成人高考(高起专)数学复习资料

合集下载

成人高考数学知识点归纳总结

成人高考数学知识点归纳总结

成人高考数学知识点归纳总结一、代数部分。

1. 集合。

- 集合的概念:把一些确定的对象看成一个整体就形成一个集合。

集合中的元素具有确定性、互异性和无序性。

- 集合的表示方法:列举法(如A = {1,2,3})、描述法(如B={xx^2 -1=0})。

- 集合间的关系:子集(A⊆ B表示A中的元素都在B中)、真子集(A⊂neqq B表示A是B的子集且A≠ B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的运算:交集(A∩ B={xx∈ A且x∈ B})、并集(A∪ B = {xx∈A或x∈ B})、补集(设U为全集,∁_U A={xx∈ U且x∉ A})。

2. 函数。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域和对应关系。

- 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性:设函数y = f(x)的定义域为D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= -f(x),那么函数y = f(x)是奇函数。

- 一次函数y=kx + b(k≠0):k是斜率,b是截距。

当k>0时,函数单调递增;当k < 0时,函数单调递减。

- 二次函数y=ax^2+bx + c(a≠0):对称轴为x =-(b)/(2a),当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值y=(4ac - b^2)/(4a);当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值y=(4ac - b^2)/(4a)。

成人高考高起点数学复习讲义

成人高考高起点数学复习讲义

成人高考高起点数学复习讲义难点1 集合思想及应用集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.●难点磁场(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求实数m的取值范围.●案例探究[例1]设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=,证明此结论.命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题.属★★★★★级题目.知识依托:解决此题的闪光点是将条件(A∪B)∩C=转化为A∩C=且B∩C=,这样难度就降低了.错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手.技巧与方法:由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、k∈N,进而可得值.解:∵(A∪B)∩C=,∴A∩C=且B∩C=∵∴k2x2+(2bk-1)x+b2-1=0∵A∩C=∴Δ1=(2bk-1)2-4k2(b2-1)<0∴4k2-4bk+1<0,此不等式有解,其充要条件是16b2-16>0,即b2>1 ①∵∴4x2+(2-2k)x+(5+2b)=0∵B∩C=,∴Δ2=(1-k)2-4(5-2b)<0∴k2-2k+8b-19<0,从而8b<20,即b<2.5 ②由①②及b∈N,得b=2代入由Δ1<0和Δ2<0组成的不等式组,得∴k=1,故存在自然数k=1,b=2,使得(A∪B)∩C=.[例2]向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人.问对A、B都赞成的学生和都不赞成的学生各有多少人?命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握.本题主要强化学生的这种能力.属★★★★级题目.知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来.错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系.解:赞成A的人数为50³=30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B.设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为+1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为33-x.依题意(30-x)+(33-x)+x+(+1)=50,解得x=21.所以对A、B都赞成的同学有21人,都不赞成的有8人.●锦囊妙计1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x ∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A≠两种可能,此时应分类讨论.●歼灭难点训练一、选择题1.(★★★★)集合M={x|x=,k∈Z},N={x|x=,k∈Z},则( )A.M=NB.MNC.MND.M∩N=2.(★★★★)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠,若A∪B=A,则( )A.-3≤m≤4B.-3<m<4C.2<m<4D.2<m≤4二、填空题3.(★★★★)已知集合A={x∈R|ax2-3x+2=0,a∈R},若A中元素至多有1个,则a的取值范围是_________.4.(★★★★)x、y∈R,A={(x,y)|x2+y2=1},B={(x,y)|=1,a>0,b>0},当A∩B只有一个元素时,a,b的关系式是_________.三、解答题5.(★★★★★)集合A={x|x2-ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当a取什么实数时,A∩B 和A∩C=同时成立.6.(★★★★★)已知{a n}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作S n,设集合A={(a n,)|n ∈N*},B={(x,y)| x2-y2=1,x,y∈R}.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;(2)A∩B至多有一个元素;(3)当a1≠0时,一定有A∩B≠.7.(★★★★)已知集合A={z||z-2|≤2,z∈C},集合B={w|w=zi+b,b∈R},当A∩B=B时,求b的值.8.(★★★★)设f(x)=x2+px+q,A={x|x=f(x)},B={x|f[f(x)]=x}.(1)求证:AB;(2)如果A={-1,3},求B.参考答案难点磁场解:由得x2+(m-1)x+1=0 ①∵A∩B≠∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m-1)2-4≥0,得m≥3或m≤-1,当m≥3时,由x1+x2=-(m-1)<0及x1x2=1>0知,方程①只有负根,不符合要求.当m≤-1时,由x1+x2=-(m-1)>0及x1x2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.故所求m的取值范围是m≤-1.歼灭难点训练一、1.解析:对M将k分成两类:k=2n或k=2n+1(n∈Z),M={x|x=nπ+,n∈Z}∪{x|x=nπ+,n∈Z},对N将k分成四类,k=4n或k=4n+1,k=4n+2,k=4n+3(n∈Z),N={x|x=nπ+,n∈Z}∪{x|x=nπ+,n∈Z}∪{x|x=nπ+π,n∈Z}∪{x|x=nπ+,n∈Z}.答案:C2.解析:∵A∪B=A,∴BA,又B≠,∴即2<m≤4.答案:D二、3.a=0或a≥4.解析:由A∩B只有1个交点知,圆x2+y2=1与直线=1相切,则1=,即ab=.答案:ab=三、5.解:log2(x2-5x+8)=1,由此得x2-5x+8=2,∴B={2,3}.由x2+2x-8=0,∴C={2,-4},又A∩C=,∴2和-4都不是关于x的方程x2-ax+a2-19=0的解,而A∩B ,即A∩B≠,∴3是关于x的方程x2-ax+a2-19=0的解,∴可得a=5或a=-2.当a=5时,得A={2,3},∴A∩C={2},这与A∩C=不符合,所以a=5(舍去);当a=-2时,可以求得A={3,-5},符合A∩C=,A∩B ,∴a=-2.6.解:(1)正确.在等差数列{a n}中,S n=,则(a1+a n),这表明点(a n,)的坐标适合方程y(x+a1),于是点(a n, )均在直线y=x+a1上.(2)正确.设(x,y)∈A∩B,则(x,y)中的坐标x,y应是方程组的解,由方程组消去y得:2a1x+a12=-4(*),当a1=0时,方程(*)无解,此时A∩B=;当a1≠0时,方程(*)只有一个解x=,此时,方程组也只有一解,故上述方程组至多有一解.∴A∩B至多有一个元素.(3)不正确.取a1=1,d=1,对一切的x∈N*,有a n=a1+(n-1)d=n>0, >0,这时集合A中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a1=1≠0.如果A∩B≠,那么据(2)的结论,A∩B中至多有一个元素(x0,y0),而x0=<0,y0=<0,这样的(x0,y0)A,产生矛盾,故a1=1,d=1时A ∩B=,所以a1≠0时,一定有A∩B≠是不正确的.7.解:由w=zi+b得z=,∵z∈A,∴|z-2|≤2,代入得|-2|≤2,化简得|w-(b+i)|≤1.∴集合A、B在复平面内对应的点的集合是两个圆面,集合A表示以点(2,0)为圆心,半径为2的圆面,集合B表示以点(b,1)为圆心,半径为1的圆面.又A∩B=B,即BA,∴两圆内含.因此≤2-1,即(b-2)2≤0,∴b=2.8.(1)证明:设x0是集合A中的任一元素,即有x0∈A.∵A={x|x=f(x)},∴x0=f(x0).即有f[f(x0)]=f(x0)=x0,∴x0∈B,故AB.(2)证明:∵A={-1,3}={x|x2+px+q=x},∴方程x2+(p-1)x+q=0有两根-1和3,应用韦达定理,得∴f(x)=x2-x-3.于是集合B的元素是方程f[f(x)]=x,也即(x2-x-3)2-(x2-x-3)-3=x(*)的根.将方程(*)变形,得(x2-x-3)2-x2=0解得x=1,3,,-.故B={-,-1,,3}.难点2 充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b 且|b|<4的充要条件.●案例探究[例1]已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p是⌐q的必要而不充分条件,求实数m的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p是⌐q的必要而不充分条件的等价命题即逆否命题为:p是q的充分不必要条件.p:|1-|≤2-2≤-1≤2-1≤≤3-2≤x≤10q:x2-2x+1-m2≤0[x-(1-m)][x-(1+m)]≤0 *∵p是q的充分不必要条件,∴不等式|1-|≤2的解集是x2-2x+1-m2≤0(m>0)解集的子集.