相似三角形复习1(讲课用)
相似形与相似三角形专题复习(精编题目)说课讲解
第一节:相似形与相似三角形基本概念:1. 相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。
2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。
1 •几个重要概念与性质(平行线分线段成比例定理)(1) 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例已知 a // b // c,(2 )推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例•那么这条直 线平行于三角形的第三边•此定理给出了一种证明两直线平行方法,即:利用比例式证平行线•(4) 定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成 比例•(5 [①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
a c②比例线段:四条线段 a , b , c , d 中,如果a 与b 的比等于c 与d 的比,即一=—,那么这四条b d线段a, b , c , d 叫做成比例线段,简称比例线段。
2 •比例的有关性质精品文档AB 可得BCDEf AB 或EF ACDE 或 BCDF 或 ABDF 或 AC 評DE EF 等.AD AE 亠 BD或 由 DE // BC 可得:DB EC ADAC•此推论较原定理应用更加广泛,条件是平行 ①比例的基本性质:如果②合比性质:如果③等比性质:如果a cad=bc 。
如果 ad=bc (a , b , c , d 都不等于 0),那么一 一。
b da b c 那么 -d b cm …a c ??? m a = ???=(b+d+???+ n 半 0),那么——dnb d ??? nb-,那么da bb ④b 是线段a 、d 的比例中项,贝U b 2= ad.典例剖析例1:①在比例尺是 1 : 38000的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为Km ②若a=-则9 b= .b 3b③若a 2b9U2a b53 •相似三角形的判定(1) 如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
相似三角形复习课件
相似三角形的面积比等于其相似比的平方,即S1:S2=(a1:a2)^2。
相似三角形的判定条件
定义法
根据相似三角形的定义,如果两个三 角形的对应角相等,对应边成比例, 则这两个三角形相似。
SAS判定
如果两个三角形有两个角相等,且这 两个角所对的边成比例,则这两个三 角形相似。
平行线法
在数学竞赛的最优化问题中,可以 利用相似三角形来找到最优解。
04
相似三角形的变式与拓展
相似三角形的特殊情况
等腰三角形
等腰三角形两腰之间的角相等,可以 利用这一性质来证明两个三角形相似 。
直角三角形
等边三角形
等边三角形的三个角都相等,因此任 意两个等边三角形都是相似的。
直角三角形中,如果一个锐角相等, 则两个三角形相似。
详细描述
如果一个三角形的两个对应角和一个对应边与另一个三角形的对应角和对应边 相等,则这两个三角形相似。
边角判定
总结词
通过比较一个三角形的对应边和一个角的度数与另一个三角 形的对应边和角的度数是否相等来判断三角形是否相似。
详细描述
如果一个三角形的三组对应边和一个对应角与另一个三角形 的三组对应边和对应角相等,则这两个三角形相似。
如果两个三角形分别位于两条平行线 之间,且一个三角形的顶点与另一个 三角形的对应顶点连线与平行线垂直 ,则这两个三角形相似。
ASA判定
如果两个三角形有两个角相等,且其 中一个角的对边成比例,则这两个三 角形相似。
02
相似三角形的判定方法
角角判定
总结词
通过比较两个三角形的对应角是 否相等来判断三角形是否相似。
03
相似三角形的应用
在几何图形中的应用
学生 第1讲 相似三角形培优课件讲义1!.doc
第1讲相似三角形讲义学习目标解三角形相似的判定方法学习重点:能够运用三角形相似判定方法解决数学问题及实际问题.学习难点:运用三角形相似判定方法解决数学问题的思路学习过程一、证明三角形相似例1:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD 求证:△DBE∽△ABC例2、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论。
下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形EC(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。
ABCDE12AABB C CDDEE12412(3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。
观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF与△ECA二、相似三角形证明比例式和乘积式例3、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DF∙AC=BC∙FEAB CDE FAB CDEFK例4:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
求证:(1)MA 2=MD ∙ME ;(2)MD MEADAE =22三、相似三角形证明两角相等、两线平行和线段相等。
例5:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。
