材料相变原理总复习题.doc

合集下载

材料热处理 固态相变 相变基础课程复习题纲

材料热处理 固态相变 相变基础课程复习题纲

“固态相变”课程复习提纲一、铁碳相图1、Fe-Fe3C相图,A1、A3、Acm线,下标c和r的含义。

2、纯铁加热时晶体结构的变化和膨胀特性。

3、各临界点的温度和碳含量。

4、应用杠杆定律计算各相含量。

二、奥氏体的形成1、奥氏体、铁素体和马氏体的结构和比容大小。

2、奥氏体晶核的形成和长大机制。

共析钢奥氏体形成时各相C浓度的分布。

为何奥氏体化时共析钢中的铁素体总是先消失(有残留碳化物)?3、奥氏体的成核率随过热度变化的规律与金属凝固时成核率随过冷度变化的规律有何不同?为何加热速度越快所形成奥氏体的成分越不均匀?4、温度、碳含量和原始组织如何影响奥氏体的形核和长大?5、奥氏体的三种晶粒度。

影响奥氏体晶粒度的因素有哪些?为何要细化奥氏体?三、珠光体转变1、片状珠光体的形成机理及C的扩散机制。

2、珠光体、索氏体和屈氏体的概念。

为何冷速越大,珠光体片层越薄?3、成核率N、长大速度G 与转变温度的关系。

4、影响珠光体转变的主要合金元素有哪些,起何作用?5、影响珠光体机械性能的主要因素(珠光体团尺寸、片层厚度)和机制及提高性能可采取的措施。

四、马氏体转变1、马氏体的晶体结构和转变的主要特点。

2、马氏体形成热力学:T0,M s,M f,A s,M d,A d等概念。

为何钢的马氏体转变有很大的热滞后(过冷度)?3、板条马氏体和片状马氏体的形态、亚结构和性能(强度、塑性)特点。

C含量对马氏体形态、M s点和γR的影响。

为何C含量越高M s点越低、室温下γR 越多?4、如何根据奥氏体和马氏体的物理性能特点,测定奥氏体转变为马氏体的过程。

5、形状记忆合金的特点和应用。

五、贝氏体转变1、上贝氏体和下贝氏体的形成温度范围、组织形态和性能特点。

2、为何说贝氏体转变兼有珠光体和马氏体转变的特点?恩金贝氏体相变假说。

3、上、下贝氏体中铁素体的含C量特点;与珠光体中的铁素体有何不同?4、影响贝氏体力学性能的主要因素及机理。

六、过冷奥氏体转变1、TTT曲线和CCT曲线的含义。

2012相变原理习题

2012相变原理习题

相变原理习题一、选择题1、使TTT曲线左移的因素有___________ 。

A 增加亚共析钢中含碳量B 提高钢中含钨量C 增加钢中含铜量D 使奥氏体产生塑性变形2、能使钢中马氏体转变开始温度(Ms)升高的因素有__________ 。

A 降低含Ni钢中的Ni含量B 降低钢中含碳量C 增大冷却速度D 提高加热温度3、高碳马氏体的形貌特征及亚结构是__________ 。

A 板条状及位错B 凸透镜状及位错C 凸透镜状及孪晶4、加热时Fe3C全部溶入A的温度是__________ 。

A A c1B A c3C A ccm5、上贝氏体贝氏体的强度,韧性下贝氏体。

A 高于优于B 高于不如C 低于优于D 低于不如6、中碳钢淬火后高温回火,可获得优良的综合机械性能。

又称为。

A 固溶处理B 调质C 热稳定化D 时效7、出现了高温回火脆性后,如重新加热到650℃以上,然后快冷至室温,消除脆化。

在脆化消除后,再在450 650℃加热快冷再发生脆化。

A 可可B 可不C 不可可D 不可不8、W18Cr4V在560℃回火后,在冷却过程中在250℃稍作停留,残余奥氏体将不再转变为马氏体,这一过程称为。

A 催化B 相变C 逆转变D 稳定化9.奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的.(a)铁原子 (b)碳原子 (c)铁碳原子 (d)溶质原子10.亚共析钢在A C3下加热后的转变产物为___.(a) F (b) A (c) F+A (d) P+F11.提高钢中马氏体转变开始点(Ms)的因素有__________ 。

(a) 降低含Ni钢中的Ni含量 (b) 降低钢中含碳量 (c) 增加冷却速度 (d) 提高奥氏体化温度12.低碳马氏体的形貌特征及亚结构是__________ 。

(a) 板条状及位错 (b) 凸透镜状及位错 (c) 凸透镜状及孪晶13.共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是__________ 。

相变理论试题及答案

相变理论试题及答案

相变理论试题及答案一、单项选择题(每题2分,共10分)1. 物质从固态直接变为气态的过程称为:A. 蒸发B. 升华C. 凝固D. 液化答案:B2. 下列哪种物质在常温下为气态?A. 水B. 铁C. 氧气D. 铜答案:C3. 物质从液态变为固态的过程称为:A. 蒸发B. 凝固C. 沸腾D. 升华答案:B4. 物质从气态直接变为固态的过程称为:A. 蒸发B. 升华C. 凝固答案:B5. 物质从固态变为液态的过程称为:A. 蒸发B. 熔化C. 沸腾D. 升华答案:B二、填空题(每空1分,共10分)1. 物质从液态变为气态的过程称为________。

答案:蒸发2. 物质从固态变为液态的过程称为________。

答案:熔化3. 物质从气态变为液态的过程称为________。

答案:液化4. 物质从液态变为固态的过程称为________。

答案:凝固5. 物质从固态直接变为气态的过程称为________。

答案:升华三、简答题(每题5分,共20分)1. 请简述相变过程中的潜热是什么?答案:潜热是指在相变过程中,物质吸收或释放的热量,而温度保持2. 为什么水在0℃时会结冰?答案:水在0℃时结冰是因为在这个温度下,水分子的运动能量不足以抵抗分子间的吸引力,导致水分子排列成固态结构。

3. 请解释为什么在高压下,水的沸点会升高?答案:在高压下,水的沸点升高是因为压力的增加使得水分子间的距离减小,需要更多的能量才能使水分子从液态变为气态。

4. 为什么干冰(固态二氧化碳)在室温下会直接升华?答案:干冰在室温下直接升华是因为固态二氧化碳的分子间作用力较弱,且其升华点低于室温,使得干冰分子在室温下就能获得足够的能量直接从固态变为气态。

