高考数学第一轮复习教学案
高三数学高考第一轮复习计划(10篇)
高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。
高三数学一轮复习教学案:三角函数
三角函数1.了解任意角的概念、弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、余弦、正切.2.掌握三角函数的公式(同角三角函数基本关系式、诱导公式、和、差角及倍角公式)及运用.3.能正确运用三角公式进行简单的三角函数式的化简、求值和条件等式及恒等式的证明.4.掌握正弦函数、余弦函数、正切函数的图象和性质;会用单位圆中的三角函数线画出正弦函数、正切函数的图象、并在此基础上由诱导公式画出余弦函数的图象.会用“五点法”画出正弦函数、余弦函数和)(sin ϕω+=x A y 的简图,理解ϕω、A 、的物理意义.5.会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx 表示角.6.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1.降低了对三角函数恒等变形的要求,加强了对三角函数图象和性质的考查.尤其是三角函数的最大值与最小值、周期.2.以小题为主.一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易.其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等.3.更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识.第1课时 任意角的三角函数一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213的正弦线、余弦线、正切线.- + -+cos x , + + --sin x ,- + +-tan x ,x y O xy O x y O2α,2α ,3α的终边所在位置.解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k ∈Z ).(1)∵2k·360°+180°<2α<2k·360°+360°(k ∈Z ),∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵k·180°+45°<2α<k·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n·360°+45°<2α<n·360°+90°;当k=2n+1(n ∈Z )时,n·360°+225°<2α<n·360°+270°.∴2α是第一或第三象限的角.(3)∵k·120°+30°<3α<k·120°+60°(k ∈Z ),当k=3n (n ∈Z )时,n·360°+30°<3α<n·360°+60°;当k=3n+1(n ∈Z )时,n·360°+150°<3α<n·360°+180°;当k=3n+2(n ∈Z )时,n·360°+270°<3α<n·360°+300°.∴3α是第一或第二或第四象限的角.变式训练1:已知α是第三象限角,问3α是哪个象限的角?解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k ∈Z ),60°+k·120°<3α<90°+k·120°.①当k=3m(m ∈Z )时,可得60°+m·360°<3α<90°+m·360°(m ∈Z ).故3α的终边在第一象限.②当k=3m+1 (m ∈Z )时,可得180°+m·360°<3α<210°+m·360°(m ∈Z ).故3α的终边在第三象限.③当k=3m+2 (m ∈Z )时,可得300°+m·360°<3α<330°+m·360°(m ∈Z ).故3α的终边在第四象限.综上可知,3α是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23;(2)cos α≤21-.解:(1)作直线y=23交单位圆于A 、B 两点,连结OA 、OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α|2k π+3π≤α≤2k π+32π,k ∈Z .(2)作直线x=21-交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k k ,342322|ππαππα.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ;(2)y=lg(3-4sin 2x ).解:(1)∵2cosx-1≥0,∴cosx≥21.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎥⎦⎤⎢⎣⎡+-32,32ππππk k (k ∈Z ).(2)∵3-4sin 2x >0,∴sin 2x <43,∴-23<sinx <23.