上,具有一个非常重要的作用。

该n阶行列式是Vandermonde行列式著名的线性代数,它构建了一个独特而美丽的外形,而且还因为它具有广泛的应用前景,因而成为一个众所周知的决定因素。

范德蒙行列式不仅仅是极为重要的行列式之一,而且也是近代线性代数的一个分支。

范德蒙行列式的应用十分广泛,不仅应用于一些行列式的计算当中,而且它还可以于证明行列式的一些问题,一些关于多项式的证明以及数列拆项等问题上。

本文将从线性代数、多项式理论,行列式向量空间理论等方面进行研究证明。

关键词: 行列式;范德蒙行列式;微积分;多项式理论;Vandermonde Determinant Of ApplicationsAuthor:Gao Yanan Tutor:Doctor Huang XiaofenAbstract:The determinant is one of the main content of linear algebra, it is a major determinant of linear algebra, this is in the matrix, linear equations, vector Spaces andlinear transformation, on the basis of has a very important role. The n order determinant is a famous Vandermonde determinant of linear algebra, it constructed aunique and beautiful appearance, but also because it has a broad application prospect,thus become a well known determinant. Vandermonde determinant, is a kind of extremely important determinant, at the same time is a branch of modern linear algebra. V andermonde determinant application is more extensive, not only applied tosome determinant calculation, and it can also prove that the determinant of someproblem and some certificates and some of the characteristics about the polynomialvector linear independence on such issues. This article will from linear algebra, theoryof polynomial, calculus, determinant, etc are studied.Key words: Determinant, vandermonde determinant, infinitesimal calculus,theoryof polynomial第一章.绪论1.1引言范德蒙行列式,是具有深刻研究价值的行列式,同时也是近代线性代数的一个分支。

行列式计算开题报告

行列式计算开题报告

行列式计算开题报告行列式计算开题报告摘要:行列式是线性代数中的重要概念,具有广泛的应用价值。

本文旨在探讨行列式的计算方法及其在实际问题中的应用。

首先介绍行列式的定义和性质,然后讨论行列式的计算方法,包括按定义计算、代数余子式法和高斯消元法等。

最后通过实例分析,展示行列式在解线性方程组、计算矩阵的逆等问题中的应用。

1. 引言行列式是线性代数中的基本概念,广泛应用于数学、物理、工程等领域。

它在解线性方程组、计算矩阵的逆、求解特征值等问题中起到重要作用。

本文将对行列式的计算方法进行探讨,并展示其在实际问题中的应用。

2. 行列式的定义和性质行列式是由方阵中的元素按照特定规则计算得到的一个标量值。

对于n阶方阵A,其行列式记作det(A)或|A|。

行列式具有以下性质:- 互换行列式的行列式值变号。

- 行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。

- 行列式的某一行(列)的倍数加到另一行(列)上,行列式的值不变。

3. 行列式的计算方法3.1 按定义计算按定义计算行列式是最直接的方法,但对于较高阶的方阵,计算量较大。

该方法通过对方阵的各个元素进行排列组合,计算每一项的代数乘积,最后求和得到行列式的值。

3.2 代数余子式法代数余子式法是一种递归的计算行列式的方法。

它通过将方阵的元素划分为余子式,利用代数余子式的定义和性质,将行列式的计算转化为较小阶的行列式的计算,从而简化计算过程。

3.3 高斯消元法高斯消元法是一种通过初等行变换将方阵化为上三角形矩阵的方法。

在高斯消元过程中,对方阵进行一系列的行变换,使得方阵的下三角部分元素全为0,从而简化行列式的计算。

4. 行列式的应用4.1 解线性方程组行列式在解线性方程组中起到重要作用。

通过将线性方程组的系数矩阵的行列式计算得到的值与零比较,可以判断线性方程组是否有唯一解或无解。

4.2 计算矩阵的逆矩阵的逆可以通过行列式的计算得到。

若一个矩阵的行列式不为零,则该矩阵存在逆矩阵。

范德蒙行列式的几点重要的应用-应用数学毕业论文

范德蒙行列式的几点重要的应用-应用数学毕业论文

阜阳师范学院信息工程学院Fuyang Shifan Xueyuan Xinxi Gongcheng Xueyuan诚信承诺书我谨在此承诺:本人所写的毕业论文《范德蒙行列式的几点重要的应用》均系本人独立完成,凡涉及其他作者的观点和材料均作了注释。

如有不实,本人愿承担相应后果,接受学校的处理。

承诺人(签名)年月日范德蒙行列式的几点重要的应用姓名:苏春 学号:200904010221 指导老师:王海坤摘要行列式是高等代数知识学习的基础,它在后续的学习中非常重要。

由于它有良好的特点和独特的形式而深受数学工作者的关注。

本文将立足于范德蒙行列式的性质, 探究其各种位置变化规律。

从而把一些似于它的行列式特点且根据一定的规律性和技巧性可以转化且利用它的性质特点进行优化处理,及如何构造它,把复杂的行列式进行优化,本文主要通过举例来探究它在多项式、线性变换、向量空间以及微积分等理论中的具体应用。

关键词:范德蒙行列式;行列式;微积分:向量空间;线性变换;多项式;1. 预备知识1.1 范德蒙行列式的定义我们把形式如下的行列式113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D称为阶数为n 的范德蒙行列式(Vandermonde Determinant)。

下面我们来把范德蒙德行列式n D113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D∏≤<≤-=ni j j i a a 1)(对于任意的)2(≥n n 恒成立. 作具体的证明:1.2 范德蒙行列式的证明1.2.1 范德蒙行列的归纳法的证明证明:用数学归纳法当2=n 时,有.)(112112212∏≤<≤-=-==i j j ia aa a a a D 故有当2=n 时成立。

假设对阶数为1-n 时成立原命题已证,现对阶数为n 时也证明同样成立。

(2021年整理)行列式的计算开题报告

(2021年整理)行列式的计算开题报告

(完整版)行列式的计算开题报告编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)行列式的计算开题报告)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)行列式的计算开题报告的全部内容。

(完整版)行列式的计算开题报告编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)行列式的计算开题报告这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力.本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)行列式的计算开题报告〉这篇文档的全部内容。

怀化学院本科毕业论文任务书毕业论文(设计)工作计划:1、2013.11。

14 接受毕业论文任务;2、2013.11.15-11.28 完成开题报告书;3、2013。

11。

29-2014。

2.11 完成论文初稿;4、2014。

2。

12-4。

30 在指导老师的指导下修改、完善论文,论文定稿;5、2014。

5。

1-5.10 论文答辩.接收任务日期 2013 年 11 月 14 日要求完成任务日期 2014 年 5月 1 日学生(签名)年月日指导教师(签名)年月日系主任 (签名)年月日说明:本表为学生毕业论文(设计)指导性文件,由指导教师填写,一式两份,一份交系(部)存档备查,一份发给学生。