四、计算题(每题10分,共20分)1. 假设有1千克的水从0℃加热到100℃,然后完全蒸发。

已知水的比热容为4.18 J/(g·℃),汽化热为40.7 kJ/mol,水的摩尔质量为18 g/mol。

材料连接原理(邹家生主编)

材料连接原理(邹家生主编)

材料连接原理课后习题答案及期末复习资料简答:1.焊接热源有哪些共同要求?描述焊接热源主要用什么指标?答:能量密度高度集中、快速实现实现焊接过程、得到高质量的焊缝和最小的焊接热影响区。

主要指标:最小的加热面积、最大功率密度和正常焊接规范条件下的温度。

5.试简述不锈钢焊条药皮发红的原因?有何解决措施?答:原因:不锈钢焊芯电阻大,焊条融化系数小造成焊条融化时间长,且产生的电阻热量大,使焊条温度升高而导致药皮发红。

解决措施:调整焊条药皮配方,使焊条金属由短路过渡转化为细颗粒过渡,提高焊条的融化系数,减少电阻热以降低焊条的表面升温。

7.从传热学角度说明临界板厚δcr 的概念?某16Mn 钢焊件,采用手工电弧焊,能量E=15KJ/cm 求δcr ?由传热学理论知道:在线能量一定的情况下,板厚增加冷却速度Wc 增大,冷却时间t8/5变短,当板厚增加到一定程度时,则Wc 和t8/5不再变化,此时板厚即为临界板厚δcr 。

1.95cr cm δ==8.手工电弧焊接厚12mm 的MnMoNbB 钢,焊接线能量E=2kj/cm,预热温度为50度,η取0.9.求t8/5?附λ=0.29J/(cm s ℃) CP=6.7 J/(cm s ℃)9.直流正接为何比直流反接时焊缝金属溶氢量高?答:(1)直流正接:工件接正极。

直流反接:工件接负极。

(2)带电质点H+在电场作用下只溶于阴极。

(3)处于阴极的熔滴不仅温度高而且比表面积大,其溶氢量大于熔池处于阴极时的溶氢量。

10简述氢对焊缝质量的影响?s T T t cmT T c E Ecr cr 88.0)80015001(:,75.0/69.0)80015001(20025/800=-+-=>=-+-=πληδδρηδ故采用厚板公式答:影响:氢脆、白点、气孔、冷裂纹、组织变化。

控制含氢量措施:1)限制氢的来源2)进行冶金处理3)控制焊接材料的氧化还原势4)在焊条药皮或焊芯中加入微量的稀土元素或稀散元素。

材料科学基础复习资题答案

材料科学基础复习资题答案

材料科学基础复习题一、单项选择()1、面心立方(fcc)结构的铝晶体中,每个铝原子在本层(111)面上的原子配位数为___ B _____。

A、12B、6C、4D、32、面心立方金属发生形变孪生时,则孪晶面为___ A ____.A、{111}B、{110}C、{112}3、铸锭凝固时如大部分结晶潜热可通过液相散失时,则固态显微组织主要为___ A _____。

A、树枝晶B、柱状晶C、球晶4、立方晶体中(110)和(211)面同属于__ D ______晶带。

A、[110]B、[100]C、[211]D、[111]5、根据三元相图的垂直截面图__ B ______。

A、可分析相成分变化规律B、可分析材料的平衡凝固过程C、可用杠杆定律计算各相的相对量6、凝固时不能有效降低晶粒尺寸的是以下哪种方法? BA、加入形核剂B、减小液相的过冷度C、对液相实施搅拌答案:B7、三种组元组成的试样在空气中用X射线衍射(XRD)分析其随温度变化而发生相变的情况,则最多可记录到___ C _____共存。

A、2相B、3相C、4相D、5相8、fcc、bcc、hcp三种晶体结构的材料中,塑性形变时最容易生成孪晶的是__ C ______.A、fccB、bccC、hcp9、A和A-B合金焊合后发生柯肯达尔效应,测得界面向A试样方向移动,则___ A _____。

A、A组元的扩散速率大于B组元B、与A相反C、A、B两组元的扩散速率相同10、简单立方晶体的致密度为___ C _____。

A、100%B、65%C、52%D、58%11、不能发生攀移运动的位错是___ A _____.A、肖克利不全位错B、弗兰克不全位错C、刃型全位错12、fcc结构中分别在(111)和(111)面上的两个肖克利位错(分别是1/6[211]和1/6[121])相遇时发生位错反应,将生成_ CA、刃型全位错B、刃型弗兰克位错C、刃型压杆位错D、螺型压杆位错13、能进行交滑移的位错必然是___ B _____。

材料物理性能复习重点

材料物理性能复习重点

1.热容:热容是使材料温度升高1K所需的热量。

公式为C=ΔQ/ΔT=dQ/dT (J/K);它反映材料从周围环境中吸收热量的能力,与材料的质量、组成、过程、温度有关。

在加热过程中过程不同分为定容热容和定压热容。

2.比热容:质量为1kg的物质在没有相变和化学反应的条件下升高1K所需的热量称为比热容每个物质中有两种比热容,其中c p>c v,c v不能直接测得。

3.摩尔热容:1mol的物质在没有相变或化学反应条件下升高1K所需的能量称为摩尔热容,用Cm表示,单位为J/(mol·K)4.热容的微观物理本质:材料的各种性能(包括热容)的物理本质均与晶格热振动有关。

5.热容的实验规律:1.对于金属:2.对于无机材料(了解)1.符合德拜热容理论,但是德拜温度不同,它取决于键的强度、材料的弹性模量、熔点等。

2.对于绝大多数氧化物,碳化物,摩尔热容都是从低温时一个最低值增到到1273K左右近似于3R,温度进一步升高,摩尔热容基本没有任何变化。

3.相变时会发生摩尔热容的突变4.固体材料单位体积热容与气孔率有关,多孔材料质量越小,热容越小。

因此提高轻质隔热砖的温度所需要的热量远低于致密度的耐火砖所需的热量。

6.经典理论传统理论不能解决低温下Cv的变化,低温下热容随温度的下降而降低而下降,当温度接近0K时热容趋向于07.量子理论1.爱因斯坦模型三个假设:1.谐振子能量量子化2.每个原子是一个独立的谐振子3.所有原子都以相同的频率振动。

爱因斯坦温度:爱因斯坦模型在T >> θE 时,Cv,m=3R,与实验相符合,在低温下,T当T << θE时Cv,m比实验更快趋于0,在T趋于0时,Cv,m也趋于零。