利用三角函数线画出x 满足条件的终边范围(如右图阴影),∴x ∈(k π-3π,k π+3π)(k ∈Z ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x+4y=0上,∴在角α的终边上任取一点P(4t,-3t) (t≠0),则x=4t,y=-3t,r=5)3()4(2222=-+=+t t y x |t|,当t >0时,r=5t, sin α=5353-=-=t t r y ,cos α=5454==t t r x , tan α=4343-=-=t t x y ; 当t <0时,r=-5t,sin α=5353=--=t t r y , cos α=5454-=-=t t rx , tan α=4343-=-=t t x y . 综上可知,t >0时,sin α=53-,cos α=54,tan α=43-; t <0时,sin α=53,cos α=-54,tan α=43-.变式训练3:已知角θ的终边经过点P ()(0),sin m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.解:由题意,得0,4r m m ==≠∴= 故角θ是第二或第三象限角.当m =,r =P 的坐标为(,cos tan x y r x θθ∴======当m =,r =P 的坐标为(,cos tan x y r x θθ∴======例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.解:(1)设弧长为l ,弓形面积为S 弓。
高三数学第一轮复习教学计划
高三数学第一轮复习教学计划一、指导思想以学校和高三年部的教学计划为目标, 深入钻研教材及总复习大纲, 依靠集体智慧处理教研、教改资源及多媒体信息。
根据我校实际, 合理运用现代教学手段、技术, 提高课堂效率, 全面提高数学教学质量, 以确证学生在明年高考中取得好的成绩。
二、目标要求1. 深入钻练教材, 结合所教学生实际, 确定好每节课所教内容, 及所采用的教学手段、方法。
2. 本学期重点为高考第一轮复习, 为明年的下一轮复习以及高考打基础。
3. 继续培养学生的学习兴趣, 帮助学生解决好学习教学中的困难, 提高学生的数学素养和综合能力。
4. 本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力, 最终提升学生的整体解题能力。
三、教材分析本期教材: 高中全部必修、选修教材及第一轮复习资料。
四、具体方法措施1. 高质量备课, 参考网上的课件资料, 结合我校学生实际, 充分发挥全组老师的集体智慧, 确保每节课件都是高质量的。
统一教案、统一课件。
2. 高效率的上好每节课, 真正体现学生主体、教师主导作用。
保证练的时间, 运用多媒资源, 让学生对知识充分理解。
3. 狠抓作业批改、讲评, 教材作业、练习课内完成, 课外作业认真批改、讲评。
一题多思多解, 提炼思想方法, 提升学生解题能力。
4. 认真落实月考, 考前作好指导复习, 试卷讲评起到补缺长智的作用。
5. 继续抓紧培优补差工作, 让优等生开阔知识视野, 丰富各种技能, 达到思维多角度, 解题多途径, 效果多功能之目的。
让弱科学生基础打牢, 技能提升, 方法灵活得当, 收到弱科不弱之效果。
链接汇总:集合的概念与运算向量平面向量的坐标运算平面向量的数量积线段的定比分点、平移正弦定理、余弦定理不等式的性质不等式的解法不等式的应用不等式的证明(二)不等式的证明(一)轨迹问题含有绝对值的不等式抛物线双曲线算数平均数与几何平均数椭圆平面向量圆锥曲线的综合问题直线与圆锥曲线位置关系目前考生正处于高考的第二轮复习当中, 要注意培养和提高数学能力, 同时避免题海战术。
高考数学一轮复习教案
高考数学一轮复习教案教案标题:高考数学一轮复习教案教案目标:1. 确保学生对高考数学考试的各个知识点有全面的了解和掌握。
2. 帮助学生提高解题能力,培养分析和推理的能力。
3. 强化学生的数学思维和解题策略,提高应试能力。
教学内容:本教案主要围绕高考数学考试的各个知识点展开复习,包括代数、函数、几何、概率与统计等内容。
教学步骤:第一步:复习代数知识1. 复习一元二次方程的求根公式和应用。
2. 复习指数与对数的性质和运算法则。
3. 复习不等式的性质和解法。
第二步:复习函数知识1. 复习函数的定义和性质。
2. 复习函数的图像与性质,包括一次函数、二次函数、指数函数和对数函数等。
3. 复习函数的运算法则和复合函数的求解。
第三步:复习几何知识1. 复习平面几何的基本概念和性质。
2. 复习三角函数的定义和性质,包括正弦、余弦和正切等。
3. 复习平面几何中的相似三角形和勾股定理等。
第四步:复习概率与统计知识1. 复习概率的基本概念和计算方法。
2. 复习统计学中的数据收集、整理和分析方法。
3. 复习概率与统计在实际问题中的应用。
第五步:解题技巧和策略的讲解1. 教授解题的基本思路和步骤,包括审题、分析、解答和检查等。
2. 引导学生掌握解题中常用的技巧和策略,如代入法、逆向思维和分类讨论等。
3. 提供一些典型例题和解题方法的讲解和练习。
第六步:模拟考试和反馈1. 安排模拟考试,模拟高考数学试卷的形式和要求。
2. 收集学生的答卷并进行批改,给予详细的评价和建议。
3. 针对学生的错误和不足,进行有针对性的指导和讲解。
教学评估:1. 教师对学生的参与度和理解程度进行观察和评估。
2. 模拟考试的成绩和学生的答卷质量作为评估指标。
3. 学生对教学内容的反馈和问题的解答情况作为评估依据。
教学资源:1. 高考数学教材和辅助教材。