又∵m>0∴不等式*的解集为1-m≤x≤1+m∴,∴m≥9,∴实数m的取值范围是[9,+∞.[例2]已知数列{a n}的前n项S n=p n+q(p≠0,p≠1),求数列{a n}是等比数列的充要条件.命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性.知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n=关系式去寻找a n与a n+1的比值,但同时要注意充分性的证明.解:a1=S1=p+q.当n≥2时,a n=S n-S n-1=p n-1(p-1)∵p≠0,p≠1,∴=p若{a n}为等比数列,则=p∴=p,∵p≠0,∴p-1=p+q,∴q=-1这是{a n}为等比数列的必要条件.下面证明q=-1是{a n}为等比数列的充分条件.当q=-1时,∴S n=p n-1(p≠0,p≠1),a1=S1=p-1当n≥2时,a n=S n-S n-1=p n-p n-1=p n-1(p-1)∴a n=(p-1)p n-1 (p≠0,p≠1)=p为常数∴q=-1时,数列{a n}为等比数列.即数列{a n}是等比数列的充要条件为q=-1.●锦囊妙计本难点所涉及的问题及解决方法主要有:(1)要理解“充分条件”“必要条件”的概念:当“若p 则q”形式的命题为真时,就记作pq,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条件. (5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练一、选择题1.(★★★★)函数f(x)=x|x+a|+b是奇函数的充要条件是( )A.ab=0B.a+b=0C.a=bD.a2+b2=02.(★★★★)“a=1”是函数y=cos2ax-sin2ax的最小正周期为“π”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也不是必要条件二、填空题3.(★★★★)a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的_________.4.(★★★★)命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的__________条件.三、解答题5.(★★★★★)设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n}、{b n}满足:b n=,求证:数列{a n}成等差数列的充要条件是数列{b n}也是等差数列.7.(★★★★★)已知抛物线C:y=-x2+mx-1和点A(3,0),B(0,3),求抛物线C与线段AB有两个不同交点的充要条件.8.(★★★★★)p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b|=|α²β|=|α|²|β|<2³2=4.设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.又|α|<2,|β|<2,∴f(±2)>0.即有4+b>2a>-(4+b)又|b|<44+b>02|a|<4+b(2)必要性:由2|a|<4+bf(±2)>0且f(x)的图象是开口向上的抛物线.∴方程f(x)=0的两根α,β同在(-2,2)内或无实根.∵α,β是方程f(x)=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2.歼灭难点训练一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x²|x|=-(x|x+0|+b)=-(x|x+a|+b)=-f(x).∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=(-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.∴a2+b2=0是f(x)为奇函数的必要条件.答案:D2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax -sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.答案:A二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,而C1∶C2=9∶4≠1,即C1≠C2,∴a=3l1∥l2.答案:充要条件4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是p:结论是q:(注意p中a、b满足的前提是Δ=a2-4b ≥0)(1)由,得a=α+β>2,b=αβ>1,∴qp(2)为证明pq,可以举出反例:取α=4,β=,它满足a=α+β=4+>2,b=αβ=4³=2>1,但q不成立.综上讨论可知a>2,b>1是α>1,β>1的必要但不充分条件.6.证明:①必要性:设{a n}成等差数列,公差为d,∵{a n}成等差数列.从而b n+1-b n=a1+n²d-a1-(n-1)d=d为常数.故{b n}是等差数列,公差为d.②充分性:设{b n}是等差数列,公差为d′,则b n=(n-1)d′∵b n(1+2+…+n)=a1+2a2+…+na n ①b n-1(1+2+…+n-1)=a1+2a2+…+(n-1)a n ②①-②得:na n=b n-1∴a n=,从而得a n+1-a n=d′为常数,故{a n}是等差数列.综上所述,数列{a n}成等差数列的充要条件是数列{b n}也是等差数列.7.解:①必要性:由已知得,线段AB的方程为y=-x+3(0≤x≤3)由于抛物线C和线段AB有两个不同的交点,所以方程组*有两个不同的实数解.消元得:x2-(m+1)x+4=0(0≤x≤3)设f(x)=x2-(m+1)x+4,则有②充分性:当3<x≤时,x1=>0∴方程x2-(m+1)x+4=0有两个不等的实根x1,x2,且0<x1<x2≤3,方程组*有两组不同的实数解.因此,抛物线y=-x2+mx-1和线段AB有两个不同交点的充要条件3<m≤.8.解:若关于x的方程x2+mx+n=0有2个小于1的正根,设为x1,x2.则0<x1<1,0<x2<1,有0<x1+x2<2且0<x1x2<1,根据韦达定理:有-2<m<0;0<n<1即有qp.反之,取m=-<0方程x2+mx+n=0无实根,所以pq综上所述,p是q的必要不充分条件.难点3 运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值.●案例探究[例1]如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1)求证:C1C⊥BD.(2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a⊥ba²b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设=a,=b,=c,依题意,|a|=|b|,、、中两两所成夹角为θ,于是=a-b,=c(a-b)=c²a-c²b=|c|²|a|cos θ-|c|²|b|cosθ=0,∴C1C⊥BD.(2)解:若使A1C⊥平面C1BD,只须证A1C⊥BD,A1C ⊥DC1,由=(a+b+c)²(a-c)=|a|2+a²b-b²c-|c|2=|a|2-|c|2+|b|²|a|cos θ-|b|²|c|²cosθ=0,得当|a|=|c|时,A1C⊥DC1,同理可证当|a|=|c|时,A1C⊥BD,∴=1时,A1C⊥平面C1BD.[例2]如图,直三棱柱ABC—A1B1C1,底面△ABC 中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos<>的值;(3)求证:A1B⊥C1M.命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O-xyz,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy内的A、B、C点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1)解:如图,以C为原点建立空间直角坐标系O-xyz.依题意得:B(0,1,0),N(1,0,1)∴||=.(2)解:依题意得:A1(1,0,2),C(0,0,0),B1(0,1,2).∴==(0,1,2)=1³0+(-1)³1+2³2=3||=(3)证明:依题意得:C1(0,0,2),M()∴∴A1B⊥C1M.●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?●歼灭难点训练一、选择题1.(★★★★)设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为( )A.正方形B.矩形C.菱形D.平行四边形2.(★★★★)已知△ABC中,=a,=b,a²b<0,S△=,|a|=3,|b|=5,则a与b的夹角是( )ABCA.30°B.-150°C.150°D.30°或150°二、填空题3.(★★★★★)将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设=a,=b,=c,=λa,(0<λ<1), =μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M(-1,0),N(1,0),且点P 使成公差小于零的等差数列.(1)点P的轨迹是什么曲线?(2)若点P坐标为(x0,y0),Q为与的夹角,求tanθ.8.(★★★★★)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明:BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.参考答案难点磁场解:(1)点M的坐标为x M=D点分的比为2.∴x D=(3)∠ABC是与的夹角,而=(6,8),=(2,-5).歼灭难点训练一、1.解析:=(1,2),=(1,2),∴=,∴∥,又线段AB与线段DC无公共点,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四边形,又||=,=(5,3),||=,∴||≠|},∴ABCD不是菱形,更不是正方形;又=(4,1),∴1²4+2²1=6≠0,∴不垂直于,∴ABCD也不是矩形,故选D.答案:D2.解析:∵²3²5sinα得sinα=,则α=30°或α=150°.又∵a²b<0,∴α=150°.答案:C二、3.(2,0) 4.13 cm三、5.解:∵与共线,∴=m=m(-)=m(μb-a),∴=+=a+m(μb-a)=(1-m)a+mμb ①又与共线,∴=n=n(-)=n(λa-b),∴=+=b+n(λa-b)=nλa+(1-n)b ②由①②,得(1-m)a+μm b=λn a+(1-n)b.∵a与b不共线,∴③解方程组③得:m=代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-λ)b].6.解:(1)以点A为坐标原点O,以AB所在直线为Oy 轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a).