爱因斯坦模型不足之处在于:爱因斯坦模型假定原子振动不相关,且以相同频率振动,而实际晶体中,各原子的振动不是彼此独立地以同样的频率振动,而是原子间有耦合作用,点阵波的频率也有差异。

温度低尤为明显2.德拜模型德拜在爱因斯坦的基础上,考虑了晶体间的相互作用力,原子间的作用力遵从胡克定律,固体热容应是原子的各种频率振动贡献的总和。

相变原理复习题

相变原理复习题

相变原理复习题(修改)绪论:相、相变的含义,举例说明物相发生突变的几种形式。

(物理学定义:)具有化学组成和物理性质(密度、强度、硬度、热膨胀系数、介电常数、热容、晶体结构等)完全相同的宏观物理系统。

(热力学定义:)在热力学变量的参数空间里,其自由能是可被解析的系统。

也就是说在同一相的两个状态可以互相转变而不引起热力学性能的突变。

1•相与相之间的转变2母相到新相的变化过程3热力学系统由一相转变为另一相。

3、举例说明物相发生突变的几种形式(答a、b、c三种形式,每种形式任举一例即可)a、从一种结构到另一种结构:固-液-气之间的相互转变:蒸发、熔化、凝固、升华等b、某种物理性质的跃变:磁性材料的顺磁-铁磁转变、顺电体-铁电体转变、液He的超流C、化学成分的变化:固溶体的脱溶:Al-Cu ' ' ' (CuAI 2)以及溶液的脱溶沉淀第一章相变的分类1•热力学分类的方法一级相变的定义及其特征并举例A、定义:相变时,如两相的自由焓(G)或化学势(卩)相等,但化学势的一阶偏导不等,此相变称为一级相变。

B、一级相变特征:1•有熵和体积的突变,表示有相变潜热的吸收或释放;2•存在温度或压强滞后现象;3•亚稳相和新相可以同时共存。

C、一级相变举例:(任举一例即可)凝固、沉积、升华、熔化以及金属中多数固态相变都是一级相变。

二级相变的定义及其特征并举例A、定义:相变时两相化学势相等,一阶偏导也相等,二阶偏导不等B、二级相变特征:1•无化学势、熵、和体积的变化;2•比热、压缩率、膨胀系数、热容、等出现突变;3.无温度、压强滞后现象,两相不可共存。

超导相变、磁性相变、二级铁电相变、二级有序-无序相变、玻璃态相变二级相变主要是一些比较特殊的相变:如铁磁相变、超导相变、超流等等。

成核-长大型,连续型相变的概念成核-长大型:由组成波动程度大,空间范围小的起伏开始发生的相变,初期起伏形成新相核心,然后是新相核心长大。

材料成型原理(上)考试重点复习题2

材料成型原理(上)考试重点复习题2

材料成型原理(上)考试重点复习题2(第⼀章)班级:姓名:学号成绩:座位:第排,左起第座1、偶分布函数g(r)物理意义是距某⼀参考粒⼦r 处找到另⼀个粒⼦的⼏率,换⾔之,表⽰离开参考原⼦(处于坐标原点r=0)距离为r 位置的数密度ρ(r)对于平均数密度ρo (= N/V )的相对偏差。

2、描述液态结构的“综合模型”指出,液态⾦属中处于热运动的不同原⼦的能量有⾼有低,同⼀原⼦的能量也在随时间不停地变化,时⾼时低。

这种现象称为能量起伏。

3、对于实际⾦属及合⾦的液态结构,还需考虑不同原⼦的分布情况。

由于同种元素及不同元素之间的原⼦间结合⼒存在差别,结合⼒较强的原⼦容易聚集在⼀起,把别的原于排挤到别处,表现为游动原⼦团簇之间存在着成分差异。

这种局域成分的不均匀性随原⼦热运动在不时发⽣着变化,这⼀现象称为浓度起伏。

4、粘度随原⼦间距δ增⼤⽽降低,随温度T 上升⽽下降,合⾦元素的加⼊若产⽣负的混合热H m ,则会使合⾦液的粘度上升,通常,表⾯活性元素使液体粘度降低。

5、两相质点间结合⼒越⼤,界⾯能越⼩,界⾯张⼒就越⼩。

两相间的界⾯张⼒越⼤,则润湿⾓越⼤,表⽰两相间润湿性越差。

6、液态⾦属的“充型能⼒”既取决于⾦属本⾝的流动性,也取决于铸型性质、浇注条件、铸件结构等外界因素,是各种因素的综合反映。

流动性与充型能⼒的关系可理解为前者是后者的内因。

7、作⽤于液体表⾯的切应⼒τ⼤⼩与垂直于该平⾯法线⽅向上的速度梯度的⽐例系数,以η表⽰,通常称为动⼒学粘度。

要产⽣相同的速度梯度dV X /dy ,液体内摩擦阻⼒越⼤,则η越⼤,所需外加剪切应⼒也越⼤。

粘度η的常⽤单位为 Pa ·s 或mPa ·s 。

8、铸型的C 2、ρ2、λ2越⼤,即蓄热系数b 2(2222ρλC b =)越⼤,铸型的激冷能⼒就越强,,⼜增⼤T ,所以f max 减⼩;同时固液阶段时间延长,所以钢铁材料中S 、O ⾼则热裂纹容易形成。

材料相变原理复习提纲

材料相变原理复习提纲

材料相变原理复习提纲材料相变原理复习提纲第1章1分析固态相变的动力和阻力。

相变驱动力是使系统自由焓下降的因素,相变阻力是相变导致系统自由焓升高的因素。

△ G = △ G相变+△ G界面+△ G畸式中△ G相变一项为相变驱动力。

其值是新旧相自由焓之差。

相变阻力包括很多内容:如晶界能、相界面能、位错畸变能、孪晶界面能、层错能、表面能、相变潜热等。

综合为界面能和畸变能。

2讨论固态相变新相形状的影响因素。

新相的形状决定于长大速率的方向性,它受晶面的界面张力、表面或界面杂质吸附、温度和浓度梯度等影响。

如生铁中石墨沿基面方向长大,成为片状石墨;如沿垂直于基面方向长大,则成为扇形石墨的复合体,即球状石墨。

1. 以共析钢为例,说明奥氏体的形成过程1奥氏体晶核的形成:奥氏体晶核易于在铁素体与渗碳体相界面形成2奥氏体的长大:奥氏体中的碳含量是不均匀的,与铁素体相接处碳含量较低,与渗碳体相接处碳含量较高,引起碳的扩散,破坏了原先碳浓度的平衡,为了恢复碳浓度的平衡,促使铁素体向奥氏体转变以及fe3c的溶解,直至铁素体全部转变为奥氏体为止。