2. 高考数学模拟试卷和真题。
3. 多媒体设备和投影仪等。
教学延伸:1. 鼓励学生进行自主学习和拓展阅读,加深对数学知识的理解和应用能力。
高考数学一轮复习教学案函数及其表示(含解析)
第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
2024年高三数学第一轮复习计划(五篇)
高三数学第一轮复习计划在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。
这些材料你可以通过网络或者通过老师来获取。
找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。
虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。
对于这两部分材料的研究,最终目的是即使丢开课本,头脑中也能有考试所要求的数学知识体系。
数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。
第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。
一轮复习的重点永远是基础。
要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。
第一轮复习一定要做到细且实,切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实“双基”的目的。
运算能力是学习数学的前提。
因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。
而运算能力并不是靠难题练出来的,而是大量简单题目的积累。
其次,强大地运算能力可以弥补解题技巧上的不足。
我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。
可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。
再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。
此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。
再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题。
每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。
最后,同学们在复习的时候还要注重以下几点:、跟住老师复习。
高中一轮复习教案数学
高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。
祝你取得优异的成绩!。
高考数学第一轮复习教案-专题2函数概念与基本初等函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.
高三第一轮复习市公开课获奖教案省名师优质课赛课一等奖教案
高三第一轮复习教案一、教学目标:1.回顾和巩固高二各学科的基础知识和概念。
2.了解高考考纲的要求,掌握各科目的考试内容和考点。
3.培养学生良好的学习方法和复习策略,提高学习效率。
二、教学内容:1.数学复习:(1)课程重点回顾:集合、函数、三角函数、数列、概率等。
(2)解题技巧讲解:快速逼近法、巧用函数性质、逆向思维等。
(3)例题演练:通过大量的例题演练,掌握解题的基本步骤和方法。
(4)模拟考试:组织学生进行模拟考试,检验复习效果,并针对考试中的问题进行解答和讲解。
2.物理复习:(1)重点知识复习:电磁感应、电路、光学、力学等。
(2)实验操作能力培养:通过实验操作,让学生巩固物理知识,提高实验操作能力。
(3)题型练习和解析:针对各个考点设置题目,进行练习和解析,帮助学生掌握思路和解题方法。
(4)名师讲解:邀请物理学科的知名老师进行讲解和答疑,提高学生的学习兴趣和理解能力。
3.化学复习:(1)知识总结和巩固:化学元素及其周期表、化学键、化学反应平衡、化学能等。
(2)题目分析和解题技巧:针对高考常考题型,分析解题技巧和思路。
(3)实验操作能力训练:通过实验操作和实例讲解,提高学生的实验操作能力。
(4)知识拓展:扩展学生的化学知识,了解化学在现实生活和科学实践中的应用。
4.英语复习:(1)语法和词汇总结:复习英语语法和常见词汇,通过例句和练习加深理解。
(2)阅读理解训练:针对高考阅读理解的题型和要求,进行大量的阅读训练。
(3)听力训练:提供高质量的听力材料和练习,提高学生的听力理解和应试能力。
(4)写作练习:培养学生的写作能力,进行作文训练和改进。
5.政治复习:(1)政治基础知识复习:复习政治基本概念、制度和理论。
(2)政治实践训练:通过政治实践活动和模拟演练,培养学生的政治意识和能力。
(3)题型训练和解析:针对高考政治题型进行练习和解析,培养学生的解题思路和方法。
三、教学方法:1.讲授法:通过教师讲授复习知识和解题方法,帮助学生理解和掌握知识点。
高三一轮复习课第2课集合教学设计
高三一轮复习课第一课集合的概念与运算一、教材分析集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。