本科生毕业论文(设计)开题报告书题目行列式的计算学生姓名学号系别数学与应用数学系专业数学与应用数学指导教师2013年 11 月 25 日。

开题报告-行列式的计算方法和应用

开题报告-行列式的计算方法和应用

毕业论文开题报告信息与计算科学行列式的计算方法和应用一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势)1.选题的背景行列式理论产生于十七世纪末,到十九世纪末,它的理论体系已基本形成了。

1693年,德国数学家莱布尼茨(Leibnie,1646—1716)解方程组时将系数分离出来用以表示未知量,得到行列式原始概念。

当时,莱布尼兹并没有正式提出行列式这一术语。

1729年,英国数学家马克劳林(Maclaurin,1698—1746)以行列式为工具解含有2、3、4个末知量的线性方程组。

在1748年发表的马克劳林遗作中,给出了比菜布尼兹更明确的行列式概念。

1750年,瑞士数学家克拉默(Gramer,1704—1752)更完整地叙述了行列式的展开法则并将它用于解线性方程组。

即产生了克拉默法则。

1772年。

法国数学家范德蒙(Vandermonde,1735—1796)专门对行列式作了理论上的研究,建立了行列式展开法则,用子式和代数余子式表示一个行列式。

1172年,法国数学家拉普拉斯(Laplace。

1749梷1827)推广了范德蒙展开行列式的方法。

得到我们熟知的拉普拉斯展开定理。

1813一1815年,法国数学家柯西(Cauchy,1789—1857,对行列式做了系统的代数处理,对行列式中的元素加上双下标排成有序的行和列,使行列式的记法成为今天的形式。

英国数学家凯菜(Cayley,于1841年对数字方阵两边加上两条竖线。

柯西证明了行列式乘法定理。

1841年,德国数学家雅可比(jacobi)发表的《论行列式的形成与性质》一文,总结了行列式的发展。

同年,他还发表了关于函数行列式的研究文章,给出函数行列式求导公式及乘积定理。

至19世纪末,有关行列的研究成果仍在式不断公开发表,但行列式的基本理论体系已经形成。

行列式的概念最初是伴随着方程组的求解而发展起来的。

行列式的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具,因此对许多人来说,掌握行列式的计算是重要的。

范德蒙行列式的几点重要的应用-应用数学毕业论文

范德蒙行列式的几点重要的应用-应用数学毕业论文

阜阳师范学院信息工程学院Fuyang Shifan Xueyuan Xinxi Gongcheng Xueyuan诚信承诺书我谨在此承诺:本人所写的毕业论文《范德蒙行列式的几点重要的应用》均系本人独立完成,凡涉及其他作者的观点和材料均作了注释。

如有不实,本人愿承担相应后果,接受学校的处理。

承诺人(签名)年月日范德蒙行列式的几点重要的应用姓名:苏春 学号:200904010221 指导老师:王海坤摘要行列式是高等代数知识学习的基础,它在后续的学习中非常重要。

由于它有良好的特点和独特的形式而深受数学工作者的关注。

本文将立足于范德蒙行列式的性质, 探究其各种位置变化规律。

从而把一些似于它的行列式特点且根据一定的规律性和技巧性可以转化且利用它的性质特点进行优化处理,及如何构造它,把复杂的行列式进行优化,本文主要通过举例来探究它在多项式、线性变换、向量空间以及微积分等理论中的具体应用。

关键词:范德蒙行列式;行列式;微积分:向量空间;线性变换;多项式;1. 预备知识1.1 范德蒙行列式的定义我们把形式如下的行列式113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D称为阶数为n 的范德蒙行列式(Vandermonde Determinant)。

下面我们来把范德蒙德行列式n D113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D∏≤<≤-=ni j j i a a 1)(对于任意的)2(≥n n 恒成立. 作具体的证明:1.2 范德蒙行列式的证明1.2.1 范德蒙行列的归纳法的证明证明:用数学归纳法当2=n 时,有.)(112112212∏≤<≤-=-==i j j ia aa a a a D 故有当2=n 时成立。

假设对阶数为1-n 时成立原命题已证,现对阶数为n 时也证明同样成立。

行列式计算的开题报告

行列式计算的开题报告

行列式计算的开题报告行列式计算的开题报告摘要:本文旨在探讨行列式计算的相关问题,包括行列式的定义、性质以及计算方法等。

通过对行列式的研究,我们可以更好地理解线性代数中的重要概念和工具,并在实际问题中应用它们。

本文将以理论分析和实例计算相结合的方式,深入探讨行列式计算的方法和应用。

引言:行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。

行列式的计算方法多种多样,包括拉普拉斯展开法、性质法则、高斯消元法等。

本文将对这些方法进行详细介绍,并通过实例计算来巩固理论知识。

一、行列式的定义行列式是一个方阵所对应的一个数值。

对于一个n阶方阵A,其行列式记作det(A)或|A|,定义为:det(A) = a11a22...ann - a11a23...an(n-1) - a12a21...ann + a12a23...an(n-1) + ...+ (-1)^(n+1)a1nan(n-1) - (-1)^(n+1)a1n-1an(n-2)...a21其中aij表示A的第i行第j列的元素。