3 残余渗碳体的溶解:铁素体比奥氏体先消失,因此还残留未溶解的渗碳体,随时间的延长不断融入奥氏体,直至全部消失。

4奥氏体均匀化:残余渗碳体全部溶解时,奥氏体中的碳浓度依然是不均匀的,继续延长保温时间,通过碳的扩散,可使奥氏体碳含量逐渐趋于均匀。

渗碳体残余的原因:相界面向铁素体中的推移速度比向渗碳体中推移速度快14.8倍,但是铁素体片厚度仅比渗碳体片大7倍,所以铁素体先消失,还有相当数量的剩余渗碳体未完全溶解。

2. 奥氏体的晶粒度由几种表示方法?并讨论影响奥氏体晶粒度的影响因素晶粒度是指晶粒大小,晶粒大小可用多种方法表示,晶粒大小与晶粒度级别(N)的关系为:n = 2N-1n为放大100倍视野中单位面积内的数。

N —般为1-8,级别越高,晶粒越细。

起始晶粒度;实际晶粒度;本质晶粒度。

本质细晶粒钢:5-8级;本质粗晶粒钢:1-4级。

(吴国华)《材料加工原理》复习题

(吴国华)《材料加工原理》复习题

材料加工原理(液态成型部分)复习题:名词解释:1、自发形核在不借助任何外来界面的均匀熔体中形核的过程。

2、非自发形核在不均匀熔体中,依靠外来杂质界面或各种衬底形核的过程。

3、气孔为梨形、圆形、椭圆形的孔洞,表面较光滑,一般不在铸件表面露出,大孔独立存在,小孔则成群出现。

4、非金属夹杂物在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。

5、残余应力产生应力原因消除后,铸件中仍然存在的应力。

6、充型能力液态金属充满铸型型腔,获得尺寸精确、轮廓清晰的成型件的能力。

7、缩孔指铸件在冷凝过程中收缩而产生的孔洞,形状不规则,孔壁粗糙。

8、缩松铸件断面上出现的分散而细小的缩孔。

9、铸造应力铸件在发生体积膨胀或收缩时,往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在变形的同时产生应力10、单相合金凝固过程中只析出一个固相的合金 (固溶体,金属间化合物,纯金属)11、多相合金凝固过程中同时析出两个以上新相的合金(共晶、包晶、偏晶转变的合金)12、溶质再分配合金在凝固时,随着温度不同,液固相成分发生改变,且由于固相成分与液相原始成分不同,排出溶质在液-固界面前沿富集,并形成浓度梯度,从而造成溶质在液、固两相重新分布,这种现象称之为“溶质再分配”现象。

13、平衡凝固在接近平衡凝固温度的低过冷度下进行的凝固过程。

14、溶质分配系数一定温度下,处于平衡状态时,组分在固定相中的浓度和在流动相中的浓度之比15、动力学过冷度物体实际结晶温度与理论结晶温度的差。

液态成型理论基础:1、纯金属和实际合金的液态结构有何不同?举例说明。

答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。

原子集团的空穴或裂纹内分布着排列无规则的游离原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏、成分起伏。

相变原理习题2

相变原理习题2

相变原理习题绪论:相、相变的含义,举例说明物相发生突变的几种形式。

第一章相变的分类1.热力学分类的方法一级相变的定义及其特征并举例二级相变的定义及其特征并举例2.按相变方式分类成核-长大型,连续型相变的概念均匀相变,非均匀相变的概念3.按原子迁移方式分类扩散型相变,无扩散型相变的概念4.金属及合金中的相变沉淀、G.P.区的概念连续沉淀、非连续沉淀的特征为何会发生局部沉淀第二章相变热力学1.为什么会发生相变?相变的判据。

相变的温度、压力条件2.相互作用参数Ω3.共格界面、半共格界面和非共格界面的能量关系。

4.温度和化学成分是如何影响化学自由能的?5.证明把吉布斯自由能-成分曲线的切线外延到XA=0和XB=0就可得到A和B的化学势。

6.图解法确定相变的驱动力和初始驱动力。

根据吉不斯自由能—组成曲线分析如图所示的成分为X0的γ相发生转变时的析出顺序新相形成的顺序。

图17.假设∆H及∆S与温度无关,证明金属在熔点以上不可能发生凝固。

8.试由二元系固溶体(Ω<0)吉布斯自由能曲线说明固溶体中出现成分不均匀在热力学上是不稳定的。

9.一个二元合金由α固溶体和β中间相组成,试由固溶体和中间相吉布斯自由能曲线说明组成中间相组元间的亲和力越大,与中间相相邻的固溶体的溶解度越小。

10.金属A和金属B在液态互溶而固态完全不溶,它们的熔点分别为800K和945K,熔化热为2.5kJ/mol 和4.0kJ/mol。

假设形成理想溶液,试求出共晶点和成分。

11.在286K时,α-Sn β-Sn的∆H=2095J/mol,Sn的摩尔质量M=118.7g/mol,α-Sn 的密度为5.75g/cm3,β-Sn 的密度为7.28g/cm3,试计算在10MPa下α-Sn β-Sn相变温度的改变。

第三章相变动力学1. TTT 图的概念及各区域的含义2. 假设在固态相变过程中新相形核率N 及长大速率G 均为常数,则经t 时间后所形成新相的体积分数x 可用Johnson-Mehl 方程得到,即)3exp(143t NG x π--=已知形核率N=1000/cm 3.s ,G=3×10-5cm/s ,试计算: (1)发生相变速度最快的时间;过程中的最大相变速度; (2)获得50%转变量所需的时间。

相变原理总结

相变原理总结

一、奥氏体的形成可分为哪四个阶段?1、形核2、核心长大3、残余碳化物的溶解4、奥氏体的均匀化二、随温度升高,影响奥氏体形成速度增加的原因?奥氏体的形核速率是有形核率N和长大速度v共同控制,随温度升高:1、A的形核率成指数升高;2、奥氏体转变驱动力ΔG升高;3、原子扩散系数升高;4、形成核所需浓度起伏降低,从而使形核率升高。