二、教学目标(一)集合的含义与表示1、了解集合的含义、元素与集合的“属于”关系2、能用自然语言、图形语言、集合语言描述不同的具体问题(二)集合间的基本关系1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情境中,了解全集与空集的含义(三)集合的基本运算1、理解两个集合的的并集与交集的含义,会求两个检点集合的并集与交集。
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
三、教学重点了解集合的含义,理解集合间包含与相等的含义,理解俩个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容。
四、教学难点集合相关的概念与符号的理解。
教学过程设计:基础知识自查1、集合与元素(1)集合元素的三个特征:______________ _____________ ________________(2)元素与集合的关系是:______________和______________关系,符号是:______________(3)集合的表示方法:________________________________________________________(4)集合的分类:按集合中元素的个数,集合可分为:_____ _____ _____2、集合间的基本关系(1)子集A 是B 的子集,符号:_____或_____(2)真子集:A 是B 的真子集,符号:_____或_____(3)等集:A B ⊆且B A ⊆⇔_____3、集合间的运算及性质(1)并集:符号__________ 图形语言:__________(2)交集: 符号语言__________ 图形语言:__________(3)补集: 符号语言__________ 图形语言:__________4、集合的运算性质并集的性质:(1) A ∪A= ;(2)A ∪∅= ;(3)A ∪B=交集性质: (1) A ∩A= ;例1 是(. 考点2、集合与集合的关系例2、(2010高考浙江卷)设{}4<=x x P ,{}42<=x x Q 则 A Q P ⊆ B P Q ⊆ C ⊆P ∁Q R D ⊆Q ∁P R分析:判断集合间的关系常转化为元素与集合的关系,对描述法表示的集合要抓住元素的属性,可列举出来或借助数轴、韦恩图或函数图像等手段解决。
第三高考数学一轮复习 函数的单调性与最值教案
城东蜊市阳光实验学校第三中学高考数学一轮复习函数的单调性与最值教案①利用函数的单调性.②定义法:先求定义域,再利用单调性定义.③图象法:假设f(x)是以图象形式给出的,或者者者f(x)的图象易作出,可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间. 5.函数的最值 设函数y =f(x)的定义域为I ,假设存在实数M 满足:(1)对于任意的x ∈I ,都有.(2)存在x0∈I ,使得.那么,我们称M 是函数y =f(x)的.最值与函数的值域有何关系?【提示】函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在。
(1) 求一个函数的最值时,应首先考虑函数的定义域.(2)函数的最值是函数值域中的一个取值,是自变量x 取了某个值时的对应值,故函数获得最值时,一定有相应的x 的值.前提自测 1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,那么 (D) 2.假设函数y =ax 与y =-x b在(0,+∞)上都是减函数,那么y =ax2+bx 在(0,+∞)上是 (B) A .增函数 B .减函数C .先增后减 D .先减后增. 3.函数()f x =223x ax -+在区间(],2-∞上是单调函数,那么实数的取值范围是a≥2.4.设x1,x2为y =f(x)的定义域内的任意两个变量,有以下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0;其中能推出函数y =f(x)为增函数的命题为__①_③_____5.函数2()23f x x x =-+在[]0,m 上有最大值3,最小值2,那么正数m 的取值范围1≤m≤2.6.证明函数x x x f 3)(3+=在),(+∞-∞上是增函数 自主﹒﹒探究 例1答案:a >0:f(x)为减函数。
a <0:f(x)为增函数。
第一轮高考数学复习方案
第一轮高考数学复习方案要想在考试中取得好成绩,绝对要做好第一轮复习。
那么你知道第一轮高考数学怎么复习吗?下面是小编整理的第一轮高考数学复习方案,欢迎大家阅读分享借鉴,希望对大家有所帮助。