二、行列式的性质1. 交换行列式的行或列,行列式的值不变。

2. 行列式中的某一行(列)元素都乘以同一个数k,等于用k乘以行列式。

3. 行列式中的某一行(列)的元素都是两数之和,等于这两行(列)对应元素的行列式之和。

4. 行列式中如果有两行(列)元素成比例,则行列式的值为0。

5. 若行列式的某一行(列)的元素都是0,则行列式的值为0。

6. 若行列式的两行(列)元素完全相同,则行列式的值为0。

三、行列式的计算方法1. 拉普拉斯展开法拉普拉斯展开法是一种递归的计算方法,通过将行列式展开成若干个低阶行列式的乘积和来计算。

可以选择任意一行或一列进行展开,通过逐步展开直到行列式为2阶时,可以得到最终的结果。

2. 性质法则利用行列式的性质,可以简化计算过程。

例如,若行列式中有两行(列)元素成比例,则行列式的值为0,可以通过这一性质来简化计算。

关于范德蒙德行列式的性质探讨

关于范德蒙德行列式的性质探讨

范德蒙德行列式的应用探讨李珊珊摘要:范德蒙德行列式作为一种重要的、著名的行列式性质独特、形式优美,利用范德蒙德行列式能大大降低我们解题时的难度,起到事半功倍的效果. 本文将介绍范德蒙德行列式的概念及其性质,并且给出范德蒙德行列式在行列式计算,向量空间理论,线性变换理论,多项式理论和微积分问题五个方面较全面的具体应用,并对方法和技巧做出概括和总结.关键词:范德蒙德行列式;向量空间;线性变换;多项式;微积分中图分类号:O13Discussion on The Application of VandermondeDeterminantLi Shan-shanAbstract:The determinant is an important tool in Mathematics. It is the basis of the follow-up to the content system, such as linear equations, matrix, vector spaces and linear transformations. And it has a wide range of applications. As an important and famous determinant, Vandermonde determinant has not only unique structure, but also exquisite form. Using V andermonde determinant can greatly reduce our computation on solving problems. That is also the essence of using V andermonde determinant. This article will introduce the concept of V andermonde determinant and its calculation method and properties. What's more, this article will summarize V andermonde determinant in determinant computation, vector space, linear transformation theory, theory of polynomial and solving the problems of calculus in specific applications. And the article in the methods and techniques of Vandermonde determinant will make a summary.Keywords: V andermonde determinant; vector space; linear transformation; polynomial; Calculus1. 引言行列式在高等代数中是一个重要的数学工具,活跃在数学的各个分支. 行列式最早出现在16世纪关于求解线性方程组的问题中. 它的研究是伴随着线性代数的发展而发展起来的. 18世纪,法国著名的数学家范德蒙德(A.T.V andermonde ,1735-1796)将行列式的理论脱离线性方程组,而放到理论高度作为专门的理论进行研究,并在此基础上确立了行列式的一些性质,使行列式逐步成为一门独立的数学研究课题. 范德蒙德行列式是范德蒙德在1772年提出的一种著名的行列式,具有重要的理论研究价值和广泛的应用价值. 利用范德蒙德行列式和它的一些性质,我们可以使计算变得更为简单、直接,从而大大的提高对高等代数和数学分析中问题的计算速度. 自上世纪50年代以来,数学工作者对范德蒙德行列式的计算方法和在一些应用方面进行了研究. 不同研究者的角度、出发点和研究方向均不相同. 例如:北京大学第三版《高等代数》教材(高等教育出版社,王萼芳 石生明修订)中就提到了范德蒙德行列式在行列式计算和多项式根的存在性问题中的应用. 在一些高校的学报中我们也可以找到许多范德蒙德行列式的应用. 如:徐杰在《范德蒙德行列式的应用》(职校论坛,2009)中探讨了应用范德蒙德行列式证明向量的线性相关性问题;张文治、赵艳在《范德蒙德行列式应用三则》(北华航天工业学院学报,2007)中给出了构造范德蒙德行列式计算缺项行列式;程伟健、贺冬冬在《范德蒙德行列式在微积分中的应用》(大学数学,2004)中研究了利用范德蒙德行列式求高阶无穷小和证明K 阶导数极限存在问题等等. 综上所述,虽然国内外对范德蒙德行列式的应用研究比较多,但是对应用方法技巧的总结、归纳还比较欠缺和零散,系统性、规范性不足. 针对这种情况,本文较为系统的探讨范德蒙德行列式的应用,并对方法和技巧做出了总结.2. 范德蒙德行列式的概念及其性质定义 形如12322221231111123111...1........................n n n n n n na a a a a a a a a a a a ----的行列式,称为n 阶范德蒙德(V andermonde )行列式,记为n D .范德蒙德行列式构造独特、形式优美,并且有独特的性质. 下面将给出范德蒙德行列式的各种性质.首先,范德蒙德行列式拥有普通行列式的所有性质.(1)行列互换,行列式不变;(2)以一个数乘行列式的一行(列),相当于用这数乘此行列式;(3)行列式某一行(列)是两组数的和,则此行列式等于两个行列式的和; (4)如果行列式中两行(列)成比例,则行列式为零; (5)把一行(列)的倍数加到另一行(列),行列式不变; (6)行列式中两行(列)的位置,行列式符号改变.其次,我们给出范德蒙德行列式的五个更特别的性质. 性质1 对任意的(2)n n ≥,123222212311111123111...1......()..................n n n i j j i nn n n n na a a a D a a a a a a a a a a ≤<≤----==-∏,并且0n D =的充要条件是12,,...,n a a a 这n 个数中至少有两个相等,其中∏表示同类因子的乘积.证明: 对n 进行数学归纳. 当2n =时,211211n D a a a a ==-,结果正确. 假设对于1n -结论成立,即111()n i j j i n D a a -≤<≤-=-∏.则对于n 阶的情况有,在n D 中第n 行减去第1n -行的1a 倍,第1n -行减去第2n -行的1a 倍,以此类推,由下向上依次减去上一行的1a 倍,有2131122221231311212122123131111...10 0..................0...n n n nn n n n n n nna a a a a a D a a a a a a a a a a a a a a a a a a ---------=------=2131122221231311212122123131.....................n n nn n n n n n nna a a a a a a a a a a a a a a a a a a a a a a a ---------------=1232222213111232222123111...1...()()...().....................n n n n n n n na a a a a a a a a a a a a a a a a a -------.后面这是一个1n -阶的范德蒙德行列式,根据归纳法假设,它等于所有可能差(2)i j a a j i n -≤<≤的乘积,而包含1a 的差全在前面出现了. 因之,结论对n 阶范德蒙德行列式也成立. 根据数学归纳法,可知 1()n i j j i nD a a ≤<≤=-∏.由n D =1()i j j i na a ≤<≤-∏,可知0n D =的充要条件是12,,...,n a a a 这n 个数中至少有两个相等,证毕.注 2.1 因为T n n D D =,所以范德蒙德行列式还可以写成211112122221333211...1...1..................1...n n n n nnna a a a a a a a a a a a ----,行列式的值不变.性质2 若将范德蒙德行列式n D 顺时针旋转90 ,可得1211112222(1)1233312...1...1...1..................1n n n n n n n n n nnna a a a a a D a a a a a a --------=, 则有(1)(1)2(1)n n nn DD -=-.证明:因为T n n D D =,所以2111121222(1)21333211 (1)...1..................1...n n Tn n n n nnna a a a a a D D a a a a a a ----==,交换行列式的第1列与第n 列,则根据行列式的性质(6),行列式的值变为原来的-1倍,即有12111122221233312...1 (1)...1..................1n n n n n nnna a a a a a D a a a a a a ----=-, 再交换所得行列式的第2列和第1n -列,行列式变为原来的2(1)-倍,即有121111222221233312...1 (1)(1)...1..................1n n n n n n n n n nnna a a a a a D a a a a a a --------=-, 依次进行下去,得到最终的行列式12111122221233312...1...1...1..................1n n n n n n n n nnna a a a a a a a a a a a --------, 这样进行了(1)2(1)n n --次,于是1211112222(1)12233312...1...1(1)...1..................1n n n n n n n n n n n nnna a a a a a D a a a a a a ---------=-,结论得到证明.