(2)取A1B1的中点M,于是有M(0,a),连AM,MC1,有=(-a,0,0),且=(0,a,0),=(0,0a)由于²=0,²=0,所以MC1⊥面ABB1A1,∴AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.∵=所以所成的角,即AC1与侧面ABB1A1所成的角为30°.7.解:(1)设P(x,y),由M(-1,0),N(1,0)得,=-=(-1-x,-y), =(1-x,-y), =-=(2,0),∴²=2(1+x), ²=x2+y2-1, =2(1-x).于是,是公差小于零的等差数列,等价于所以,点P的轨迹是以原点为圆心,为半径的右半圆.(2)点P的坐标为(x0,y0)8.证明:(1)连结BG,则由共面向量定理的推论知:E、F、G、H四点共面,(其中=)(2)因为.所以EH∥BD,又EH面EFGH,BD面EFGH所以BD∥平面EFGH.(3)连OM,OA,OB,OC,OD,OE,OG由(2)知,同理,所以,EHFG,所以EG、FH交于一点M且被M平分,所以难点4 三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程=|a -1|+2的根的取值范围.●案例探究[例1]已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R).(1)求证:两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值范围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目.知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合.错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由消去y得ax2+2bx+c=0Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4[(a+c2]∵a+b+c=0,a>b>c,∴a>0,c<0∴c2>0,∴Δ>0,即两函数的图象交于不同的两点.(2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=-,x1x2=.|A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2∵a>b>c,a+b+c=0,a>0,c<0∴a>-a-c>c,解得∈(-2,-)∵的对称轴方程是.∈(-2,-)时,为减函数∴|A1B1|2∈(3,12),故|A1B1|∈().[例2]已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围.(2)若方程两根均在区间(0,1)内,求m的范围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得∴.(2)据抛物线与x轴交点落在区间(0,1)内,列不等式组(这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过)●锦囊妙计1.二次函数的基本性质(1)二次函数的三种表示法:y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n.(2)当a>0,f(x)在区间[p,q]上的最大值M,最小值m,令x0= (p+q).若-<p,则f(p)=m,f(q)=M;若p≤-<x0,则f(-)=m,f(q)=M;若x0≤-<q,则f(p)=M,f(-)=m;若-≥q,则f(p)=M,f(q)=m.2.二次方程f(x)=ax2+bx+c=0的实根分布及条件.(1)方程f(x)=0的两根中一根比r大,另一根比r小a²f(r)<0;(2)二次方程f(x)=0的两根都大于r(3)二次方程f(x)=0在区间(p,q)内有两根(4)二次方程f(x)=0在区间(p,q)内只有一根f(p)²f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立.(5)方程f(x)=0两根的一根大于p,另一根小于q(p<q).3.二次不等式转化策略(1)二次不等式f(x)=ax2+bx+c≤0的解集是:(-∞,α)∪[β,+∞a<0且f(α)=f(β)=0;(2)当a>0时,f(α)<f(β) |α+|<|β+|,当a<0时,f(α)<f(β)|α+|>|β+|;(3)当a>0时,二次不等式f(x)>0在[p,q]恒成立或(4)f(x)>0恒成立●歼灭难点训练一、选择题1.(★★★★)若不等式(a-2)x2+2(a-2)x-4<0对一切x ∈R恒成立,则a的取值范围是( )A.(-∞,2B.-2,2C.(-2,2D.(-∞,-2)2.(★★★★)设二次函数f(x)=x2-x+a(a>0),若f(m)<0,则f(m-1)的值为( )A.正数B.负数C.非负数D.正数、负数和零都有可能二、填空题3.(★★★★★)已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p的取值范围是_________.4.(★★★★★)二次函数f(x)的二次项系数为正,且对任意实数x恒有f(2+x)=f(2-x),若f(1-2x2)<f(1+2x-x2),则x的取值范围是_________.三、解答题5.(★★★★★)已知实数t满足关系式(a>0且a≠1)(1)令t=a x,求y=f(x)的表达式;(2)若x∈(0,2时,y有最小值8,求a和x的值.6.(★★★★)如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围.7.(★★★★★)二次函数f(x)=px2+qx+r中实数p、q、r 满足=0,其中m>0,求证:(1)pf()<0;(2)方程f(x)=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a)2-4(2a+12)≤0,∴-≤a ≤2(1)当-≤a<1时,原方程化为:x=-a2+a+6,∵-a2+a+6=-(a-)2+.∴a=-时,x min=,a=时,x max=.∴≤x≤.(2)当1≤a≤2时,x=a2+3a+2=(a+)2-∴当a=1时,x min=6,当a=2时,x max=12,∴6≤x≤12.综上所述,≤x≤12.歼灭难点训练一、1.解析:当a-2=0即a=2时,不等式为-4<0,恒成立.∴a=2,当a-2≠0时,则a满足,解得-2<a<2,所以a的范围是-2<a≤2.答案:C2.解析:∵f(x)=x2-x+a的对称轴为x=,且f(1)>0,则f(0)>0,而f(m)<0,∴m∈(0,1),∴m-1<0,∴f(m-1)>0.答案:A二、3.解析:只需f(1)=-2p2-3p+9>0或f(-1)=-2p2+p+1>0即-3<p<或-<p<1.∴p∈(-3,).答案:(-3,)4.解析:由f(2+x)=f(2-x)知x=2为对称轴,由于距对称轴较近的点的纵坐标较小,∴|1-2x2-2|<|1+2x-x2-2|,∴-2<x<0.答案:-2<x<0三、5.解:(1)由log a得log a t-3=log t y-3log t a由t=a x知x=log a t,代入上式得x-3=,∴log a y=x2-3x+3,即y=a (x≠0).(2)令u=x2-3x+3=(x-)2+ (x≠0),则y=a u①若0<a<1,要使y=a u有最小值8,则u=(x-)2+在(0,2上应有最大值,但u在(0,2上不存在最大值.②若a>1,要使y=a u有最小值8,则u=(x-)2+,x∈(0,2应有最小值∴当x=时,u min=,y min=由=8得a=16.∴所求a=16,x=.6.解:∵f(0)=1>0(1)当m<0时,二次函数图象与x轴有两个交点且分别在y轴两侧,符合题意.(2)当m>0时,则解得0<m≤1综上所述,m的取值范围是{m|m≤1且m≠0}.7.证明:(1),由于f(x)是二次函数,故p≠0,又m>0,所以,pf()<0.(2)由题意,得f(0)=r,f(1)=p+q+r①当p<0时,由(1)知f()<0若r>0,则f(0)>0,又f()<0,所以f(x)=0在(0,)内有解;若r≤0,则f(1)=p+q+r=p+(m+1)=(-)+r=>0,又f()<0,所以f(x)=0在(,1)内有解.②当p<0时同理可证.8.解:(1)设该厂的月获利为y,依题意得y=(160-2x)x-(500+30x)=-2x2+130x-500由y≥1300知-2x2+130x-500≥1300∴x2-65x+900≤0,∴(x-20)(x-45)≤0,解得20≤x ≤45∴当月产量在20~45件之间时,月获利不少于1300元.(2)由(1)知y=-2x2+130x-500=-2(x-)2+1612.5∵x为正整数,∴x=32或33时,y取得最大值为1612元,∴当月产量为32件或33件时,可获得最大利润1612元.难点5 求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.●难点磁场(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).●案例探究[例1](1)已知函数f(x)满足f(log a x)= (其中a>0,a≠1,x>0),求f(x)的表达式.(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.技巧与方法:(1)用换元法;(2)用待定系数法.解:(1)令t=log a x(a>1,t>0;0<a<1,t<0),则x=a t.因此f(t)= (a t-a-t)∴f(x)= (a x-a-x)(a>1,x>0;0<a<1,x<0)(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c得并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x≤-1时,设f(x)=x+b∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.(2)当-1<x<1时,设f(x)=ax2+2.∵抛物线过点(-1,1),∴1=a²(-1)2+2,即a=-1∴f(x)=-x2+2.(3)当x≥1时,f(x)=-x+2综上可知:f(x)=作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f(x)=(x≠)在定义域内恒有f[f(x)]=x,则m等于( )A.3B.C.-D.-32.(★★★★★)设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于( )A.f(x)=(x+3)2-1B.f(x)=(x-3)2-1C.f(x)=(x-3)2+1D.f(x)=(x-1)2-1二、填空题3.(★★★★★)已知f(x)+2f()=3x,求f(x)的解析式为_________.4.(★★★★★)已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_________.三、解答题5.(★★★★)设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式.6.(★★★★)设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,。