复习计划进度表(第一轮复习)第一章集合 (1课时模拟考试1次)1、集合的概念及集合的运算2、绝对值不等式、一元二次不等式的解法3、简易逻辑第二章函数 (4课时模拟考试1次)1、函数的概念及表示方法2、函数的解析式及定义域,函数的值域3、函数的奇偶性及函数的单调性4、反函数5、指数函数与对数函数,幂函数6、二次函数及方程的根7、函数的最值 8、函数的图象9、函数综合应用第三章数列 (3课时模拟考试1次)1、数列的有关概念2、等差数列3、等比数列4、等差与等比数列5、数列求和6、数列的应用第四章三角函数 (2课时模拟考试1次)1、任意角的三角函数2、同角的三角函数关系式及诱导公式3、两角和与差的三角函数4、三角函数的图象5、三角函数的性质6、已知三角函数值求角7、解三角形 8、三角形中的有关问题第五章平面向量 (1课时模拟考试1次 )1、向量与向量的运算2、平面向量的坐标运算3、平面向量的数量积及运算4、线段的定比分点和图象的平移5、解斜三角形第六章不等式 (1天模拟考试1次)1、含绝对值不等式与一元二次不等式的解法2、不等式的性质3、不等式的证明4、不等式的解法举例5、不等式的应用第七章直线和圆的方程 (1课时模拟考试1次)1、直线的方程2、两条直线的位置关系3、简单的线性规划4、曲线与方程5、圆的方程第八章圆锥曲线方程 (2课时模拟考试1次)1、椭圆、双曲线、抛物线2、直线与圆锥曲线的位置关系3、圆锥曲线的综合问题第九章立体几何初步 (3课时模拟考试1次)1、空间几何体2、点.线.之间的位置关系第十章排列、组合、二项式定理 (1课时模拟考试1次)1、两个计数原理2、排列、组合3、二项式定理及其应用第十一章概率与统计 (2课时模拟考试1次)1、随机事件的概率2、互斥事件有一个发生的概率3、相互独立事件同时发生的概率 4.抽样方法第十二章导数及其应用 (2课时模拟考试1次)1、导数的概念及运算2、导数的应用复习策略1.吃透大纲,把握复习方向(1)全面复习,突出重点内容高考,能力立意,考察数学思想,倡导理性思维的基本指导思想不会改变,高考命题不会过分追求知识的覆盖率,所以教学时应做到既要紧扣新大纲,抓好三基,全面复习,又要突出高中数学的重点内容和主干知识。
2024年高三数学第一轮复习的教学计划(精选5篇)
2024年高三数学第一轮复习的教学计划(精选5篇)高三数学第一轮复习的教学计划1一、背景分析近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。
二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。
老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。
为此,我们确立了一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。
具体要求如下:1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大部分“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
(完整版)高考数学第一轮复习教案——导数
高考复习—-导数复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2熟记基本导数公式,掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数.4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合.掌握复合函数的求导法则,并会用法则解决一些简单问题。
三、基础知识梳理:导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
4.瞬时速度物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 5.导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据. 对导数的定义,我们应注意以下三点:(1)△x 是自变量x 在 0x 处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△x→0时,xy∆∆有极限,那么函数y=f (x )在点0x 处可导或可微,才能得到f (x)在点0x 处的导数.(3)如果函数y=f (x)在点0x 处可导,那么函数y=f (x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x |在点x=0处连续,但不可导.由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行:(1)求函数的增量)()(00x f x x f y -∆+=∆; (2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00; (3)取极限,得导数x y x f x ∆∆=→∆00lim )('。
高考数学一轮复习教学设计
高考数学一轮复习教学设计一、教学目标本教学设计旨在帮助学生通过一轮复习,全面巩固高考数学的核心知识和解题技巧,达到以下教学目标:1. 理解并掌握高考数学各个章节的基础概念和相关定理;2. 熟悉并灵活运用各类数学问题的解题思路和方法;3. 培养学生的逻辑思维能力和数学建模能力;4. 提高学生的解决实际问题的能力和创新思维。
二、教学内容本教学设计重点涵盖高考数学的各个章节,具体内容安排如下:1. 高中数学知识的复习和巩固(8周)第一周:复习数列与数列的应用第二周:复习函数与函数的应用第三周:复习概率与统计第四周:复习立体几何第五周:复习三角函数第六周:复习向量与坐标系第七周:复习复数与平面几何第八周:复习解析几何2. 完形填空和阅读理解的练习(2周)第九周:完形填空练习第十周:阅读理解练习3. 写作和小作文的练习(2周)第十一周:写作练习第十二周:小作文练习三、教学方法1. 理论教学与实践相结合:通过教师讲解和示范,学生进行练习和解题,深化对数学知识的理解和应用。