随温度升高,A长大速度升高原因为,温度升高导致:1、C在A中的扩散系数升高;2、dc/dx升高;3、(Ca/F-CF/A)下降,T上升,ΔCB下降三、影响A形成的两个主要因素:1、温度:温度越高,A形成温度越高;2、合金元素:①合金元素影响临界点②…碳扩散③…本身扩散困难四、连续加热时A形成特点?①奥氏体形成是在一个温度范围内形成,且随加热速度升高,A的形成温度升高,A形成温度范围扩大,A完成时间越短;②随加热温度上升,临界点(Ac1,Ac2,Ac3)升高;③可获得超细的起始晶粒;④对原始组织敏感;⑤连续加热时,A成分不均匀性增大五、三种晶粒度的概念和决定他们的因素?①起始晶粒度:是A转变刚刚完成时,A边界刚刚相互触式时的A晶粒大小。

决定因素:形核率与长大速度的比值;②实际晶粒度:钢经实际生产(或实验)后获得的A晶粒大小。

决定因素:⑴决定于加热条件,温度越高,保温时间越长,A实际晶粒度越大⑵决定于本质晶粒度;③本质晶粒度:表征钢在加热过程中,A晶粒长大的倾向,分为8级。

决定因素:炼钢…冶炼钢的的炼钢方法:凡使用铝脱氧的为本质细晶粒钢,凡是不使用…粗…六、片层间距的定义及决定因素?片层间距是一片F和一片Fe3C的总厚度。

决定因素为:珠光体的形成温度(T↓, △T↑,片层间距So↓)七、亚共析钢、过共析钢形成时,先共析相的形态和出现条件?⑴网状组织形成条件①A晶粒比较粗大②冷却速度比较快或过冷度较大⑵块状组织的形成条件①先共析相的量比较大②A晶粒比较细③冷却速度很慢⑶晶内片状的形成条件①加热温度高②冷却适中,成分适当,容易形成魏氏组织八、影响P形成因素?①含碳量的影响:对于亚共析钢,随着C%升高,转变动力学的孕育期增长,C曲线右移,对于过共析钢,孕育期越短,C曲线左移②合金元素的影响:大多数合金元素都降低珠光体转变的形核率和长大速度①降低A点的合金元素,减小过冷度,稳定A,减缓P转变,提高A点的合金元素,增大过冷度,稳定P,加强P转变②碳化物形成元素降低了扩散能力,减缓珠光体转变③合金元素本身的分配,扩散很慢且分布不均匀,阻止C的扩散,减缓P 的转变④Co、Ni,扩散能力增强,加速珠光体转变⑤表面性元素B降低A晶界能阻止F形成,阻碍P转变九、M转变的特点:①无扩散性②切变性③浮凸现象④共格性⑤严格的晶体学位向关系⑥惯X面⑦变温性十、Ms、Md、As的概念?①Ms的物理意义:A、M两相自由能差达到了相变所需要的最小驱动力时的温度②Md 获得形态马氏体的最高温度③As:M、A两相自由能差达到了相变所需要的最小驱动力时的温度十一、M强化的因素或M高强度高硬度的原因?①相变强化:马氏体相变的切变特征性造成在晶体内产生大量的微观缺陷,称为相变强化②C过饱和固溶体溶于α相当中使晶格产生严重畸形,使M强化③时效强化:一般马氏体都在室温以上形成,钢的Ms点都大于20℃,故冷却至室温过程中,M中的C偏聚于位错,形成柯氏气团钉扎位错,从而使M强化十二、含碳量对M形态的影响:①C%<0.25%,全部板条②0.25%<C%<1%,板条+片状③C%>1%,全部片状十三、板条M和片状M形态、亚结构和性能以及产生这些性能的原因?板条马氏体主体形态:扁长条状,亚结构为高密度位错;片状马氏体主体形态:双凸透镜,金相形态为针叶状/竹叶状,片片之间互成一定角度。

材料科学基础考试试卷参考(带答案)

材料科学基础考试试卷参考(带答案)

材料科学基础试卷(一)一、概念辨析题(说明下列各组概念的异同。

任选六题,每小题3分,共18分)1 晶体结构与空间点阵2 热加工与冷加工3 上坡扩散与下坡扩散4 间隙固溶体与间隙化合物5 相与组织6 交滑移与多滑移7 金属键与共价键8 全位错与不全位错9 共晶转变与共析转变二、画图题(任选两题。

每题6分,共12分)1 在一个简单立方晶胞内画出[010]、[120]、[210]晶向和(110)、(112)晶面。

2 画出成分过冷形成原理示意图(至少画出三个图)。

3 综合画出冷变形金属在加热时的组织变化示意图和晶粒大小、内应力、强度和塑性变化趋势图。

4 以“固溶体中溶质原子的作用”为主线,用框图法建立与其相关的各章内容之间的联系。

三、简答题(任选6题,回答要点。

每题5分,共 30 分)1 在点阵中选取晶胞的原则有哪些?2 简述柏氏矢量的物理意义与应用。

3 二元相图中有哪些几何规律?4 如何根据三元相图中的垂直截面图和液相单变量线判断四相反应类型?5 材料结晶的必要条件有哪些?6 细化材料铸态晶粒的措施有哪些?7 简述共晶系合金的不平衡冷却组织及其形成条件。

8 晶体中的滑移系与其塑性有何关系?9 马氏体高强度高硬度的主要原因是什么?10 哪一种晶体缺陷是热力学平衡的缺陷,为什么?四、分析题(任选1题。

10分)1 计算含碳量w=0.04的铁碳合金按亚稳态冷却到室温后,组织中的珠光体、二次渗碳体和莱氏体的相对含量。

2 由扩散第二定律推导出第一定律,并说明它们各自的适用条件。

3 试分析液固转变、固态相变、扩散、回复、再结晶、晶粒长大的驱动力及可能对应的工艺条件。

五、某面心立方晶体的可动滑移系为(111) [110].(15分)(1) 指出引起滑移的单位位错的柏氏矢量.(2) 如果滑移由纯刃型位错引起,试指出位错线的方向.(3) 如果滑移由纯螺型位错引起,试指出位错线的方向.(4) 在(2),(3)两种情况下,位错线的滑移方向如何?(5) 如果在该滑移系上作用一大小为0.7MPa的切应力,试确定单位刃型位错和螺型位错线受力的大小和方向。

超有用的材料成型原理试卷试题及答案

超有用的材料成型原理试卷试题及答案

陕西工学院考试试卷(B)标准答案一、填空题(每空2分,共40分)1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。