性质3 若将范德蒙德行列式n D 逆时针旋转90 ,可得(2)nD =212111121222211111 (1)...1 (1)...n n n nnn n n n n n n n n n n n a a a a a a a a a a a a --------------,有(1)(2)2(1)n n nn D D -=-.事实上,与性质2 的证明类似,依次交换行列式的两行,我们容易得到性质3 的结果.性质4 若将范德蒙德行列式n D 旋转180 ,可得(3)nD =111112122121211111............ (1)1...11n n n n n n n n n n nn n n n n a a a a a a a a a a a a -------------, 有(3)nn D D =.事实上,类似于性质2和性质3的证明,连续进行两次性质2 或性质3 的变换,就可以得到性质4 的结果.性质 5 n 阶准范德蒙1232222123(4)111112311111231231111n n nk k k k n k k k k nnnnnnx x x x x x x x D x x x x x x x x x x x x ----++++=1212,,...,1()n k n ki j p p p p p p j i nx x x x x --≤<≤=-∑∏,(1,2,,1)k n =- ,其中12,,,n k p p p - 是1,2,,n 中()n k -个数的一个正序排列,12,,,n kp p p -∑表示对所有()n k -阶排列求和.证明:在行列式中增补第(1)k +行和(1)n +列相应的元素. 考虑1n +阶范德蒙德行列式123222221231111111231231111112312311111()n n k k k k k n n kkkkknk k k k k nnnnnnnx x x x x x x x x xD x x x x x xx x x x x x x x x xx x x x x-----++++++=,按第1n +列展开,有11,12,11,11,111()1...()...()()inn n n i n n n n i j j i nD x A xA x A x A x x x x x x +++++++≤<≤=++++=---∏,其中,1(1,2,...,1)i n A i n +=+分别是21,,,...,n x x x 的代数余子式. 于是(4)(1)(1)1,1(1)n i ni n D A +++++=-. (1)对于11,12,11,11,111()1...()...()()inn n n i n n n n i j j i nD x A xA x A x A x x x x x x +++++++≤<≤=++++=---∏,由根与系数的关系(Vieta 定理)有12121,1,,...,1(1)...()n kn kn ii n p p p i j p p p j i nA x x x x x ---++≤<≤=--∑∏,由(1)式,可知1212(4),,...,1()n k n kni j p p p p p p j i nD x x x x x --≤<≤=-∑∏.3. 关于范德蒙德行列式应用的探讨前面介绍了范德蒙德行列式的概念及其性质,接下来我们将从行列式计算,向量空间理论,线性变换理论,多项式理论和微积分问题五个方面探讨范德蒙德行列式的应用.3.1 范德蒙德行列式在行列式计算中的应用范德蒙德行列式在行列式计算问题中起着举足轻重的作用. 利用范德蒙德行列式计算行列式已经被确立为一种特殊的方法被广泛使用. 下面我们来看几个例子:例1 计算行列式12322221232222123123111...1...........................n n n n n n nnnnnnx x x x x x x x D x x x x x x x x ----=.解:法1 构造1n +阶范德蒙德行列式1232222212312222212311111123123111...11......()...........................n n n n n n n n nn n n n n nnnnnnnx x x x x x x x x xD x x x x x x x x x x xx x x x x+----------=,则行列式D 为1()n D x +中元素1n x -的余子式,将行列式1()n D x +按1n +列展开得11,12,11,1()1...nn n n n n D x A xA x A +++++=+++,其中1n x -的系数为21,1,1,1(1)n n n n n n n A M M D ++++=-==-.又111()()...()()n n i j j i nD x x x x x x x +≤<≤=---∏,由根与系数的关系有1n x-的系数是1ni i x =-∑,因此在1()n D x +中1n x -的系数为11()nij i i i j nx x x =≤<≤--∑∏,所以11()nij i i i j nD x x x =≤<≤=--∑∏.法2 由范德蒙德行列式的性质 5,1212,,...,1()n k n ki j p p p p p p j i nD x x x x x --≤<≤=-∑∏,这里11()nij i i i j nD x x x =≤<≤=--∑∏.例2 证明n 阶循环行列式123121112122341.........()()...()..................n n n n n n n a a a a a a a a a a a a f f f a a a a εεε---=, 其中112()...n n f x a a x a x -=+++,12,,...,n εεε是所有的n 次单位根.证明:由于12,,...,n εεε是所有的n 次单位根,其所构成的n 阶范德蒙德行列式12322221231111123111...1......0..................n n n n n n nεεεεεεεεεεεε----≠,令123121123222211212311112341123...111...1................................................n nn n n n n n n n n n na a a a a a a a D a a a a a a a a εεεεεεεεεεεε-------=⋅,再由行列式的乘法,D 的第i 行第j 列的元素是2112311......i i n ij n i n i j n jj n i jd a a a a a εεεε----+-+-+=++++++,1,2,...,i n =,规定n k k a a +=.由于22cossin,(1,2,...,)m m m i m n ππεππ=+=,所以1mm εε=.于是(2)(1)(1)23111111......jj i j i j i ij n i n i n n i d a a a a a εεεε----+-+-+=++++++.又11nε=,因而(1)11,,1,2,...,j i ij j d d i j n ε-==.而右端的数恰好为行列式111231222221231311111231111...100...0 00...0. 00...0....................................nn n n n n nna a a a εεεεεεεεεεεε---- 的第i 行第j 列的元素,即上面的行列式也等于D ,且原循环行列式的值为11121...n a a a , 由行列式D 的形状可知:1112...(),1,2,...,n j j n jj a a a a f j n εεε-=+++==.于是再根据行列式的性质有1232341(1)(2)2345212121.........(1)()()...()..................n n n n nn a a a a a a a a a a a a f f f a a a a εεε---=-.通过对上述例题的分析,可归纳出构造和利用范德蒙德行列式来计算行列式的一些技巧:① 观察要计算的行列式是否具有范德蒙德行列式的的某些结构特征; ② 通过适当的方法构造范德蒙德行列式;③ 结合范德蒙德行列式以及题目的要求进行行列式的求解;④ n 阶循环行列式的解法以多项式理论为基础,结合范德蒙德行列式进行求解,方法简便易行,具有一定的实用价值.3.2 范德蒙德行列式在向量空间理论中的应用向量空间有时也称为线性空间,它是线性代数最基本的概念之一,也是我们在高等代数的学习中接触到的第一个抽象的概念. 向量空间与其子空间的关系问题,向量空间中向量的线性相关性问题都是向量空间研究的重点和难点,对逻辑推理有较高的要求. 对于判断、证明、计算向量空间中相应问题多往往比较难. 但将其与行列式适当结合,特别是与范德蒙德行列式相结合时,题目就会变得容易理解和掌握,如下面几个例子:例3 设V 是数域F 上的n 维向量空间,则V 不能写成它的有限个真子空间的并.证明:对n 进行数学归纳. 当1n =时,显然成立.设1n >时,令123,,,...,n a a a a 是V 的一组基,设1*12{...|}n n S a ka k a k F V -=+++∈⊂, 其中*F 是F 中元素的集合, 令*112:,...n n F S k e ke k e ϕ-→→+++,其中12,,...,n e e e 是单位向量, 则易证ϕ是双射,从而S 中有无穷多个不同的元素.设i V (1,2,...i t =)为V 的真子空间,则S 中的元素在i V 中的个数小于n . 