2. 合作学习:鼓励学生分组合作,共同解决难题和研究数学问题,培养学生的团队合作精神和解决问题的能力。
3. 案例分析法:通过精选的数学题目和实际问题,引导学生运用所学知识解决实际问题,提高解决问题的能力和创新思维。
4. 异彩纷呈的教学手段:利用多媒体、模拟教学等手段,让学生在轻松的氛围中学习数学,激发学生对数学学习的兴趣和学习动力。
四、教学评估1. 课堂小测验:每周一次的课堂小测验,检验学生对本周所学内容的掌握情况。
并及时反馈评估结果,帮助学生发现问题,加强薄弱环节。
2. 月度模拟考试:每个月进行一次模拟考试,帮助学生了解自己的学习进度和存在的问题,督促学生在复习过程中不断提高,做到知识的全面复习。
3. 个人学习计划:每个学生制定个人学习计划,定期与教师进行学习情况的交流和反馈,在自主学习的基础上加强巩固和复习。
五、教学资源1. 教材:根据学生的实际情况选择适合的高考数学教材,如人民教育出版社的《高中数学》教材。
高考数学一轮复习《对数函数》教案
福建省长泰一中高考数学一轮复习《对数函数》教案1.对数:⑤ log m na a nb b m = .例1 计算:(1))32(log32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;基础过关典型例题(3)21lg4932-34lg 8+lg 245. 解:(1)方法一设)32(log32-+=x,(2+3)x=2-3=321+=(2+3)-1,∴x=-1.方法二)32(log 32-+=32log +321+=32log+(2+3)-1=-1.(1)log 2487+log 212-21log 242-1;(2)(lg2)2+lg2·lg50+lg25;(3)(log 32+log 92)·(log 43+log 83).解:(1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++ 例2 比较下列各组数的大小. (1)log 332与log 556;2)log 1.10.7与log 1.20.7;(3)已知log 21b <log 21a <log 21c,比较2b,2a,2c的大小关系.解:(1)∵log 332<log 31=0,log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1<1.2,0>2.1log 1.1log 7.00.7>,∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log 1.1x 与y=log 1.2x 的图象.如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7. (3)∵y=x 21log 为减函数,且c a b 212121log log log <<,∴b >a >c,而y=2x 是增函数,∴2b >2a >2c.变式训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )A.log a bb bba1log log 1<<B.bb b b aa1log 1loglog << C.b b b a ba1log 1loglog << D.b bb a a b log 1log 1log << 解: C例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x ),而f(x)=log a x 在[3,+∞)上为增函数, ∴对于任意x ∈[3,+∞),有f(x)≥log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立. 只要log a 3≥1=log a a 即可,∴1<a ≤3. 当0<a <1时,对于x ∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+ ∴-f (x )在[3,+∞)上为增函数. ∴对于任意x ∈[3,+ |f(x)|=-f(x)≥-log a 3.因此,要使|f(x)|≥1对于任意x ∈[3,+ 只要-log a 3≥1 ∴log a 3≤-1=log aa1,即a 1≤3,∴31≤a < 1.综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1). 变式训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞,1-3]上是单调递减函数.求实数a的取值范围. 解:令g(x)=x 2-ax-a,则g(x)=(x-2a )2-a-42a ,由以上知g(x )的图象关于直线x=2a对称且此抛物线开口向上.因为函数f(x)=log 2g(x)的底数2>1, 在区间(-∞,1-3]上是减函数,所以g(x)=x 2-ax-a 在区间(-∞,1-3]上也是单调减函数,且g(x)>0.∴⎪⎩⎪⎨⎧>-----≥⎪⎩⎪⎨⎧>-≤-0)31()31(3220)31(2312a a a g a ,即 解得2-23≤a <2.