2.液态金属或合金凝固的驱动力由过冷度提供。

3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。

5.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。

6.液态金属凝固时由热扩散引起的过冷称为热过冷。

7.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同形态的晶区。

8.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。

9.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。

10.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。

二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。

1.塑性变形时,工具表面的粗糙度对摩擦系数的影响大于工件表面的粗糙度对摩擦系数的影响。

A、大于;B、等于;C、小于;2.塑性变形时不产生硬化的材料叫做A。

A、理想塑性材料;B、理想弹性材料;C、硬化材料;3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为B。

A、解析法;B、主应力法;C、滑移线法;4.韧性金属材料屈服时,A准则较符合实际的。

A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做B。

A、理想弹性材料;B、理想刚塑性材料;C、塑性材料;6.硫元素的存在使得碳钢易于产生A。

A、热脆性;B、冷脆性;C、兰脆性;7.应力状态中的B应力,能充分发挥材料的塑性。

A、拉应力;B、压应力;C、拉应力与压应力;8.平面应变时,其平均正应力 mB中间主应力 2。

A、大于;B、等于;C、小于;9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。

相变原理(复习题)

相变原理(复习题)

相变原理复习习题第一章固态相变概论相变:指在外界条件(如温度、压力等)发生变化时,体系发生的从一相到另一相的变化过程。

固态相变:金属或陶瓷等固态材料在温度和/或压力改变时,其内部组织或结构会发生变化,即发生从一种相状态到另一种相状态的改变。

共格界面:若两相晶体结构相同、点阵常数相等、或者两相晶体结构和点阵常数虽有差异,单存在一组特定的晶体学平面使两相原子之间产生完全匹配。

此时,界面上原子所占位置恰好是两相点阵的共有位置,界面上原子为两相所共有,这种界面称为共格界面。

当两相之间的共格关系依靠正应变来维持时,称为第一类共格;而以切应变来维持时,成为第二类共格。

半共格界面:半共格界面的特点:在界面上除了位错核心部分以外,其他地方几乎完全匹配。

在位错核心部分的结构是严重扭曲的,并且点阵面是不连续的。

非共格界面:当两相界面处的原子排列差异很大,即错配度δ很大时,两相原子之间的匹配关系便不在维持,这种界面称为非共格界面;一般认为,错配度小于0.05时两相可以构成完全的共格界面;错配度大于0.25时易形成非共格界面;错配度介于0.05~0.25之间,则易形成半共格界面。

一级相变:相变前后若两相的自由能相等,但自由能的一级偏微商(一阶导数)不等的相变。

特征:相变时:体积V,熵S,热焓H发生突变,即为不连续变化。

晶体的熔化、升华,液体的凝固、气化,气体的凝聚,晶体中大多数晶型转变等。

二级相变:相变时两相的自由能及一级偏微商相等,二级偏微商不等。

特征:在临界点处,这时两相的化学位、熵S和体积V相同;但等压热容量Cp、等温压缩系数β、等压热膨胀系数α突变。

例如:合金的有序-无序转变、铁磁性-顺磁性转变、超导态转变等。

均匀相变:没有明显的相界面,相变是在整体中均匀进行的,相变过程中的涨落程度很小而空间范围很大。

特点:A: 无需形核;B: 无明确相界面;非均匀相变:是通过新相的成核生长来实现的,相变过程中母相与新相共存,涨落的程度很大而空间范围很小。

材料物理性能考试复习资料

材料物理性能考试复习资料

1. 影响弹性模量的因素包括:原子结构、温度、相变。

2. 随有温度升高弹性模量不一定会下降。

如低碳钢温度一直升到铁素体转变为奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。

这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。

3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。

4. 弹性系数Ks的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合力。

对于一定的材料它是个常数。

弹性系数Ks和弹性模量E之间的关系:它们都代表原子之间的结合力。

因为建立的模型不同,没有定量关系。

(☆)5. 材料的断裂强度:F E /a材料断裂强度的粗略估计:二E/106. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近绝对零度时,热容按T的三次方趋近与零的试验结果。

7. 德拜温度意义:①原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温度9D来划分这两个温度区域:在低B D的温度区间,电阻率与温度的5次方成正比。

在高于9 D的温度区间,电阻率与温度成正比。

②德拜温度------晶体具有的固定特征值。

③德拜理论表明:当把热容视为(T/ 9 D)的两数时,对所有的物质都具有相同的关系曲线。

德拜温度表征了热容对温度的依赖性。

本质上,徳拜温度反应物质内部原子间结合力的物理量。

8. 固体材料热膨胀机理:(1)固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。

(2)晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。

随着温度升高,热缺陷浓度呈指数增加,这方面影响较重要。

9. 导热系数与导温系数的含义:材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。

即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度” (☆)10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震性。

材料科学基础《相变原理答案》

材料科学基础《相变原理答案》

3 试述马氏体转变的主要特点。 (1)切变共格和表面浮凸现象 (2)马氏体转变的无扩散性 无成分变化,仅有晶格改组 原子集体运动,原来相邻的原子转变后依然相邻,相对位移不超过一个原子间距 在相当低的温度范围内进行,转变速度极快 (3)具有一定的位向关系和惯习面 (4)马氏体转变是在一个温度范围内完成的 (5)马氏体转变的可逆性 综合:以切变共格形式进行、相变的无扩散性 4 试述钢中板条状马氏体和片状马氏体的形貌特征和亚结构并说明它们的性能差异。 形貌特征: 板条状马氏体: 板条体常自奥氏体晶界向晶内平行排列成群, 一个奥氏体晶粒内包含几个板 条群,板条体之间为小晶界,板条群之间为大晶界。 片状马氏体:凸透镜片状中间较厚,初生者较厚较长,横贯奥氏体晶粒,次生者尺寸较小。 在初生片与奥氏体晶界之间,片间交角较大,互相撞击,形成显微裂纹。有明显中脊。 亚结构:板条状:位错网络(缠结) ,有时亦可见到少量细小孪晶。片状:孪晶。 性能差异:低碳的位错型(板条状)马氏体具有相当高的强度和良好的韧性,高碳的孪晶型 (片状)马氏体具有高的强度,但韧性很差。位错型(板条状)马氏体还具有脆性转折温度 低,缺口敏感性低等优点。 5 Ms 点的定义和物理意义。 Ms 点为奥氏体和马氏体的两相自由能之差达到相变所需的最小驱动力值的温度。Ms 点和 T0 的差值表示了相变的化学驱动力的大小。 6 试述影响 Ms 点的主要因素。 (1)化学成分的影响 钢中碳含量增加,Ms 点下降,转变温度区间范围扩大。 合金元素使 Ms 点下降,Al 和 Co 例外使 Ms 点上升。 (2)形变和应力的影响 Ms 点以上、Md 点以下,塑性形变诱发马氏体相变;Ms-Mf 之间形变促进马氏体转变,马 氏体转变量增加。 弹性应力的影响: 马氏体转变产生体积膨胀, 多向亚应力阻止马氏体形成, 拉应力和单向压应力有利于马氏体的形成,使 Ms 点升高。 (3)奥氏体化条件的影响 加热温度和时间增加有利于碳和合金元素进一步溶入奥氏体中,使 Ms 点下降;在完全奥氏 体化的条件下,加热温度的提高和时间的延长是奥氏体晶粒长大,缺陷减少,Ms 点有所提 高;在奥氏体成分一定的情况下,晶粒细化,奥氏体强度提高,转变切变阻力增大,Ms 点 下降。 (4)淬火速度的影响 高速淬火时,Ms 点随淬火冷却速度增大而提高(抑制 C 原子气团的形成) (5)磁场的影响 加磁场只使 Ms 点提高,对 Ms 点以下的转变行为并无影响。