求证:∠AEF=∠FBD例6、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例7、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BFABCDEM12A B CD E F GA B C D F G E AB C DE F O123E 图2目标训练 一、填空题1、 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .2、 如图2,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BF FD= .233、如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和为 .4. △ABC 中,DE ∥FG ∥BC ,且AD :1,则S △ADE :S 四边形DFGE :S 四边形FBCG =二、选择题1.已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( )(A)1:2 (B)1:4 (C)2:1 (D)4:12.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A .4cm B .6cm C .8cm D .10cm4、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC的面积的 ( ) A.91 B.92 C.31D.94(第3题图)1 2 345、 如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:46、 如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、222b ac =+ D 、22b a c ==7、如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( ) A.35x + B.45x -C.72D.21212525x x -三、解答题1、如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF.(1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.2、 (本小题满分10分)如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F. (1) 证明:∠CAE=∠CBF; (2) 证明:AE=BF;(3) 以线段AE ,BF 和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC 和△ABG 的面积分别ABCDE P为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围。
(完整版)相似三角形最全讲义(教师版)
相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。
2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如d cb a =4、比例外项:在比例dcb a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。
8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积) 2.反比性质:c da b dc b a =⇒= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ΛΛ,那么b a n f d b m ec a =++++++++ΛΛ. 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。
相似三角形经典总复习(含知识点习题)
第23章:相似三角形 第一节:比例线段 知识点:1、相似多边形:从几何直观上来说,两个图形如果形状一致,而大小不同,则称这两个图形相似,具体到多边形,称之为相似多边形。
从严谨定义上来说,如果两个多边形各边成比例,各角相等,则称这两个多边形为相似多边形。
2、比例线段:一、线段的比:如果用同一长度单位量得两条线段a 、b 的长度分别为m ,n ,则m ∶n 就是线段a ,b 的比,记作a ∶b =m ∶n 或a mb n=,其中a 叫做比例前项,b 叫做比例后项。
二、比例线段:四条线段,如果其中两条线段的比与另外两条线段的比相同,则称这四条线段成比例线段,简称比例线段。
例如线段a 、b 、c 、d ,如果a cb d=或者(::a b c d =)a 、b 、c 、d 成比例线段,这里要注意,a 、b 、c 、d 必须按顺序写出,不能写成b c a d =或a d b c=。
三、比例外项、比例内项、第四比例项、比例中项:若a cb d=,则称a 、d 为比例外项,b 、c 、为比例内项,d 为第四比例项,如果b =c ,则称b 为a 、c 的比例中项,可记做(2b ac =)3、比例性质: 1、基本性质:如果a cb d=,则根据等式的基本性质,两边同时乘以bd 得ad bc =。
2、合比性质:如果a cb d=,则根据等式的基本性质,两边同时加上1或-1得a b c d b d ±±=。
在此处键入公式。
a b c db d±±=3、等比性质:如果a c mb d n===(0b d n +++≠),则a c m a c mb d n b d n+++====+++,运用这个性质时,一定要注意0b d n +++≠的条件。
4、黄金分割:把线段AB 分成两条线段AP 、PB (AP >PB ),如果AP 是线段PB 和AB 的比例中项,则线段AP 把线段AB 黄金分割,点P 叫做线段AB 的黄金分割点。
相似三角形判定复习(一)
A E
C