否则,若,1,2,...,j i V j n β∈=,111121112........................................n n n nn n n a k a k a a k a k aββ--⎧=+++⎪⎨⎪=+++⎩,即211111121222222133333211...1...1 (1)...n n n n nn nnn a k k k a k k k a k k k a k k k ββββ----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由,,1,2,...,,i j k k i j n i j ≠=≠知123,,,...,n a a a a 的系数行列式为范德蒙德行列式, 由范德蒙德行列式的性质 1知系数行列式非零,故,1,2,...,j k a V j n ∈=.进而,1,2,...,i V V i t ==矛盾, 从而S 中只有有限多个元素在1ti i V = ,即V 不能写成它有限个真子空间的并的形式.例4 设V 是数域F 上的n 维向量空间,任给正整数m n ≥,则在V 中存在m 个向量,其中任取n 个向量都线性无关.证明:因为n V F ≅,所以只需在n F 中考虑即可. 取211(1,,,...,)n a c c c -=,222122(1,,(),...,())n a c c c -=, .......................................... 21(1,,(),...,())m m n m m a c c c -=.令111222333212121211()...()1()...()1()...()...............1()...()nnnk k k n k k k n k k k n n k k k n c c c c c c D cc ccc c----=,121...,n k k k m ≤≤≤≤≤c为任意常数.因为111222333212121211()...()1()...()1()...()...............1()...()nnnk k k n k k k n k k k n n k k k n c c c c c c D cc ccc c----=是范德蒙德行列式,由范德蒙德行列式的性质1知n 0D ≠,所以12,,...,nk k k a a a 线性无关. 再由n V F ≅,所以结论成立.在向量空间理论中,我们经常会碰到需要用范德蒙德行列式转化的问题,通过转化我们很容易地得到所需要的结论. 而这就要求我们充分掌握范德蒙德行列式以及它的结构特征,达到灵活的使用.3.3 范德蒙德行列式在线性变换理论中的应用线性变换反映了线性空间中元素之间的一种最基本的联系,它是线性函数的推广.线性变换与行列式、矩阵联系密切. 利用行列式,尤其是范德蒙德行列式,来解决线性变换的特征值与特征向量问题能达到事半功倍的效果.例5 如果12,,...,s λλλ是线性变换的全部两两不同的特征值,(1,2,...)ii V i s λα∈=,则当12...0s ααα+++=时,必有12...0s ααα====.证明:注意到(1)i i i i s αλα=≤≤,对等式12...0s ααα+++=左右两边同时逐次作用,得112222211221111122 0...0 0s s s s s s s s s λαλαλαλαλαλαλαλαλα---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩, 用矩阵表示为()21111212222112333211 (1)...,,...,(0,0,...,0)1..................1...s s s s s sss λλλλλλαααλλλλλλ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭. (2)矩阵211112122221333211...1 (1)..................1...s s s s sss B λλλλλλλλλλλλ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的行列式是范德蒙德行列式,并且由于12,,...,s λλλ两两不同,从而B 是可逆矩阵. 在(2)式两边右乘1B -,得()12,,...,(0,0,...,0)s ααα=,所以12...0s ααα====.例6 设数域F 上的n 维向量空间V 的线性变换σ有n 个互异的特征根12,,...,n λλλ则:(i )与σ可交换的V 的线性变换都是21,,,...,n e σσσ-的线性组合,其中e 为恒等变换;(ii )21,,,,...,n V αασασασα-∀∈线性无关的充要条件是1nii αα==∑,其中(),1,2,...,i i i i n σαλα==.证明:(i )设δ是与σ可交换的线性变换,且(),1,2,...,i i i i n σαλα==, 则{|}ii V k k F λα=∈是δ的不变子空间.令21121...n n xe x x x δσσσ--=++++且(),1,2,...,i i i k i n σαα==,则有下方程组21111211121212221221121.......................................n n n n n nn n n n k x x x x k x x x x k x x x x λλλλλλλλλ------⎧=+++⎪=+++⎪⎨⎪⎪=+++⎩ , (3) 可知(3)的系数行列式是范德蒙德行列式,且系数行列式1()i j j i nD λλ≤<≤=-∏,因为12,,...,n λλλ互异,由范德蒙德行列式的性质 1知0D ≠.于是方程组(3)有唯一解,所以δ是21,,,...,n e σσσ-的线性组合. (ii )先证明充分性. 因为1nii αα==∑,所以21111212222121123333211 (1)...(,,,...,)(,,...,)1..................1...n n n n n n n nnλλλλλλασασασαααααλλλλλλ-----=.且2111121222213331211...1...()01..................1...n n n i j j i nn n nnλλλλλλλλλλλλλλ---≤<≤-=-≠∏,因而211112122221333211...1...1..................1...n n n n n nnλλλλλλλλλλλλ----是可逆矩阵. 又由12,,...,n ααα是V 的一组基,可知21,,,...,n ασασασα-线性无关. 再证必要性.设12,,...,n e e e 是分别属于12,,...,n λλλ的特征向量,则12,,...,n e e e 构成V 的一组基,因而有1122...n n k e k e k e α=+++. 若0,1,2,...,i k i n ≠=则i i k e 是σ的属于i λ的特征向量,故结论成立. 若存在{1,2,...,}j n ∈使0j k ≠,不妨设12,,...,r k k k 全不为零, 而1...0r n k k +===,因而有1122...r r k e k e k e α=+++,则211111111212222222212112333333321......(,,,...,)(,,...,).....................n n n n r n rr rr rr r k k k k k k k k e e e k k k k k k k k λλλλλλασασασαλλλλλλ-----⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭.利用范德蒙德行列式的性质 1可知21111111121222222221333333321...........................n n n n rr rr rr r k k k k k k k k A k k k k k k k k λλλλλλλλλλλλ----⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭有一个r 阶子式不为零,所以秩(A )=r ,从而21(,,,...,)n r ασασασα-=秩, 又因为21,,,...,n ασασασα-线性无关,所以21(,,,...,)n n ασασασα-=秩.而r n <,矛盾. 所以1nii αα==∑,其中(),1,2,...,ii i i nσαλα==.在高等代数中,线性变换一直是最难的部分之一,题目的变化也很多. 在这些题目中,我们巧妙地运用范德蒙德行列式来使复杂的问题得到解决.3.4 范德蒙德行列式在多项式理论中的应用多项式是一类最常见、最简单的函数,它的应用非常广泛. 虽然多项式在整个高的代数中相对独立,然而却为高等代数的基本内容提供了理论依据. 研究多项式、多项式根的存在性问题、多项式求根问题是多项式理论中的重难点. 而多项式的求根问题又与行列式相关联,巧妙应用它们之间的联系,会起到化繁为简的作用. 例7 设01()n n f x c c x c x =+++ ,若()f x 至少有n+1个不同的根,则()0f x =. 证明:121,,,n x x x + 为()f x 的n+1个不同的根,则有齐次线性方程组20112112012222201121100n n nn n n n n n c c x c x c x c c x c x c x c c x c x c x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩. (4) 将01,,,n c c c 看作方程组(4)的未知量.因为方程组(4)的系数行列式D 是范德蒙行列式,且1()0i j i j nD x x ≤<≤=-≠∏,由克莱姆法则知方程组(4)只有零解,从而有010n c c c ==== ,即()f x 是零多项式.例8 设12,,,n a a a 是数域F 中互不相同的数,12,,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,,i i f a b i n == .