材料相变原理总复习题

材料相变原理总复习题

08年工大材料系材料相变原理总复习题(貌似考研也能用)题:材料相变原理复习题第一章:1说明成分、相、结构和组织四个概念的含义,并讨论45#钢室温平衡状态下的成分、相、结构和组织。

2 试述金属固态相变的主要特征。

3 哪些基本变化可以被称为固态相变?4 简述固态相变过程中界面应变能产生的原因。

5 简述固态相变形成新相的形状与界面能和界面应变能的关系,6 扩散型相变和无扩散型相变各有哪些主要特点?第二章:1 试述钢中奥氏体和铁素体的晶体结构、碳原子可能存在的部位以及碳原子在奥氏体和铁素体中的最大理论含量和实际含量。

2 以共析钢为例说明奥氏体的形成过程,并说明为什么在铁素体消失的瞬间还有部分渗碳体未溶解。

3 试述影响奥氏体晶粒长大的因素。

4 解释下列概念:惯习面,非均匀形核,奥氏体的起始晶粒度、实际晶粒度和本质晶粒度,钢在加热时的过热现象,钢的组织遗传和断口遗传。

第三章:1 试述影响珠光体转变动力学的因素。

2 试述钢中相间沉淀长生条件和机理。

3 概念解释:伪共析组织,魏氏组织,“派敦”处理。

第四章:1 试述马氏体的晶体结构及其产生原因。

2 简述马氏体异常正方度的产生原因。

3 试述马氏体转变的主要特点。

4 试述钢中板条状马氏体和片状马氏体的形貌特征和亚结构并说明它们的性能差异。

5 Ms点的定义和物理意义。

6 试述影响Ms点的主要因素。

7 试述引起马氏体高强度的原因。

8 概念解释:奥氏体的热稳定化,奥氏体的机械稳定化,马氏体的逆转变,伪弹性,相变冷作硬化,形状记忆效应。

第五章:1 试述贝氏体转变的基本特征。

2试述钢中上贝氏体和下贝氏体的形貌特征和亚结构并说明它们的性能差异。

3 试述影响贝氏体性能的基本因素。

4 试比较贝氏体转变与珠光体转变和马氏体转变的异同。

第七章:1 什么是回火?回火的目的是什么?2 试述淬火钢回火转变的基本过程。

3 简述第一类回火脆性的特点及产生原因。

4简述第二类回火脆性的特点及产生原因。

材料成型原理复习题.doc

材料成型原理复习题.doc

一、填空题1、材料成形方法:除去加工法、连接加工法、变形加工法、液态及粉木成形加工法2、自然界的物质呈现出三种状态:固态、气态、液态,这三种状态之间变化时都发生着相变,例如:由气态转变为液态将产生气相=液相的相转变;由气态转变为固态将产生________ 的相转变;由液态转变为气态将产生_____ 的相转变;由液态转变为固态将产生_______ 的相转变;由固态转变为气态将产生_____ 的相转变;由固态转变为液态将产生_______ 的相转变。

P83、由金属熔化过程的分析可知,纯金属的液态结构由:原子集团、游离原子和空穴组成。

P114、影响液态金属表面张力的因素主要冇:熔点、温度、溶质元素。

P165、液态成形是将熔化的金属或合金在重力或其他外力的作用下注入铸型的型腔内,待其冷却凝固后获得与型腔形状相同的铸件的一种成形方法,主要成形方法冇:重力铸造、压力铸造、离心铸造等。

P236、晶体宏观长大方式取决于界面前方液体中的温度分布,即温度梯度。

在结晶界面前方存在两种温度梯度,即正温度梯度和负温度梯度,当温度梯度为正时,品体以平血方式长大,当温度梯度为负时,晶体以树枝晶方式长大。

P457、铸件典型的宏观组织冇表面细晶粒区、柱状晶区、内部等轴晶区。

P878、在金属铸造过程中,按气体來源不同,气孔可分为三类,分别是析出性气孔、浸入性气孔、反应性气孔;按照气体种类,气孔可分为三类,分别是___________ 、 _________ 和_________ ; P959、液态金属在凝固过程中发生的化学成分不均匀现象称为___________ ,根据出现的范围不同,主要分为__________ 和 ________ 两大类。