2023成人高考高起专数学知识点

2023成人高考高起专数学知识点

2023成人高考高起专数学知识点数学作为一门基础学科,在成人高考高起专考试中占据着重要的地位。

掌握数学的基本知识点对于考生来说至关重要。

本文将为大家总结2023年成人高考高起专数学知识点,帮助考生更好地备考。

一、代数与函数1.1 整式与分式整式是由常数、变量及它们的乘积与积的和组成的代数式,分式是由整式的和、差、积、商组成的代数式。

在解题过程中,需要掌握整式与分式的基本运算法则,如加减乘除等。

1.2 方程与不等式方程是含有未知数的等式,不等式是含有未知数的不等式。

在解方程和不等式的过程中,需要运用代数运算的方法,如移项、合并同类项、分式的化简等。

1.3 函数与图像函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。

在学习函数的过程中,需要了解函数的定义、性质以及函数图像的绘制方法。

二、几何与图形2.1 点、线、面点是几何图形的基本要素,线是由无数个点组成的集合,面是由无数个线组成的集合。

在几何学中,需要掌握点、线、面的基本性质,如点的坐标表示、线的方程表示等。

2.2 相似与全等相似是指两个图形的形状相同但大小不同,全等是指两个图形的形状和大小都相同。

在解题过程中,需要根据相似性质和全等性质进行推理和证明。

2.3 三角形与四边形三角形是由三条线段组成的图形,四边形是由四条线段组成的图形。

在学习三角形和四边形的过程中,需要了解它们的性质、分类以及相关的定理和公式。

三、概率与统计3.1 概率概率是描述随机事件发生可能性的数值。

在学习概率的过程中,需要了解基本概率公式、条件概率、事件的独立性等概念和计算方法。

3.2 统计统计是对数据进行收集、整理、分析和解释的过程。

在学习统计的过程中,需要了解数据的表示方法、频数分布、均值、中位数、众数等统计指标的计算方法。

四、解析几何4.1 坐标系与直线坐标系是用来描述平面上点的位置的系统,直线是由无数个点组成的集合。

在解析几何中,需要了解直线的方程表示、直线的性质以及直线与坐标系的关系。

成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点1、集合【注意:请不要忘记空集!!!】交集:A ∩B={x| x ∈A 且x ∈B}并集:A ∪B={x| x ∈A 或x ∈B}补集:C U A={x| x A 但x ∈U}2、数列(选择和填空中的数列请大家掌握)3、解不等式(含绝对值)a>0, |x|<a 则 –a<x<a |x|>a 则 x>a 或 x<-a4、平面向量 0 ,//21211221=+⇔⊥=⇔y y x x y x y x5、平均数、方差6、解三角形(1)正弦定理:Cc B b A a sin sin sin ==(已知两边一对角或已知双角必定用正弦) (2)三角形面积公式:A bc B ac C ab S sin 21sin 21sin 21===(3)余弦定理:(已知三条边或两边一夹角必定用余弦)2222cos a b c bc A =+-B ac c a b cos 2222-+=C ab b a c cos 2222-+=7、导数0)(='c (c 为常数),)()(1+-∈='N n nx x n n ,()x x e e ='8、求切线方程步骤【例题】求曲线y=x 3-4x+2在点(1,-1)处的切线方程①求导:y ’=3x 2-4②把x=1 代入○1中:y=3-4=-1(即切线方程的k 为-1)③y=-x+b④把点(1,-1)代入○3:-1=-1+b 得b=0⑤所以切线方程为:y=-x请大家大题目当中的倒数第二题的第一步求导,无论会不会做,第一步请求导。

大题目中的解三角形无论会不会做第一步请写公式。

成考数学(文科)成人高考(高起专)试题及解答参考(2025年)

成考数学(文科)成人高考(高起专)试题及解答参考(2025年)