二、证明题: 证明题: 1.D为 ABC中AB边上一点 边上一点, 1.D为△ABC中AB边上一点, ∠ACD= ∠ ABC. A 2=AD AB. 求证: 求证:AC =AD·AB. 2.△ABC中 BAC是直角 是直角, 2.△ABC中,∠ BAC是直角,过斜 边中点M而垂直于斜边BC BC的直线 边中点M而垂直于斜边BC的直线 CA的延长线于 的延长线于E AB于D,连 交CA的延长线于E,交AB于D,连AM. 求证: 求证:① △ MAD ∽△ MEA B ② AM2=MD · ME D 如图,AB∥CD,AO=OB, 3. 如图,AB∥CD,AO=OB, E DF=FB,DF交AC于 DF=FB,DF交AC于E, 求证: 求证:ED2=EO · EC. A
复习( 复习(一)
一、相似三角形的判定定理: 相似三角形的判定定理:
A'
定理1 两角对应相等,两三角形相似。 定理1:两角对应相等,两三角形相似。 ∠A' ∠A= ∠A ⇒△ABC∽△A'B'C' B' ABC∽△ B C C' ∠B' ∠B= ∠B A 定理2 两组边的比相等且夹角相等, 定理2:两组边的比相等且夹角相等, 两三角形相似。 两三角形相似。 AB BC = ABC∽△ B C A 'B ' B ' C ' ⇒ △ABC∽△A'B'C' ∠B' ∠B= ∠B B C 定理3 三组边的比相等,两三角形相似。 定理3:三组边的比相等,两三角形相似。
解: ∵ DE∥BC ∴∠ADE= ∠B, ∠EDC=∠DCB=∠A ① ∵ DE∥BC ∴△ADE ∽ △ABC D ② ∵ ∠A= ∠DCB, ∠ADE= ∠B ∴△ADE∽ △CBD ③ ∵ △ADE ∽ △ABC B △ADE ∽ △CBD ∴ △ABC ∽ △CBD ④ ∵ ∠DCA= ∠DCE, ∠A= ∠EDC ∴ △ADC ∽ △DEC
第1讲(学生)相似三角形精讲
第1讲 :相似三角形【基础知识】知识点1:相似图形形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. 知识点2 比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位.在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad cb =.知识点3 :比例的性质 基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::. 注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 :比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边直线截其它两边(或两边的延长线)所得对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点5 :黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .知识点6 :相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形. 相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例. 知识点7 :相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是: BC DE // ,ADE ∆∴∽ABC ∆.知识点8 :相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则A B C ∆∽C B A ''''''∆.知识点9:三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
相似三角形知识点整理精选全文完整版
可编辑修改精选全文完整版相似三角形知识点整理重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。
☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 相似基本定理 推论(骨干定理)平行线分线段成比例定理(基本定理)应用于△中 相似三角形定理1定理2 定理3 Rt △ 推论推论的逆定理推论角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SAS SSS AAS(ASA)HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
相似三角形专题复习(精品)
相似三角形的解题技巧与策略
相似三角形的解题思路与步骤
明确解题目标:确定要证明的结论和所求的量明确解题方向。
观察图形特征:分析相似三角形的形状、大小关系确定解题方法。
寻找相似条件:根据相似三角形的性质寻找对应边、对应角的关系构建相似三角形。
推导解题过程:利用相似三角形的性质和相关定理推导解题过程得出结论。
相似三角形对应中线的比等于相似比
相似三角形的性质
对应角相等
对应边成比例
面积比等于相似比的平方
周长比等于相似比
相似三角形的判定条件
定义:两个三角形如果对应角相等则它们相似
判定条件:SS、S、SSS、S、HL
应用:证明三角形相似求解线段长度和角度大小
性质:相似三角形对应边成比例对应角相等
03
相似三角形在解题中的应用
题目:在△BC中B=CD是BC上一点∠BD=40°E是D上一点且∠BE=∠CD则∠DEC= _______.题目:在△BC中B=CD是BC上一点E是D上一点且∠BE=∠CD则下列结论正确的是( ) .△BE ∽ △CD B.△BE ∽ △DCB C.△EB ∽ △DC D.△EC ∽ △DEB.△BE ∽ △CD B.△BE ∽ △DCBC.△EB ∽ △DC D.△EC ∽ △DEB题目:在△BC中B=CD是BC上一点E是D上一点且∠BE=∠CD则下列结论正确的是( ) .△BE ∽ △CD B.△BE ∽ △DCB C.△EB ∽ △DC D.△EC ∽ △DEB.△BE ∽ △CD B.△BE ∽ △DCBC.△EB ∽ △DC D.△EC ∽ △DEB题目:在等腰三角形BC中B=CD是BC上一点且D=BD若∠CD=50°则∠CB的大小为 _______.