P11410、_________________________________________________________ 铸件在冷却过程中产生的应力,按产生的原因可分为_______________________________________________ 、__________ 和_________ 三类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1概念解释:固溶处理,脱溶,吋效,吋效合金的回归现象,调幅分解。
2以Al-Cu合金为例,说明吋效合金的脱溶过程及各种脱溶物的特征。
一女生做的答案:
1说明成分、相、结构和组织叫个概念的含义,并讨论45#钢室温平衡状态下的成分、相、结构和组织。
答:成分一一元素的组成和含量;相一一具有相同物理化学性质且与其他部分以界面分开的局辈部分;结构一一原子的排列;组织一一各相的大小形状。45#钢0.45%C+99.55%Fe a-Fe+Fe3C a-Fe体心立方点阵片状或层状
5简述固态相变形成新相的形状与界而能和界而应变能的关系。
答:圆盘形粒子所导致的应变能最小,其次是针状,球形粒子最大。界面不共格时,盘状应变能最低,界面能较高,球形界面能最低,但应变能最大。
6扩散型相变和无扩散型相变各有哪些主要特点?
答:扩散型:a有原子扩散运动,转变速率决定于扩散速度。B新相和母相成分往往不同。
第三章:
1试述影响珠光体转变动力学的因素。
2试述钢中相间沉淀长生条件和机理。
3概念解释:伪共析组织,魏氏组织,“派敦”处理。
第四章:
1试述马氏体的晶体结构及其产生原因。
2简述马氏体异常正方度的产生原因。
3试述马氏体转变的主要特点。
4试述钢屮板条状马氏体和片状马氏体的形貌特征和亚结构并说明它们的性能差异。
C只有因比容不同引起的体积变化,没有形状改变。D位相关系可有可无。无扩散形:a存在由于均匀切变引起的形状改变,相变过程中原子为集体的协同运动,所以使晶体外形发生变化。B新相和母相化学成分相同c新相和母相之间存在•一定的位相关系d相界妞移动速度极快,可接近声速。
1试述钢中奥氏体和铁素体的晶体结构、碳原子可能存在的部位以及碳原子在奥氏体和铁素体中的最大理论含量和实际含量。答:奥氏体为c在r-Fe巾的固溶体,c原子在面心立方的中心或棱边的中点。理论含量为20%,实际最大为2.11%。铁素体c原子在体心立方晶胞的八面体间隙处,c理论含量为39.1%实际含量为0.02%(重量百分浓度)
2以共析钢为例说明奥氏体的形成过程,并说明为什么在铁素体消失的瞬间还有部分渗碳体未溶解。
答:1奥氏体晶核的形成:奥氏体晶核易于在铁素体与渗碳体相界妞形成2奥氏体的长大:奥氏体中的碳含量是不均匀的,与铁素体相按处碳含量较低,与渗碳体相接处碳含量较高,引起碳的扩散,破坏了原先碳浓度的平衡,为了恢复碳浓度的平衡,促使铁素体向奥氏体转变以及fe3c的溶解,直至铁素体全部转变为奥氏体为止。3残余渗碳体的溶解:铁素体比奥氏体先消失,因此还残留未溶解的渗碳体,随时间的延长不断融入奥氏体,直至全部消失。4奥氏体均匀化:残余渗碳体全部溶解吋,奥氏体中的碳浓度依然是不均匀的,继续延长保温时间,通过碳的扩散,可使奥氏体碳含量逐渐趋于均匀。渗碳体残余的原因:相界面向铁素体中的推移速度比向渗碳体中推移速度快14.8倍,但是铁素体片厚度仅比渗碳体片大7倍,所以铁素体先消失,还有相当数量的剩余渗碳体未完全溶解。
5Ms点的定义和物理意义。
6试述影响Ms点的主要因素。
7试述引起马氏体高强度的原因。
8概念解释:奥氏体的热稳定化,奥氏体的机械稳定化,马氏体的逆转变,伪弹性,相变冷作硬化,形状记忆效应。
第五章:
1试述W氏体转变的基本特征。
2试述钢屮上贝氏体和下贝氏体的形貌特征和亚结构并说明它们的性能差异。
3试述影响贝氏体性能的基本因素。
3哪些基本变化可以被称为固态相变?
答:1、晶体结构的变化;2、化学成分的变化;3、固溶体有序化程度的变化。
4简述固态相变过程中界面应变能产生的原因。
答:新相和母相的比容不同,新相形成时的体积变化将受到周围母相的约朿而产生弹性应变。两项界面不匹配也引起弹性应变能,以共格界面为最大,半共格次之,非共格为0.
3试述影响奥氏体晶粒长大的因素。
答:受到加热速度、保温时间,钢的成分,沉淀析出粒子性质、数量,大小和分布,以及原始组织和加热速度的影响。1加热温度和保温时间的影响:加热温度越高,保温时间越长,奥氏体晶粒将越粗大。低温时保温时间影响较小,高温时保温时间影响开始较大,随后减弱。2加热速度的影响:加热速度越快,奥氐体起始晶粒度越细小。3钢的碳含:W::在一定碳含量范围内奥氏体晶粒大小随钢屮碳含量增加而增大,超过限度时,碳含量进一步增加,奥氐体晶粒反而减小。4合金元素的影响:钢中加入适量形成难熔化合物的合金元素,强烈阻碍奥氏体晶粒长大,使奥氏体晶粒粗化温度显著提高。
4试比较贝氏体转变与珠光体转变和马氏体转变的异同。
第七章:
1什么是回火?回火的目的是什么?
2试述淬火钢回火转变的基本过程。
3简述第一类回火脆性的特点及产生原因。
4简述第二类回火脆性的特点及产生原因。
5简述预防和减轻第二类冋火脆性的方法。
6概念解释:二次硬化,二次淬火,回火脆性敏感度,回火脆度
第八章:
08
题:
材料相变原理
复习题
第一章:
1说明成分、相、结构和组织四个概念的含义,并讨论45#钢室温平衡状态下的成分、相、结构和组织。
2试述金属固态相变的主要特征。
3哪些基本变化川'以被称为固态相变?
4简述固态相变过程屮界而应变能产生的原因。
5简述同态相变形成新相的形状与界面能和界面应变能的关系,
6扩散型相变和无扩散型相变各有哪些主要特点?
第二章:
1试述钢中奥氏体和铁素体的晶体结构、碳原子川‘能存在的部位以及碳原子在奥氏体和铁素体屮的最大理论含量和实际含量。
2以共析钢为例说明奥氏体的形成过程,并说明为什么在铁素体消失的瞬间还有部分渗碳体未溶解。
3试述影响奥氏体晶粒长大的因素。
4解释卜列概念:
惯习而,非均匀形核,奥氏体的起始晶粒度、实际晶粒度和本质晶粒度,钢在加热时的过热现象,钢的组织遗和断口遗传。
2试述金属固态相变的主要特征。
答:相界面:金属固态相变时,新相和母相的界面分为两种。位相关系:两相界面力共格或半共格时新相和母相之间必然有一定位相关系,两项之间没有位相关系则为非共格界面。惯习而:新相往往在母相一定晶而上形成,这个晶而称为惯习而。应变能:圆盘型粒子所导致的应变能最小,其次是针状,球状最人。同态相变阻力包括界而能和应变能。晶体缺陷的影响:新相往往在缺陷处优先成核。原子的扩散:收扩散控制的固态相变可以产生很大程度的过冷。无扩散型的相变形成亚稳定的过度相。过度相的形成:固态相变的过程往往先形成亚稳相以减少表面能,因而常形成过度点阵。
相关文档
最新文档