2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。

A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。

2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

2024年成人高考高起专、高起本数学(文)-考前模拟题

2024年成人高考高起专、高起本数学(文)-考前模拟题

全国各类成人高等学校招生考试高起点数学(文史财经类)考前密押(一)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,为偶函数的是A.y=log2xB.y=x2C.y=π2D.y=x2+x2.已知f(x)是偶函数且满足f(x+3)=f(x),f(1)=-1,则f(5)+f(11)等于A.-2B.2C.-1D.13.如果二次函数y=ax2+bx+1的图像的对称轴是x=1,并且通过点A(-1,7),则a,b的值分别是A.2,4B.2,-4C.-2.4D.-2,-44.设M={x|x≤√10,a=√2+√3那么A.a⊂MB.a⊂MC.{a}⊂MD.{a}⊂M5.函数f(x)=3+2x-12x2的最大值是A.4B.5C.2D.36.已知直线l与直线2x-3y+5=0平行,则l的斜率为A. 327.等差数列{a n }中,a 1+a 2=15,a =-5,则前8项的和等于A.-60B.-140C.-175D.-1258.若sin (π-α)=log 814,且αϵ(-π2,0)则cot (2π-α)的值为 A.-√52B.√52C.±√52D.-√5 9.设F 1、F 2为椭圆注图B193@@的焦点,P 为椭圆上的一点,则ΔPF 1F 2的周长等于A.10+2√34B.18C.14D.1210.已知向量a =(3,1),b =(-2,5),则3a-2b =A.(2,7)B.(13,-7)C.(2,-7)D.(13,13)11.已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为A.x 29−y 216=1 B.y 29−x 216=1C.x 225−y 216=1D.y 225−x 216=112.某同学每次投篮投中的概率为注图B206@@.该同学投篮2次,只投中1次的概率为D.35二、填空题(本大题共3小题,每小题7分,共21分)13.若平面向量a =(x ,1),b =(1,-2),且a⊂b ,则x =______.14.已知α、β为锐角,cos (α+β)=1213,cos (2α+β)=35,则cosα=______.15.从5位男生和4位女生中选出2人作代表,恰好一男生和一女生的概率是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.问数列:lg100,lg (100sin45°),lg (100sin 245°),···,lg (100sin n-145°)前几项和最大?并求最大值.(1g2=0.3010)17.已知f (x )=4x 2-mx +5(x⊂R )在(-∞,-2]上是减函数,在[-2,+∞)上是增函数,求f (1)的值,并比较f (-4)与log 128的大小. 18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),斜率为1的直线l 与C 相交,其中一个交点的坐标为(2,√2),且C 的右焦点到l 的距离为1.(⊂)求a ,b ;(⊂)求C 的离心率.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(一)参考答案及解析一、选择题1.【答案】B【考情点拨】本题主要考查的知识点为偶函数的性质.【应试指导】A项,log2x≠log2(-x),故A项不是偶函数;C项,4x ≠4−x,故C项不是偶函数;D项,x2+x≠(-x)2-x,故D项也不是偶函数;而B项中x2=(-x)2,故B项是偶函数.2.【答案】A【考情点拨】本题主要考查的知识点为偶函数与周期函数的性质.【应试指导】⊂f(x)是偶函数,⊂f(-x)=f(x),又⊂f(x+3)=f(x),⊂函数f(x)的周期T=3,⊂f(1)=-1,⊂f(-1)=f(1)=-1,⊂f(5)+f(11)=f(2+3)+f(2+3×3)=f(2)+f(2)=2f(2)=2f(-1+3)=2f(-1)=2x(-1)=-2.3.【答案】B【考情点拨】本题主要考查的知识点为二次函数的对称性.【应试指导】由于二次函数y=ax2+bx+1的图像的对称轴是x=1,且过点A(-1,7),4.【答案】D【考情点拨】本题主要考查的知识点为元素与集合的关系.5.【答案】B【考情点拨】本题主要考查的知识点为函数的最值.6.【答案】C【考情点拨】本题主要考查的知识点为直线的斜率.【应试指导】已知直线l与直线2x-3y+5=0平行,故k l=23 7.【答案】B【考情点拨】本题主要考查的知识点为等差数列.【应试指导】由已知条件及等差数列的定义得8.【答案】B【考情点拨】本题主要考查的知识点为三角函数的性质及诱导公式.9.【答案】B【考情点拨】本题主要考查的知识点为椭圆的定义.【应试指导】由方程x 225+y29得a=5,b=3,⊂c=4,由椭圆的定义得ΔPF1F2的周长=2a+2c=2×5+2×4=18.[注]此题主要是考查椭圆的定义及a 、b 、c 三者之间的关系,可用图形来帮助理解.|PF 1|+|PF 2|=2a ,|F 1F 2|=2c.10.【答案】B【考情点拨】本题主要考查的知识点为向量的坐标运算.【应试指导】由a =(3,1),b =(-2,5),则3a-2b =3·(3,1)-2·(-2,5)=(13,-7).11.【答案】A【考情点拨】本题主要考查的知识点为双曲线的定义.【应试指导】由已知条件知双曲线焦点在x 轴上属于第一类标准式,又知c =5,2a =6,⊂a =3,⊂b2=c2-a2=25-9=16,所求双曲线的方程为x 29−y 216=112.【答案】A【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】只投中1次的概率为:C 21×25×35=1225 二、填空题13.【答案】-12 【考情点拨】本题主要考查的知识点为平行向量的性质.【应试指导】由于a⊂b ,故x 1=1−2,即x =-1214.【答案】5665【考情点拨】本题主要考查的知识点为两角和公式.15.【答案】59【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】从5位男生和4位女生中任选2人的选法共有注图B239@@种,恰好一男生和一女生的选法共有C 51∙C 41种,所以恰好选出一男生和一女生的概率是C 51∙C 41C 92 =59 三、解答题17.18.全国各类成人高等学校招生考试高起点数学(文史财经类)全真模拟(二)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,若a 1=2,a 3=6,则a 7=A.10B.12C.14D.82.不等式|2x-3|≤1的解集为A.{x|1≤x≤2}B .{x |x≤-1或x≥2}C.{x|1≤x≤3}D.{x|2≤x≤3}3.函数y =3x 与(13)x 的图像之间的关系是 A.关于原点对称B.关于x 轴对称C .关于直线y =1对称D.关于y 轴对称4.已知函数f (x )=x2+2x +2(x <-1),则f-1(2)的值为A.-2B.10C.0D.25.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是A.−13B.-3C.13D.36.点P (2,5)到直线x +y-9=0的距离是A.2√2929C.√2D.−√227.已知A (-1,0),B (2,2),C (0,y ),若AB⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,则y = A.3B.5C.-3D.-58.把6个苹果平均分给3个小孩,不同的分配方法有A .90种B .30种C .60种D ).15种9.已知直线y =3x +1与直线x +my +1=0互相垂直,则m 的值是A.13B.−13C.-3D.310.设等比数列{a n }的公比q =2,且a 2·a 4=8,a 1·a 7=A.8B.16C.32D.6411.已知数列前n 项和S n =12(3n 2−n ),则第5项的值是A.7B.10C.32D.1612.函数注图的最小正周期和最大值分别是A.2π,12B.2π,2D.π2,-12二、填空题(本大题共3小题,每小题7分,共21分)13.设0<α<π2,则√1−sinαsin α2−cos α2=______.14.在ΔABC 中,AB =3,BC =5,AC =7,则cosB =______.15.从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =√32,已知点P (0,32)到椭圆上的点的最远距离是√7,求椭圆的方程.17.在ΔABC 中,AB =2,BC =3,B =60°.求AC 及ΔABC 的面积.18.已知等差数列{a n }前n 项和S n =-2n 2-n .(⊂)求通项a n 的表达式;(⊂)求a 1+a 3+a 5+···+a 25的值.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(二)参考答案及解析一、选择题1.【答案】C【考情点拨】本题主要考查的知识点为等差数列的性质.【应试指导】因为{a n}是等差数列,设公差为d,则a3=a1+2d⇒2+2d=6⇒d=2,所以a7=a1+6d=2+6×2=14. 2.【答案】A【考情点拨】本题主要考查的知识点为不等式的解集.【应试指导】|2x-3|≤1⇒-1≤2x-3≤1⇒2≤2x≤4⇒1≤x≤2,故原不等式的解集为{x|1≤x≤2}.3.【答案】D【考情点拨】本题主要考查的知识点为曲线的对称性.4.【答案】A【考情点拨】本题主要考查的知识点为反函数的性质.5.【答案】A【考情点拨】本题主要考查的知识点为直线的平移.【应试指导】由已知条件知直线经过两次平移后又回到原来的位置,因为直线是满足条件的点集,所以取直线上某一点来考查,若设点P(x,y)为l上的任一点,则经过平移后的对应点也应在这条直线上,这样,可由直线上的两点确定该直线的斜率.方法一:设点P(x,y)为直线l上的任一点,当直线按已知条件平移后,点P随之平移,平移后的对应点为P'(x-3,y+1),点P'仍在直线上,所以直线的斜率k=y+1−yx−3−x =−13方法二:设直线l的方程为y=kx+b,直线向左平移3个单位,方程变为y=k(x+3)+b,再向上平移一个单位,方程变为y=k(x+3)+b+1,即y=kx+3k+b+1,此方程应与原方程相同,对应项系数相等,比较常数项可得,3k+b+1=b,∴k=−136.【答案】C【考情点拨】本题主要考查的知识点为点到直线的距离公式.7.【答案】B【考情点拨】本题主要考查的知识点为垂直向量的性质.【应试指导】此题是已知向量的两端点的向量垂直问题,要根据两向量垂直的条件列出等式,来求出未知数y的值.8.【答案】A【考情点拨】本题主要考查的知识点为分步计数原理.【应试指导】因为把6个苹果平均分给3个小孩与顺序无关属于组合,第一步从6个苹果中任取2个分配给3个小孩中的任一个,分配的方法有注图C62种,第二步在剩余的4个中任取2个分给剩下2个小孩中的任一个有C42种分法,第三步把剩下的2个分给最后一个小孩有C22种分法,由分步计数原理得不同的分配方法有C62∙C42∙C22=6×52×1×4×32×1×1=15×6×1=90(种).9.【答案】D【考情点拨】本题主要考查的知识点为两直线垂直的性质.【应试指导】易知直线y=3x+1的斜率为3,由x+my+1=0中m≠0得y=−1m x−1m,其斜率为−1m,⊂两直线互相垂直,⊂−1m·3=-1,⊂m=310.【答案】C【考情点拨】本题主要考查的知识点为等比数列的性质.【应试指导】⊂{an}是公比为q=2的等比数列且a2·a4=8,由通项公式a n=a1q n-1得a1q·a1q3=8,(a1q2)2=8,⊂a1·a7=a1·a1q6=(a1q2)2·q2=8x4=32.11.【答案】C【考情点拨】本题主要考查的知识点为数列的前n 项和.【应试指导】a n =S n -S n -1=12(3n 2−n )−12[3(n −1)2−(n −1)]=3n-2,当n =5时,a5=3×5-2=13. 12.【答案】C【考情点拨】本题主要考查的知识点为三角函数的最小正周期及最值.二、填空题13.【答案】-1【考情点拨】本题主要考查的知识点为三角函数的变换。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

(完整word版)成人高考专科数学复习重点 (1)

(完整word版)成人高考专科数学复习重点  (1)