,
相似三角形复习(较全)
相似三角形知识点汇总【知识要点】1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ²BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b c dad bc =⇔= ②合比性质:±±a b c d a b b c dd =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
相似三角形的判定复习课(共23张ppt)
AC=AN•cos∠BAO= t;
∴OC=OA-AC=6-t,∴N(6-t, t).
∴NM=
=
;
又:AM=6-t,AN= t(0<t≤6);
①当MN=AN时,
= t,即:t2-8t+12=0,t1=2,t2=6(舍去);
②当MN=MA时,
=6-t,即: t2-12t=0,t1=0(舍去),t2= ;
解:(1)由题意,A(6,0)、B(0,8), 则OA=6,OB=8,AB=10; 当t=3时,AN= t=5= AB,即N是线段AB的中点; ∴N(3,4). 设抛物线的解析式为:y=ax(x-6),则: 4=3a(3-6),a=- ; ∴抛物线的解析式:y=- x(x-6)=- x2+ x.
(2)在此运动的过程中,△MNA的面积是否存在最大值?若 存在,请求出最大值;若不存在,请说明理由;
解得DM= ;
②DM与BE是对应边时,DM=
∴DM2+DN2=MN2=1, 即DM2+4DM2=1,
DN,
解得DM= .
∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似. 故选C.
2、如图,已知在△ABC中,AD是BC边上的中线,以AB为 直径的⊙O交BC于点D,过D作MN⊥AC于点M,交AB的延长 线于点N,过点B作BG⊥MN于G. (1)求证:△BGD∽△DMA; (2)求证:直线MN是⊙O的切线
证明:(1)∵MN⊥AC于点M,BG⊥MN于G, ∴∠BGD=∠DMA=90°. ∵以AB为直径的⊙O交BC于点D, ∴AD⊥BC,∠ADC=90°, ∴∠ADM+∠CDM=90°, ∵∠DBG+∠BDG=90°,∠CDM=∠BDG, ∴∠DBG=∠ADM. 在△BGD与△DMA中,∠BGD=∠DMA=90°, ∠DBG=∠ADM. ∴△BGD∽△DMA;
相似三角形专题复习(共66张PPT)
2.右图中,若D,E分别是AB,AC
DE
边上的中点,且DE=4则BC= ____8
B
C
3.右图中, DE∥BC,S△ADE:S四边形DBCE = 1:8,则AE:AC=__1:_3 __
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
4. 在△ABCAC=4,AB=5.D是AC上一动点, 且∠ADE=∠B,设AD=x,AE=y,写出y与x之间 的函数关系式.试确定x的取值范围.
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
三、基本图形的形成、变化及发展过程:
平行型
.
旋转
∽
斜交型
.
.
.
平移
特 殊 垂直型
平移
.. 特 殊
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
四、运用 ☞
1.添加一个条件,使△AOB∽ △ DOC
A
B
E
C
A
A
A
FF F
α66α00°°
BBB
αα6600°°
EEE
6α6α00°°
CCC
相似三角形专题复习(共66张PPT)
相似三角形专题复习(共66张PPT)
α
B
α
B
D
A
F
α
E
问题2:
(12)延长BA、CF相交于点 D点,且D,E且善为E于B为运CB的用C类的中比点中、,点若,若 ∠B=∠迁C=移α的,数∠学AE方F法= ∠ C,连 α C 结 当A∠AF.EF旋解转决问到题如图位置时, ① 上找 述出 关图 系中 还的 成相立似吗三?角形
第1讲相似三角形的判定及有关性质复习课件人教新课标
知识网络
要点归纳
题型研修
解 延长 CB,DA 交于点 F,又 CE 平分∠BCD,CE⊥AD. ∴△FCD 为等腰三角形,E 为 FD 的中点. ∴S△FCD=12FD·CE=12×2ED×CE=2S△CED=2,EF=2AE. ∴FA=AE=14FD.又∵AB∥CD,∴∠FBA=∠FCD, ∠FAB=∠D,∴△FBA∽△FCD.∴SS△△FFCBDA=FFAD2=142=116, ∴S△FBA=116×S△FCD=18. ∴S 四边形 ABCE=S△FCD-S△CED-S△FBA=2-1-18=78.