证明:设1011()n n f x c c x c x --=+++ , 由(),1,2,,i i f a b i n == ,知21011211112101222122210121n n n n n n n n n n c c a c a c a b c c a c a c a b c c a c a c a b------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩ . (5) 因为12,,,n a a a 互不相同,所以方程组(5)的系数行列式21111212222133312111()01...1n n n i j i j nn nnna a a a a a D a a a a a a a a ---≤<≤-==-≠∏.由克莱姆法则知方程组(5)有唯一解,即存在唯一的数域F 上次数小于n 的多项式1011()n n f x c c x c x--=+++ ,使得(),1,2,,i i f a b i n == .在多项式理论中,涉及到求根问题的有很多. 在分析有些题目时,范德蒙德行列式是能够起到关键的作用. 主要应用在多项式组成的方程组中,系数组成的行列式是范德蒙德行列式. 若系数行列式不为零(即范德蒙德行列式的性质 1),则由克莱姆法则知方程组只有零解. 熟练有效地运用范德蒙德行列式,对我们最终解决问题会有直接的帮助.3.5 范德蒙德行列式在微积分中的应用无穷大量、无穷小量、高阶导数和极限是微积分的主要内容. 这些概念的正确理解和掌握对学好微积分是必要的. 在解决这类问题的时候,有时巧妙地构造范德蒙德行列式变换形式,可以使问题得到容易理解的解答.例9 设f(x )在区间I 上n 阶可导(2)n ≥,若对x I ∀∈,0|()|f x M ≤,()|()|n n f x M ≤(0,n M M 是正常数).证明:若存在1n -个正常数121,,...,n M M M -,对x I ∀∈,()|()|(1,2,...,1)k k f x M k n ≤=-.证明:设121,,,,0,()n i i j a a a I a a a i j -∈≠≠≠ 且, 由泰勒公式,对1,2,...,1i n ∀=-,()()11()()()()!!k n n kni ii k fx ff x a f x a a k n ξ==+=++∑,由此得()()11()()()()!!k n n k nii i k fx fa f x a f x a k n ξ===+--∑,所以有()()101()|()||||()||()|||2,!!!k n n k nii i n k fx fA a f x a f x a M M k n n ξ==≤+++≤+∑其中11||m ax n ii n A a ≤≤-=.令1()1()()!kn k ii k a fx A x k ===∑,(x I ∈,1,2,...,1)i n =-, (6)则0|()|2!i n A A x M M n ≤+,(x I ∀∈,1,2,...,1)i n =-.由于方程组(6)的系数行列式D 为231111123122222311111...2!3!(1)!...2!3!(1)!..................2!3!(1)!n n n n n n n a a a a n a a a a D n a a a a n --------=--211112122221121333211111...1......1...1!2!...(1)!...............1...n n n n n n n n a a a a a a a a a a a a n a a a --------=-右边的行列式为121,,,n a a a - 的范德蒙德行列式,由0,()i i j a a a i j ≠≠≠知0D ≠,由克莱姆法则知,存在与x 无关的常数()()()121,,...,k k k n λλλ-,使得 1()()1()(),,1,2,...,1n k k i i i fx A x x I k n λ-==∀∈=-∑,由此推得x I ∀∈,1,2,...,1k n =-11()()()0011|()||||()|||(2)!n n k k k ii ik i i A fx A x M M M n λλ--==≤≤+=∑∑.例10 设函数f(x)在x=0附近有连续的n 阶导数,且'()(0)0,(0)0,...,(0)0n f f f≠≠≠,若121,,...,n p p p +是一组两两互异的实数,证明:存在惟一的一组实数121,,...,n λλλ+,使得当0h →时,11()(0)n i i i f p h f λ+=-∑是比n h 高阶的无穷小.证明:由题设的条件,可得()i f p h ,1,2,...,1i n =+在0x =处带有皮亚诺余项的麦克劳林展开式为:()110()(0)(),!k knk nk p h f p h fo h k ==+∑(1q )()220()(0)(),!kknk nk p h f p h fo h k ==+∑(2q ).........................()110()(0)(),!k knk nn n k p h f p h fo h k ++==+∑(1n q +)112211()()...()n n q q q λλλ++⨯+⨯++⨯,得111()11111()(0)(1)(0)()(0)()!n n nn k k kn ii i ii i i k i f p h f f p fh o h k λλλ+++====-=-++∑∑∑∑.当0h →时,若11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小,则有121112211222112211112211...1...0...0 0n n n n n n n n n n p p p p p p p p p λλλλλλλλλλλλ++++++++++=⎧⎪+++=⎪⎪+++=⎨⎪⎪+++=⎪⎩, 这是以121,,...,n λλλ+为未知数的线性方程组,其系数行列式有123122221231111231111...1......()0..................n n j i i j n nn nn n p p p p D p p p p p p p p p p ++≤<≤++==-≠∏,所以上述方程组有惟一的解,即存在唯一的一组实数121,,...,n λλλ+,使得当0h →时,11()(0)n i i i f p h f λ+=-∑为比n h 高阶的无穷小.例11 设f(x)至少有k 阶导数,且对某个实数α有()lim ()0,lim ()0k x x x f x x f x αα→∞→∞==. (7)试证:()lim ()0,0,1,2,...,i x x f x i k α→∞==,其中(0)()()fx f x =.证明:由条件(7)知,要证明()lim ()0i x x f x α→∞=,只要将()()i f x 写成()f x 与()()k f x 的线性组合的形式即可,利用泰勒公式,21'"(1)()()()()()...()()2!(1)!!k kk k m mmmf x m f x m f x f x fx fk k ξ--+=+++++- (8)其中,1,2,...,m x x m m k ξ<<+=.这是关于'"(1)(),(),...,()k f x f x f x -的线性方程组,其系数行列式为21211111...2!(1)!2212...2!(1)! (1)...2!(1)!k k k k D kkkk ----=-212121111 (1)122 (21133)...31!2!...(1)!...............1...k k k k kkk ---=-,后一行列式是范德蒙德行列式,且有212121111 (1)122...21!2!...(1)!133...3 (1)...k k k k kkk---=-,所以D =1. 于是可从方程组(8)把'"(1)(),(),.()k f x f x f x-写成()(1,2,...,)f x m m k +=与()()(1,2,...,)k m fm k ξ=的线性组合. 只需证明()lim ()lim ()0,(1,2,..,)k m x x x f x m x fm k ααξ→∞→∞+===.事实上,设x t x k ≤≤+,于是()()()lim ()lim ()()lim ()lim ()0,(0,)i i i x x x x x x x ft t ft t ft i k tt ααααα→∞→∞→∞→∞====.在此式中分别令,0t x m i =+=和令,m t i k ξ==,则得()lim ()lim ()0,(1,2,..,)k m x x x f x m x fm k ααξ→∞→∞+===.通过对以上例题的分析可以总结利用范德蒙德行列式解决微积分问题的方法: ① 首先要应用泰勒公式,写出函数在某点的近似解;② 根据构造函数在某点的泰勒展开形式,构造范德蒙德行列式;③结合范德蒙德行列式和题目本身进行求解.4. 结束语范德蒙德行列式为问题的求解提供了十分有效地手段. 对范德蒙德行列式的应用,不仅需要对范德蒙德行列式的形式、特点及性质熟练掌握,而且要能灵活的应用. 范德蒙德行列式应用中,构造范德蒙德行列式是解决问题的难点和关键点. 要巧妙地构造范德蒙德行列式进行解题,必须对高等数学的基础知识熟练掌握,要善于将知识衔接起来. 达到这样的境界非一日之功,因此只有打好高等数学的基础,不断地分析解决典型的题目,找出内在的规律,日积月累,对范德蒙德行列式的应用才能得到进一步的掌握.参考文献:[1] 北京大学数学系集合与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 华东师范大学数学系.数学分析[M]. 北京:高等教育出版社,2001.[3] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.[4] 邹应.数学分析习题及其解答[M].武汉:武汉大学出版社,2001.[5] 章乐.几道考研试题的推广[J].大学数学,2003.[6] 牛莉.线性代数[M].北京:中国水利水电出版社,2005.[7] 吴良森,毛羽辉,宋国栋,魏木生,数学分析习题精解[M].北京:科学出版社,2002.[8] 易大义, 陈道琦. 数值分析引论[M].杭州: 浙江大学出版社, 1998.。