第一部分代数(重点 占55%)第一章 集合和简易逻辑一、集合的概念:强调——共同属性、全体 二、元素与集合的关系: x A ∈ 或 x∉A三、集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 注意:“且”2.并集 A ∪B ={x︱x A ∈或x B ∈} 注意:“或”3.补集 c u A ={x︱ U x ∈但A x ∉}四、简易逻辑:充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数 (重点)一、函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法2.求函数值3.求函数定义域:1)分式的分母不等于0; 2)偶次根式的被开方数≥0; 3)对数的真数>0;二、函数的性质 1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性(1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数. (2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。

高起专《数学》重点公式及考点总结

高起专《数学》重点公式及考点总结

成人高考高起专《数学》复习资料考试注意要点1)考试采用闭卷笔试形式。

全卷满分为150分,考试时间为120分钟2)考试中可以使用计算器3)考试要求分为三个等级:了解、掌握、灵活运用一、集合和简易逻辑1.集合的概念(灵活运用)子集:对于集合A和集合B,如果A中的所有元素都能在B中找到,则集合A就叫做B的子集,记作:A包含于B,A⊆B并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B交集:由属于A且属于B的相同元素组成的集合,记作A∩B补集:绝对补集。

一般来说,设U是一个集合,A是U的一个子集,则U中所有不属于A的元素称为A在U中的补集2.简易逻辑(灵活运用)判断真假的语句叫命题。

命题真值只能取两个值:真或假。

真对应判断正确,假对应判断错误。

如:真命题:三角形的三角之和为180度如:假命题:人会飞充分条件:如果A能推出B,B不一定能推出A,那么A就是B的充分条件。

如:A为B的子集,即属于A的一定属于B,则有元素x属于A,就一定能推出x属于B必要条件:如果B能推出A,A不一定能推出B,则B为A的必要条件充分必要条件:A能推出B,B也能推出A,则A是B的充分必要条件二、不等式和不等式组1.不等式性质一(灵活运用)1)不等式两边同加或同减一个数,不等号方向不变,若a>b,则a±c>b±c2)不等式两边同乘或同除以一个正数,方向不变3)不等式两边同乘或同除以一个负数,方向改变2.不等式的性质二(掌握)1)如果a>b>0,c>d>0,那么ac>bd2)如果a>b,ab>0,则1/a<1/b3)如果a>b>0,那么a n>b n(n>1)4)|a+b|≤|a|+|b|三、函数1.函数定义域和值域(掌握)Y=f(x)中,x的取值范围即为函数的定义域,y对应x的取值范围为值域2.函数奇偶性(掌握)偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

成人高考专升本高数一复习资料

成人高考专升本高数一复习资料

精品文档. 成人高考高数一复习资料第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

[主要知识内容](一)数列的极限1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。

为数列的一般项或通项,例如(1)1,3,5,…,,…(2)(3)(4)1,0,1,0,…,…都是数列。

在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。

2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n 趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点可以无限靠近点A。

(二)数列极限的性质定理1.1(惟一性)若数列收敛,则其极限值必定惟一。

定理1.2(有界性)若数列收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。

定理 1.3(两面夹定理)若数列,,满足不等式且。

定理1.4若数列单调有界,则它必有极限。

下面我们给出数列极限的四则运算定理。

定理1.5(1)(2)(3)当时,(三)函数极限的概念1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作或例如函数当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。

2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)

2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)

考点1实数1.实数的分类(1)有理数(2)无理数2.实数的相关概念(1)数轴(2)绝对值绝对值的意义:数轴上的点到原点的距离.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.实数a 的绝成考高起专、高起本数学(理)-考点汇编第一部分代数第一章数、式、方程和方程组(预备知识)对值可表示为a ,即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩若a,b 为实数,则(1)a ≥0,当且仅当0a =时取等号.(2)||||00a b a +=⇔=且0b =.(3)||||a a =-.(3)相反数(4)倒数3.实数的运算(1)运算法则数的运算顺序:先乘方、开方,然后乘、除,最后加、减,有括号先算括号(即从内往外的顺序)考点2整式的运算1.整式的加减运算2.整式的乘法运算(1)单项式乘单项式(2)多项式乘单项式(3)多项式乘多项式(4)常用乘法公式平方差公式:22()()a b a b a b +-=-;完全平方公式:222()2a b a ab b ±=±+;立方和、差公式:()()33223322(),()a b a b a ab bab a b a ab b +=+-+-=-++;完全立方公式:33223()33a b a a b ab b ±=±+±.3.多项式的因式分解4.分式的运算分式的加、减运算:a c ad bc ad bcb d bd bd bd ±±=±=.分式的乘法运算:ac ac bd bd⋅=.分式的除法运算:a c a d ad b d b c bc÷=⨯=.分式的乘方运算:nn n a a b b ⎛⎫= ⎪⎝⎭.注意:分式的运算结果一定要化为最简分式(或整式).5.二次根式考点3方程1.一元一次方程2.一元二次方程一元二次方程的解法直接开平方法,形如)(m x +2=ɑ(ɑ≥0)的方程因式分解法,可化为()()0m x a x b ++=的方程公式法,求根公式为=b 2-4ɑc ≥0)配方法,若20ax bx c ++=不易分解因式,考虑配方为2()a x t h +=的形式,再开方求解总结常用方法:首选因式分解法,若不适用则选择公式法.(公式法适用于一切有实数根的一元二次方程)(3)根的判别式:24b ac ∆=-叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,它与根的关系如下:①当0∆>时,方程有两个不相等的实数根.②当0∆=时,方程有两个相等的实数根.③当0∆<时,方程没有实数根.④根与系数的关系:若12,x x 是方程20(0)ax bx c a ++=≠的两个根,则有12x x +=12,b cx x a a-=(韦达定理).如果1212,x x p x x q +==,则20x px q -+=是以1x 和2x 为根的一元二次方程.考点4方程组(1)方程组形如1112220,0a x b y c a x b y c ++=⎧⎨++=⎩的方程组称为二元一次方程组.其中123123123123,,,,,,,,,,,a a a b b b c c c d d d 均为实数.“元”指未知数的个数;“次”指末知数的最高次数.(2)一次方程组的解法:一般采用代人消元法或加减消元法求解.第二章集合与简易逻辑考点1.元素与集合一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a 与集合A ,a ∈A 或a ∉A ,二者必居其一.(3)常见集合的符号表示及其关系图.数集自然数集正整数集整数集有理数集实数集符号NN*ZQR(4)集合的表示法:列举法、描述法、Venn 图法.(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.考点2.集合间的基本关系关系定义表示相等集合A 与集合B 中的所有元素都相同A =B 子集A 中的任意一个元素都是B 中的元素A ⊆B 真子集A 是B 的子集,且B 中至少有一个元素不属于AAB注意:(1)空集用∅表示.(2)若集合A 中含有n 个元素,则其子集个数为2n,真子集个数为2n -1,非空真子集的个数为2n -2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A ⊆B ,B ⊆C ,则A ⊆C.考点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A 的补集为C U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x ∉A}运算性质A∪A=A,A∪∅=A,A∪B=B∪A.A∩A=A,A∩∅=∅,A∩B=B∩A.A∩(C U A)=∅,A∪(C U A)=U,C U (C U A)=A特别提醒:1.A ⊆B ⇔A∩B=A ⇔A∪B=B ⇔C U A ⊇C U B.2.C U (A∩B)=(C U A)∪(C U B),C U (A∪B)=(C U A)∩(C U B).考点4.简易逻辑1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q pp 是q 的必要不充分条件pq 且q ⇒pp 是q 的充要条件p ⇔qp 是q 的既不充分又不必要条件p q 且q p3.重要结论1.若A ={x |p (x )},B ={x |q (x )},则(1)若A ⊆B ,则p 是q 的充分条件;(2)若A ⊇B ,则p 是q 的必要条件;(3)若A =B ,则p 是q 的充要条件;(4)若A B ,则p 是q 的充分不必要条件;(5)若B A ,则p 是q 的必要不充分条件;(6)若AB 且BA ,则p 是q 的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q ”与“p ⇒q ”混为一谈,只有“若p ,则q ”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q ”为真命题.第三章函数考点1.函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.考点2.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x ),那么函数f (x )是偶函数都有f (-x )=-f (x ),那么函数f (x )是奇函数图象特征关于y 轴对称关于原点对称考点3.二次函数(1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -h )2+k (a ≠0).两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(2)图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域(-∞,+∞)(-∞,+∞)值域[4ac -b 24a,+∞)(-∞,4ac -b24a]单调性在x ∈(-∞,-b2a )上是减函数,在x ∈[-b2a ,+∞)上是增函数在x ∈(-∞,-b2a)上是增函数,在x ∈[-b2a,+∞)上是减函数最值当x =-b 2a 时,y 有最小值4ac -b24a当x =-b 2a 时,y 有最大值4ac -b24a奇偶性当b =0时为偶函数顶点(-b 2a ,4ac -b 24a)对称性图象关于直线x=-b2a成轴对称图形考点4.指数与指数运算1.根式(1)根式的概念根式的概念符号表示备注如果x n=a ,那么x 叫做a 的n 次方根n >1且n ∈N *当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数n a零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数±n a负数没有偶次方根(2)两个重要公式①na ≥0),a <0),n 为偶数.②(na )n=a (注意a 必须使n a 有意义).2.分数指数幂(1)正数的正分数指数幂是a mn =na (a >0,m ,n ∈N *,n >1).(2)正数的负分数指数幂是a -m n =1n a m(a >0,m ,n ∈N *,n >1).(3)0的正分数指数幂是0,0的负分数指数幂无意义.3.实数指数幂的运算性质(1)a r ·a s =a r +s (a >0,r 、s ∈R );(2)(a r )s =a rs (a >0,r 、s ∈R );(3)(ab )r=a r b r(a >0,b >0,r ∈R ).考点5.幂函数函数y =x y =x 2y =x 3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减考点6.指数函数图象与性质指数函数的概念、图象和性质定义函数f (x )=a x (a >0且a ≠1)叫指数函数底数a >10<a <1图象性质函数的定义域为R ,值域为(0,+∞)考点7.对数函数的图象和性质图象a >10<a <1性质定义域:(0,+∞)值域:(-∞,+∞)当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数第四章不等式与不等式组考点1.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)同向可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)同向同正可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方性:a>b>0⇒a n_>b n(n∈N,n≥2);(6)可开方性:a>b>0⇒na>nb(n∈N,n≥2).考点2.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