故a 的取值范围是{a|2-23≤a <2}.例4 已知过原点O 的一条直线与函数y=log 8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行与函数y=l og 2x 的图象交于C 、D 两点. (1)证明:点C 、D 和原点O (2)当BC 平行于x 轴时,求点A 的坐标. (1)证明 设点A 、B 的横坐标分别为x 1、x 2,由题设知x 1>1,x 2>1,则点A 、B 的纵坐标分别为log 8x 1、log 8x 2. 因为A 、B 在过点O 的直线上,所以228118log log x x x x = 点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于log 2x 1=2log log 818x =3log 8x 1,log 2x 2=3log 8x 2,OC 的斜率为k 1=118112log 3log x x x x =,OD 的斜率为,log 3log 2282222x x x x k ==由此可知k 1=k 2,即O 、C 、D 在同一直线上.(2)解: 由于BC 平行于x 轴,知log 2x 1=log 8x 2,即得log 2x 1=31log 2x 2,x 2=x 31, 代入x 2lo g 8x 1=x 1log 8x 2,得x 31log 8x 1=3x 1log 8x 1,由于x 1>1,知log 8x 1≠0,故x 31=3x 1, 又因x 1>1,解得x 1=3,于是点A 的坐标为(3,log 83). 变式训练4:已知函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x).(1)求f(x)的定义域; (2)求f(x)的值域.解:(1)f(x)有意义时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>->->-+,③0,②01,①011x p x xx由①、②得x >1,由③得x <p,因为函数的定义域为非空数集,故p >1,f(x)的定义域是(1,p).(2)f(x)=log 2[(x+1)(p-x)]=log 2[-(x-21-p )2+4)1(2+p ] (1<x <p),①当1<21-p <p ,即p >3时, 0<-(x-4)1(4)1()21222+≤++-p p p,∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x ≤2log 2(p+1)-2.②当21-p ≤1,即1<p ≤3时,∵0<-(x -),1(24)1()2122-<++-p p p ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x <1+log 2(p-1).综合①②可知:当p>3时,f(x)的值域是(-∞,2log2(p+1)-2];当1<p≤3时,函数f(x)的值域是(-∞,1+log2(p-1)).小结归纳1.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解. 2.对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3.含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.4.含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.。
2024届高考一轮复习数学教案(新人教B版):任意角和弧度制、三角函数的概念
§4.1任意角和弧度制、三角函数的概念考试要求1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.知识梳理1.角的概念(1)定义:角可以看成是一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.(2)分类按旋转方向不同分为正角、负角、零角按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与α终边相同的角组成一个集合,这个集合可记为S ={β|β=α+k ·360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示.(2)公式角α的弧度数公式α=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1rad =180π°弧长公式弧长l =αr 扇形面积公式S =12lr =12αr 23.任意角的三角函数(1)任意角的三角函数的定义:设P (x ,y )是角α终边上异于原点的任意一点,其到原点O 的距离为r ,则sin α=y r ,cos α=xr,tan α=yx(x ≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦,如图.常用结论1.象限角2.轴线角思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)-π3是第三象限角.(×)(2)若角α的终边过点P (-3,4),则cos α=-35.