15
∴PPAD=PPOC,∴PD=
2 1
×
215=125,
2
∴OD=125+12=8. 答案 8
知识网络
要点归纳
题型研修
3.(2013·陕西高考)如图,AB与CD相交于点E,过 点E作BC的平行线与AD的延长线交于点P,已 知∠A=∠C,PD=2DA=2,则PE=________. 解析 由 PE∥BC,∠A=∠C 知,∠A=∠C= ∠PED,在△PDE 和△PEA 中,∠DPE=∠EPA, ∠A=∠PED,故△PDE∽△PEA,则 PD∶PE= PE∶PA.于是 PE2=PA·PD=3×2=6,则 PE= 6. 答案 6
知识网络
要点归纳
题型研修
题型四 方程法 方程思想是从问题的数量关系(相等,成比例等)入手,将 问题转化为方程或比例式或不等式问题来求解.
例 4 如图,在 Rt△ABC 中,E 为斜边 AB 上 一点,AE=2,EB=1,四边形 DEFC 为正 方形,则阴影部分的面积为________.
知识网络
要点归纳
题型三 分类讨论法 当点、线的位置关系不确定时常常需分类讨论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、相似三角形有哪些性质
1、对应角相等,对应边的比相等。 2、对应角平分线、对应中线、对应高 线、对应周长的比都等于相似比。 3、相似三角形面积的比等于相似比的 平方。
2021/3/15
新年新气象,相信自己,给力!
3
4、相似三角形的应用
1、纯数学的应用
——数学计算和证明 2、在生活中的应用
(1)、比例尺 (2)、太阳光的影子问题
(3)、构造相似三角形计算河宽、树高的问题
例如课本P48例3——例5 2021/3/15
新年新气象,相信自己,给力!
4
热身题: 1、如图1,已知DE // BC,则△ ADE ∽△ ABC
比例式为: AD:AB=AE:AC=DE:BC 。
D
A
E
。可得
D
E
A 平截型——平行 截相似
B
C
C B
2:下图中添加一个什么条件,可使△ADE∽△ABC
新年新气象,相信自己,给力!
16
5.应用
4.HL
2021/3/15
新年新气象,相信自己,给力!
17
△PBQ与△ABC相似?
C
PQ // AC
C
PQ // AC
Q
Q
2021/3己,给力!
P
A
P t 1A1
例1: (2)如图,在△ABC中, AB与BC 是一元二 次方程(x-4)(x-3)=0的两根,且AB<BC 。 若Q是BC上一点,点P从A点出发向B以每秒1个 单位的速度移动,点Q从B点出发向C点以每秒2 个单位的速度移动(到达B、C点为止)。
A
∠ ADE=∠B,
E
或 ∠AED=∠C,
D
D E
A
斜截型—— 斜截构相似
或 AE:AC=AD:AB
2021/3/15
新年新气象,相信自己,给力!
5
B
C
B
C
3、如图,AB : AE=AC:AF=BC: EF,
∠1=20 ⁰, 则∠2 =
度。
A
相似三角形的判定条件:
E
2
1
F C
B
1、两角对应相等;
2、两边对应成比例,夹角相等;
C
B
P
A
2021/3/15
新年新气象,相信自己,给力!