成人高考数学复习资料高起专

成人高考数学复习资料高起专

成人高考数学复习资料高起专成人高考-数学知识提纲数学复习资料1.集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、4、5.2.充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。

例1:对“充分必要条件”的理解.请看两个例子:(1)“29x =”是“3x =”的什么条件?(2)2x >是5x >的什么条件?我们知道,若A B ⇒,则A 是B 的充分条件,若“A B ⇐”,则A 是B 的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“若A B ⇒,即是A 能推出B ”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象”的;如果用“A 中的所有元素能满足B ”的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,29x =即集合{3,3}-,当中的元素3-不能满足或者说不属于{3},但{3}的元素能满足或者说属于{3,3}-.假设}3|{},9|{2====x x B x x A ,则满足“A B ⇐”,故“29x =”是“3x =”的必要非充分条件,同理2x >是5x >的必要非充分条件.3.直角坐标系 注意某一点关于坐标轴、坐标原点、,y x y x ==-的坐标的写法。

如点(2,3)关于x 轴对称坐标为(2,-3),点(2,3)关于y 轴对称坐标为(-2,3),点(2,3)关于原点对称坐标为(-2,-3),点(2,3)关于y x =轴对称坐标为(3,2),点(2,3)关于y x =-轴对称坐标为(-3,-2),4.函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。

成人高考高起点数学文复习资料(精选5篇)

成人高考高起点数学文复习资料(精选5篇)

成人高考高起点数学文复习资料(精选5篇)成人高考高起点数学文复习资料精选篇1充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.难点例题已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|2且|β|2是2|a|4+b且|b|4的充要条件.解题分析求实数m的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.成人高考高起点数学文复习资料精选篇21、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

成人高考高升专数学知识点大全

成人高考高升专数学知识点大全

成人高考高升专数学知识点大全高中数学比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。

接下来WTT在这里给大家分享一些关于成人高考高升专数学知识点,供大家学习和参考,希望对大家有所帮助。

成人高考高升专数学知识点【篇一】1、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条(4)二向量的向量积、二向量平行的充分必要条2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的充分必要条。

【篇二】1、知识范围(1)不定积分、原函数与不定积分的定义、原函数存在定理不定积分的性质(2)基本积分公式 (3)换元积分法、第一换元法(凑微分法)、第二换元法(4)分部积分法 (5)一些简单有理函数的积分2、要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

【篇三】1、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

成人高考高起专数学复习资料全

成人高考高起专数学复习资料全

成人高考(高起专)数学复习资料全成人高考(高起专)数学复习资料一、考试大纲在成人高考(高起专)的数学考试中,主要考察的是考生的基础数学知识和应用能力。

考试大纲要求考生掌握代数、三角函数、平面解析几何、数列、概率与统计等基础知识,同时能够运用这些知识解决一些实际问题。

二、知识点梳理1.代数部分:包括集合与简易逻辑、函数、数列、三角函数、不等式等内容。

2.三角函数部分:包括三角函数的定义与基本公式、诱导公式、和差倍角公式、半角公式等。

3.解析几何部分:包括直线与圆的方程、圆锥曲线的方程等。

4.数列部分:包括等差数列和等比数列的通项公式与求和公式。

5.概率与统计部分:包括排列组合、随机事件概率、统计初步知识等。

三、复习策略1.注重基础知识的掌握:数学是一门基础学科,对于基础知识的掌握非常重要。

考生在复习过程中要注重对基本概念、公式、定理的理解与记忆,做到知其然并知其所以然。

2.注重解题能力的提高:数学考试中涉及到的题型有选择题、填空题和解答题等,不同类型的题目有不同的解题方法和技巧。

考生要通过多做练习题,提高解题能力,掌握解题技巧。

3.注重知识点的融会贯通:数学各知识点之间存在内在的联系,考生在复习过程中要注重知识点之间的联系与融合,将各个知识点串联起来,形成完整的知识体系。

4.注重实际应用能力的提高:数学是一门应用学科,考生在复习过程中要注重实际应用能力的提高,将数学知识与实际问题相结合,学会用数学思维和方法解决实际问题。

5.注重模拟考试的进行:模拟考试是检验考生复习效果的有效手段之一。

考生要通过模拟考试,了解自己的不足之处,及时查漏补缺,提高复习效果。

四、备考建议1.制定合理的复习计划:考生要根据自己的实际情况,制定合理的复习计划,明确每天的复习任务和目标,做到有的放矢。

2.合理安排时间:数学考试中涉及到的知识点较多,考生要根据每个知识点的难度和重要程度合理安排复习时间,做到事半功倍。

3.多做练习题:数学是一门需要通过大量练习来提高解题能力的学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成人高考数学复习资料集合和简易逻辑考点:交集、并集、补集概念:1、由所有既属于集合A又属于集合B的元素所组成的集合,叫做集合A和集合B的交集,记作A∩B,读作“A交B”(求公共元素)A∩B={x|x∈A,且x∈B}2、由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A和集合B的并集,记作A∪B,读作“A并B”(求全部元素)A∪B={x|x∈A,或x∈B}3、如果已知全集为U,且集合A包含于U,则由U中所有不属于A的元素组成的集合,叫做集合A的补集,记作ACu,读作“A补”ACu={ x|x∈U,且x∉A }解析:集合的交集或并集主要以例举法或不等式的形式出现考点:简易逻辑概念:在一个数学命题中,往往由条件A和结论B两部分构成,写成“如果A成立,那么B成立”。