行列式的计算及应用开题报告

行列式的计算及应用开题报告

行列式的计算与应用一、阐述内容:高等教育中行列式经常被应用于科学和工程计算中,如涉及到的电子工程、控制论、数学物理方程及数学研究等,都离不开行列式.同时在数学专业中行列式的计算是研究高等代数的一个较为重要的工具。

同时行列式的计算方法非常的多,在实际的计算过程中不同的方法往往适合于不同特征的行列式,对于一个初学者来说选取一个较为适合的方法比较困难。

除此之外行列式在微分中值定理,线性方程组,多项式理论,解析几何,以及初等数学中也有着广泛的应用.因此具有非常重要的研究价值.本文主要从行列式的的定义和性质入手,以具体实例为依据,对行列式的各种计算方法如定义法、化三角形法、拆行(列)法、降阶法、升阶法(加边法)进行总结、归纳和比较,得出怎样特征的行列式最适合怎样的方法来,以达到最简单的计算。

在行列式的计算过程中,这其中的的每一种方法都有它们各自的优点及其独特之处,另外,理论用于实践,对这些计算方法实际在解线性方程组、初等代数、解析几何等方面的应用进行探讨二、全文分四个部分,对每一个部分细节写作。

一引言,包括行列式计算及应用的背景、意义。

二行列式的计算包括行列式各种计算方法的解析及例题分析。

三行列式的应用包括行列式在微分中值定理、求解线性方程组、多项式理论、解析几何、初等数学中相关应用三、小组提问:问:选这个题目的目的?答:我们在高等代数这门课中学习了行列式的计算,在学习过程中我发现行列式有很多计算方法而且在实际计算过程中不同的方法往往适合于不同特征的行列式,因此我选择这个题目问:你打算怎样完成这个选题?答:首先对我们学习中最常用到的七种方法进行总结归纳,然后有针对性的去参阅有关行列式计算的文献资料,加深知识理解;在阅读大量的期刊文章,整理资料;最后进行总结归纳与探究分析,确定写这篇论文的主要目的和意义,在指导老师的指导下进行初步的论文写作。

问:本论文的创新点在哪?答:本论文的创新之处在于:利用行列式的性质由浅入深的研究,先是熟悉行列式最基本的性质和相关联的基础知识,通过这些性质可以加深延拓开发出其他的技巧,采用实例分析加深对知识的理解和应用。

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用

毕业设计(论文)题目范德蒙德行列式的研究与应用院(系)数理学院专业班级xxxxxx学生姓名xxx 学号xxxx指导教师xxxx 职称xxx评阅教师xxxx 职称xxxx2014年5 月30日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它学生毕业设计(论文)原创性声明本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。

与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

毕业设计(论文)作者(签字):年月日重庆科技学院本科生毕业设计摘要摘要行列式最早出现于16世纪线性方程组的求解问题中。

关于范德蒙行列式计算类型的探讨及其运用

关于范德蒙行列式计算类型的探讨及其运用
范德蒙行列式,由法国数学家范德蒙首次提出,在行列式计算中因其独有特质受到关注。其定义涉及行列式的展开和余子式的概念,具有特定的形式。在行列式计算中,对于缺行或缺列的范德蒙行列式,可以通过加边法转化成标准的范德蒙行列式进行计算。此外,范德蒙行列式在多项式求根方面也有重要应用,能带来一定的便利。熟中还给出了具体的计算示例,如通过加边法将某一行列式转化为范德蒙行列式,并展示了在多项式求根中的应用,证明了存在唯一的一个次数不超过n-1次的多项式经过给定的n个点。

范德蒙行列式的应用探究

范德蒙行列式的应用探究

范德蒙行列式的应用探究
范德蒙行列式(也称为双核格式或矩阵表示)是一种数学表示,指先把问题所
考虑的因果和变量抽象为不同维度罗列(行或列),叶构成表格,其中每一格按顺序表达一次变量的关系。