10
例1: (2)如图,在△ABC中, AB与BC 是一元
二次方程(x-4)(x-3)=0的两根,且AB<BC 。
若Q是BC上一点,点P从A点出发向B以每秒1个单
位的速度移动,点Q从B点出发向C点以每秒2个单
位的速度移动(到达B、C点为止)。
① 如果P、Q分别从A、B两点同时出发,几秒后
ABCD内一点,且PB=3,BF⊥BP,垂足 是B,M是射线BF上的一点,求当点M在 射线BF上什么位置时,以点B、M、C为顶 点的三角形与△ ABP相似.(请注意:全 等图形是相似图形的特例)
A D
P
2021/3/15
B
新年新气象,相信自己,给力!
C
F
14
2.如图,矩形ABCD是由三个正方形 ABEG,GEFH,HFCD组成的,判断下列两个结论是 否成立?若成立,请证明.若不成立,请说明理由. ① △AEF∽△CEA② ∠AFE +∠ACE=45 °
(1)求等腰梯形的腰AB的长; (2)求证: △ ABP ∽ △ PCE; (3)在底边BC上是否存在一点P,使得DE : EC=5 : 3? 如果存在,求出BP的长;如果不存在,请说明理由?
A
D
E
B
2021/3/15
新年新气象,相信自己,给力!
13
FP
C
• 巩固练习: • 1、如图,已知点P是边长为4的正方形
相似三角形复 习1(讲课用)
一、复习:
1、相似三角形的定义是什么? 答:对应角相等,对应边成比例
的两个三角形叫做相似三角形.
2、判定两个三角形相似有哪些方法? 答:A、用定义;
B、用预备定理; C、用判定定理1、2、3. D、直角三角形相似的判定定理
2021/3/15
新年新气象,相信自己,给力!
2
3、三边对应成比例 2021/3/15
新年新气象,相信自己,给力!
6
4、如图(1),△ABC的中线AD、CE相交于点F, 则AF:AD的比为______
答案:2:3
5、在△ABC中,DE⁄⁄BC,E、D分别在AC、AB上,
EC=2AE,则S △ ADE:S四边形DBCE的比为______
答案:1:8
2021/3/15
新年新气象,相信自己,给力!
7
6、如图(3), △ ABC中,D、E分别是AC、AB上 的点,角平分线AG交DE于点F,已知AD:AB=AE: AC=2:3, AG=6,
则AF=____
答案:4
2021/3/15
新年新气象,相信自己,给力!
8
4、如图(1),△ABC的中线AD、CE相交于点F, 则AF:AD的比为______
A
G
H
D
2021/3/15
B
E
F
新年新气象,相信自己,给力!
C
15
小相
似 三 角
结形
2021/3/15
1.比例的基本性质
1.线段成比例
2、平行线分线段成 比例定理及推论
2.定义
对应高,中线,角平分线的比 等于相似比
3.性质
对应周长的比等于相似比
面积比等于相似比的平方 1.AA
4.判定
2.SAS
3.SSS
答案:2:3
5、在△ABC中,DE⁄⁄BC,E、D分别在AC、AB上,
EC=2AE,则S △ ADE:S四边形DBCE的比为______
答案:1:8
2021/3/15
新年新气象,相信自己,给力!
9
例题讲解
例1: (1)如图,若P是AB上不同于A、B的一点, 过点P作直线截三角形,使截得的三角形与
△ABC相似,这样的直线有( 4 )条;
② 若∠B=Rt∠, 设P、Q移动的时间
为t, PQ的长为y,则求y关于t的函
C
数关系式,并求出t的取值范围。
Q
③ 在②的问题中,当P运动到什么
位置时,PQ的值最小?
2t
当P运动到在什么位置, PQ的值最大?
2021/3/15
新年新气象,相信自己,给力!
B
3--t
A
12
P
例2:如图,等腰梯形ABCD中,AD // BC,AD=3cm, BC=7cm, ∠ B=60度,P为下底BC上一点(不与B、C 重合),连结AP,过P点作PE交DC于E,使得∠ APE= ∠ B。