充分条件:如果A成立,那么B成立,记作“A→B”“A推出B,B不能推出A”。

必要条件:如果B成立,那么A成立,记作“A←B”“B推出A,A不能推出B”。

充要条件:如果A→B,又有A←B,记作“A←B”“A推出B ,B推出A”。

解析:分析A和B的关系,是A推出B还是B推出A,然后进行判断不等式和不等式组考点:不等式的性质如果a>b,那么b<a;反之,如果b>a,那么a<b成立如果a>b,且b>c,那么a>c如果a>b,存在一个c(c可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c如果a>b,c>0,那么ac>bc(两边同乘、除一个正数,不等号不变)如果a>b,c<0,那么ac<bc(两边同乘、除一个负数,不等号变号)如果a>b>0,那么a2>b2如果a>b>0,那么ba>;反之,如果ba>,那么a>b解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

如:6x+8>9x-4,求x?把x的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

考点:一元一次不等式组定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。

考点:含有绝对值的不等式定义:含有绝对值符号的不等式,如:|x|<a,|x|>a型不等式及其解法。

简单绝对值不等式的解法:|x|<a的解集是{x|-a<x<a},取中间,在数轴上表示所有与原点的距离小于a的点的集合;|x|>a的解集是{x|x>a或x<-a},取两边,在数轴上表示所有与原点的距离大于a的点的集合。

复杂绝对值不等式的解法:|ax+b|<c,相当于解不等式-c<ax+b<c,不等式三边同时减去b,再同时除以a(注意,当a<0的时候,不等号要改变方向);|ax+|>c相当于解不等式ax+b>c或ax+b<-c,解法同一元一次不等式一样。

解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或”考点:一元二次不等式定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。

如:02>++c bx ax 与02<++c bx ax (a>0)) 解法:求02>++c bx ax(a>0为例)步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)求根公式:a acb b x 242-±-=十字相乘法:如:62x -7x-5=0求x ? 2 1 × 3 -5交叉相乘后 3 + -10 = -7解析:左边两个相乘等于2x 前的系数,右边两个相乘等于常数项,交叉相乘后相加等于x 前的系数,如满足条件即可分解成:(2x+1)×(3x-5)=0,两个数相乘等于0,只有当2x+1=0或3x-5=0的时候满足条件,所以x=21-或x=35。

配方法(省略)(2)求出x 之后,“>”取两边,“<”取中间,即可求出答案。

注意:当a<0时必须要不等式两边同乘-1,使得a>0,然后用上面的步骤来解。

考点:其他不等式不等式(ax+b )(cx+d )>0(或<0)的解法这种不等式可依一元二次方程(ax+b )(cx+d )=0的两根情况及2x 系数的正、负来确定其解集。

不等式0>++d cx bax (或<0)的解法它与(ax+b )(cx+d )>0(或<0)是同解不等式,从而前者也可化为一元二次不等式求解。

此处看不明白者问我,课堂上讲。

指数与对数 考点:有理指数幂正整数指数幂:a a a a a n ⨯⨯= 表示n 个a 相乘,(n+∈N 且n>1) 零的指数幂:10=a(0≠a )负整数指数幂:pp a a 1=-(0≠a,p +∈N )分数指数幂: 正分数指数幂:n mnma a=(a ≥0,;m ,n+∈N 且n>1)负分数指数幂:nmnm nm a aa11==-(a>0,;m ,n+∈N 且n>1)解析:重点掌握负整数指数幂和分数指数幂 考点:幂的运算法则y x y x a a a +=⨯(同底数指数幂相乘,指数相加) yx y x a b a -=(同底数指数幂相除,指数相减) xy y x a a =)((可以乘进去) x x x b a ab =)((可以分别x 次)解析:重点掌握同底数指数幂相乘和相除 考点:对数 定义:如果N ab=(a>0且1≠a ),那么b 叫做以a 为底的N 的对数,记作b N a =log (N>0),这里a 叫做底数,N 叫做真数。

特别底,以10为底的对数叫做常用对数,通常记N10log 为lgN ;以e 为底的对数叫做自然对数,e ≈2.7182818,通常记作N ln 。

两个恒等式:ba N ab a N a ==log log ,几个性质:b N a =log ,N>0,零和负数没有对数1log =a a ,当底数和真数相同时等于1 01log =a ,当真数等于1的对数等于0n n =10lg ,(n Z ∈)考点:对数的运算法则NM MN a a a log log )(log +=(真数相乘,等于两个对数相加;两个对数相加,底相同,可以变成真数相乘)N M NMa a alog log log -=(真数相除,等于两个对数相减;两个对数相减,底相同,可以变成真数相除)Mn M a n a log log =(真数的次数n 可以移到前面来)M n M a n a log 1log =(nnM M 1=,真数的次数n 1可以移到前面来)M a bM N b N a log log =函数考点:函数的定义域和值域定义:x 的取值范围叫做函数的定义域;y 的值的集合叫做函数的值域 求定义域:c bx ax y bkx y ++=+=2一般形式的定义域:x ∈Rx ky = 分式形式的定义域:x ≠0 xy =根式的形式定义域:x ≥0xy a log = 对数形式的定义域:x >0解析:考试时一般会求结合两种形式的定义域,分开最后求交集(公共部分)即可考点:函数的单调性 在)(x f y =定义在某区间上任取1x ,2x ,且1x <2x ,相应得出)(1x f ,)(2x f 如果:1、)(1x f <)(2x f ,则函数)(x f y =在此区间上是单调增加函数,或增函数,此区间叫做函数的单调递增区间。

随着x 的增加,y 值增加,为增函数。

2、)(1x f >)(2x f ,则函数)(x f y =在此区间上是单调减少函数,或减函数,此区间叫做函数的单调递减区间。

随着x 的增加,y 值减少,为减函数。

解析:分别在其定义区间上任取两个值,代入,如果得到的y 值增加了,为增函数;相反为减函数。

考点:函数的奇偶性 定义:设函数)(x f y =的定义域为D ,如果对任意的x ∈D ,有-x ∈D 且:1、)()(x f x f -=-,则称)(x f 为奇函数,奇函数的图像关于原点对称2、)()(x f x f =-,则称)(x f 为偶函数,偶函数的图像关于y 轴对称解析:判断时先令x x-=,如果得出的y 值是原函数,则是偶函数;如果得出的y 值是原函数的相反数,则是奇函数;否则就是非奇非偶函数。

考点:一次函数 定义:函数b kx y +=叫做一次函数,其中k ,b 为常数,且0≠k 。

当b=0是,kx y =为正比例函数,图像经过原点。

当k>0时,图像主要经过一三象限;当k<0时,图像主要经过二四象限 考点:二次函数定义:c bx ax y ++=2为二次函数,其中a ,b ,c 为常数,且0≠a ,当a>0时,其性质如下:定义域:二次函数的定义域为R图像:顶点坐标为(a b ac ab 44,22--),对称轴a bx 2-=,图像为开口向上的抛物线,如果a<0,为开口向下的抛物线单调性:(-∞,a b 2-]单调递减,[a b2-,+∞)单调递增;当a<0时相反.最大值、最小值:a b ac y 442-=为最小值;当a<0时a b ac y 442-=取最大值韦达定理:a cx x a b x x =⋅-=+2121,考点:反比例函数定义: x ky =叫做反比例函数定义域:0≠x是奇函数当k>0时,函数在区间(-∞,0)与区间(0,+∞)内是减函数 当k<0时,函数在区间(-∞,0)与区间(0,+∞)内是增函数 考点:指数函数定义:函数)10(≠>=a a a y x且叫做指数函数定义域:指数函数的定义域为R 性质:a a a ==10,10>x a图像:经过点(0,1),当a>1时,函数单调递增,曲线左方与x 轴无限靠近;当0<a<1时,函数单调递减,曲线右方可与x 轴无限靠近。

(详细见教材12页图) 考点:对数函数 定义:函数)10(log ≠>=a a x y a 且叫做对数函数定义域:对数函数的定义域为(0,+∞) 性质:1log ,01log ==a a a零和负数没有对数图像:经过点(1,0),当a>1时,函数单调递增,曲线下方与y 轴无限靠近;当0<a<1时,函数单调递减,曲线上方与y 轴无限靠近。

相关文档
最新文档