这种表示能够有效地帮助任务分解者清楚地辨明任务中存在的因果关系,以便创造出一种有针对性的解决方案。

通过使用范德蒙行列式,可以把任务中存在的因果关系构建起来。

这种表示方
法既可以把任务中各个因素用文字表达出来,也可以用简洁而准确的矩阵形式来表示。

因此,范德蒙行列式具有贴切地反映任务因果关系、把握任务结构、增强理解能力等优点,在模式分析、决策分析、任务调度等行业任务中得到了广泛应用。

例如,在服务行业中常常会遇到一组要求,也被称为SLA(服务级别协议)。

SLA的结构是复杂的,可能存在若干层次的流程关系、服务因素、责任者等,因此,使用范德蒙行列式详细描述SLA能够更好地阐明其各个层次之间的关系和联系,进而针对具体情况制定完善的SLA。

此外,范德蒙行列式也可以用于任务计划,例如在新产品的研发上。

对于一项
新产品的研发,可以采用范德蒙行列式来表示船将和其他因素之间的关系,把子任务放在一起详细描述,从而分析出每一步的责任、要求、能力等,以构建一个合理有效的研发计划。

范德蒙行列式在行业任务中有着广泛的应用,它能有效地帮助任务分解者对任
务中存在的因果关系有更清晰的认识,从而为创造出一种有针对性的解决方案提供有力的指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北文理学院毕业论文开题报告
论文题目:范德蒙行列式的推广及应用
系别:数学与计算机学院
专业:数学与应用数学
班级:数学与应用数学0911
姓名:李小兵
学号:2009109157
二零一二年三月三日
一、范德蒙行列式的理论意义和现实意义
行列式在数学中,是由解线性方程组产生的一种算式。

其定义域为n×n的矩阵A,取值为一个标量,写作det(A)或| A | 。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

作为一种特殊的行列式——范德蒙行列式,是一类很重要的行列式。

范德蒙行列式作为一种重要的行列式,在计算的过程中可以将一些特殊的或者近似于范德蒙行列式的行列式转化为范德蒙行列式,从而能够简化计算,有利于行列式的计算。

范德蒙行列式的应用也比较广泛,不仅应用于一些行列式的计算当中,而且它可以应用于证明行列式的问题和一些关于多项式方面以及某些特征向量线性无关等问题上。

二、研究的方向
范德蒙行列式作为一种特殊的行列式,与有关数学知识的综合应用,将行列式的定理、性质融汇于一体,贯穿于证明及计算行列式之中并加以应用,体现较高的解题技巧解决较为复杂的问题。

利用范德蒙行列式的结论计算并不复杂,难的是如何将给定的行列式化成范式的标准形式,并研究范德蒙行列式的推广及在向量空间理论、线性变换理论、多项式理论、行列式计算、微积分中的应用。

三、主要的论文内容及提纲
范德蒙行列式是一个很重要的行列式,本文将通过对n阶行列式的计算,讨论他的各种位置变化规律,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧。

本文探讨了范德蒙行列式在向量空间理论、线性变换理论、多项式理论中以及行列式的计算中的应用。

同时,行列式的一个性质,即n阶准范德蒙行列式的计算方法,并使其能解决一类行列式的计算问题。

(1)范德蒙行列式在n阶行列式计算中的应用
(2)范德蒙行列式在向量空间理论中的应用
在向量空间理论中,会经常遇到需要用范德蒙行列式转化的问题,通过转化很容易就能得到所需结论。

(3)范德蒙行列式在线性变换理论中应用
在高等代数的学习中,线性变换一直是重点,也是难点,题目的变化也表较多,在有些题目中,可以巧妙的运用范德蒙行列式来解决这类题目。

(4)范德蒙行列式在多项式理论中的应用
在多项式理论中,涉及到的求根问题有许多,在分析有些题目时,范德蒙行列式是能够起到关键的作用的,若能够熟练有效的运用范德蒙行列式,则对我们最终解决问题会有直接的帮助。

(5)等差数列拆项公式与范德蒙行列式的联系
(6)指数函数的不等式与范德蒙行列式的联系及推广
四、研究的方法与手段
研究的方法:在高等代数学习的基础上,对有关范德蒙行列式进行研读,然后用数学的方法进行归纳总结,进行研究性探索。

研究手段:参阅一些研究性期刊,上网查阅一些最新的消息。

五、主要参考文献
[1]张贤科,许甫华,高等代数【M】,清华大学出版社,1998
[2]卢刚,冯翠莲,线性代数【M】,北京大学出版社,2006,6
[3]宴林,范德蒙行列式的应用【J】,文山师范高等专科学报,2001,13(2),55-57
[4]刘建中,范德蒙行列式的一个性质的证明及其应用【J】,河北大学学报(自然科学版)2000,20(1),84-85
[5]吴良森,毛羽辉,宋国栋,魏木生,数学分析习题精解【M】,北京科学出版社,2002,360-361
[6]易大义,陈道琦,数值分析引论【M】,杭州、浙江大学出版社,1993,180-181
[7]裴礼文,数学分析中的经典问题与方法【M】北京:高等教育出版社,1998,17-18
[8]郭丽妮,《地球概论》课程教学改革探讨福建教育学院学报【J】2003(12)
[9]毛纲源,线性代数解题方法技巧归纳【M】,武汉:华中科技大学出版社,2000.3
[10]北京大学数学力学系编,高等代数【M】。

北京:高等教育出版社,1991.79—80 94—96
[11]李建武、杨辉三角与数列拆项【J】.中学数学教学参考,2002(11)
[12张在明、几个涉及指数函数的不等式【J】.中学数学教学参考书、2002(17)[13]庞金彪,鹿琳。

范德蒙行列式的推广及其在教学中的应用【J】。

数学通报,1992(11):39~42.
[14]单墫。

因式分解技巧【M】。

上海:华东师范大学出版社,2005:1—94
[15]杨利民。

n的m重阶乘n(!)m及应用【J】,大理师专学报:社会科学版,1997(1):13—16.
[16]T.Y.LiδJ.Yorke.Amer Amath Monthy 82(1975)
六、毕业论文进度安排:
1.选题 2012 年 2 月 20 日——2012 年3 月 1 日2.开题报告 2012 年 3 月 2 日——2012 年3 月 17 日3.收集资料及实施研究 2012 年 3 月 2 日——2012 年4 月 2 日4.完成初稿 2012 年4 月 2 日——2012 年 4 月 23 日5.完成修改稿 2012 年 4 月 24 日——2012 年 5 月 14 日6.完成定稿 2012 年 5 月 15 日——2012 年 5 月 22 日7.答辩 2012 年5 月 28 日——2012 年 6 月 6 日。

相关文档
最新文档