(√)(3)若sin α>0,则α是第一或第二象限角.(×)(4)若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2.(√)教材改编题1.-660°等于()A .-133πrad B .-256πrad C .-113πradD .-236πrad 答案C解析-660°=-660×π180rad =-113πrad.2.某次考试时间为120分钟,则从开始到结束,墙上时钟的分针旋转了________弧度.答案-4π解析某次考试时间为120分钟,则从开始到结束,墙上时钟的分针顺时针旋转了-720°,即-4π.3.已知角α的终边经过点P (2,-3),则sin α=________,tan α=________.答案-31313-32解析因为x =2,y =-3,所以点P 到原点的距离r =22+(-3)2=13.则sin α=y r =-313=-31313,tan α=y x =-32.题型一角及其表示例1(1)(2023·宁波模拟)若α是第二象限角,则()A .-α是第一象限角B.α2是第三象限角C.3π2+α是第二象限角D .2α是第三或第四象限角或在y 轴负半轴上答案D解析因为α是第二象限角,可得π2+2k π<α<π+2k π,k ∈Z ,对于A ,可得-π-2k π<-α<-π2-2k π,k ∈Z ,此时-α位于第三象限,所以A 错误;对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2位于第一象限;当k 为奇数时,α2位于第三象限,所以B 错误;对于C ,可得2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α位于第一象限,所以C 错误;对于D ,可得π+4k π<2α<2π+4k π,k ∈Z ,所以2α是第三或第四象限角或在y 轴负半轴上,所以D 正确.延伸探究若α是第一象限角,则α2是第几象限角?解因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2是第一象限角,当k 为奇数时,α2是第三象限角.(2)在-720°~0°范围内所有与45°终边相同的角为________.答案-675°和-315°解析所有与45°终边相同的角可表示为β=45°+k ×360°(k ∈Z ),当k =-1时,β=45°-360°=-315°,当k =-2时,β=45°-2×360°=-675°.思维升华确定kα,αk(k ∈N +)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk 的终边所在位置.跟踪训练1(1)“α是第四象限角”是“α2是第二或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析当α是第四象限角时,3π2+2k π<α<2π+2k π,k ∈Z ,则3π4+k π<α2<π+k π,k ∈Z ,即α2是第二或第四象限角.当α2=3π4为第二象限角时,α=3π2不是第四象限角,故“α是第四象限角”是“α2是第二或第四象限角”的充分不必要条件.(2)(2021·北京)若点P (cos θ,sin θ)与点Q y 轴对称,写出一个符合题意的θ=________.答案θ=5π12+k π,k ∈Z解析∵P (cos θ,sin θ)与Q y 轴对称,即θ,θ+π6关于y 轴对称,θ+π6+θ=π+2k π,k ∈Z ,则θ=k π+5π12,k ∈Z ,当k =0时,可取θ的一个值为5π12.题型二弧度制及其应用例2已知一扇形的圆心角为α(α>0),弧长为l ,周长为C ,面积为S ,半径为r .(1)若α=35°,r =8cm ,求扇形的弧长;(2)若C =16cm ,求S 的最大值及此时扇形的半径和圆心角.解(1)α=35°=35×π180rad =736πrad ,扇形的弧长l =αr =736π×8=149π(cm).(2)方法一由题意知2r +l =16,∴l =16-2r (0<r <8),则S =12lr =12(16-2r )r =-r 2+8r =-(r -4)2+16,当r =4(cm)时,S max =16(cm 2),l =16-2×4=8(cm),α=lr =2,∴S 的最大值是16cm 2,此时扇形的半径是4cm ,圆心角α=2rad.方法二S =12lr =14l ·2r ≤14·=16,当且仅当l =2r ,即r =4(cm)时,S 的最大值是16cm 2.此时扇形的圆心角α=2rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.跟踪训练2某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA =10,OB =x (0<x <10),线段BA ,CD 与 BC , AD 的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.解(1)根据题意,可算得 BC =θx , AD =10θ.因为AB +CD + BC + AD =30,所以2(10-x )+θx +10θ=30,所以θ=2x +10x +10(0<x <10).(2)根据题意,可知y =S 扇形AOD -S 扇形BOC =12θ·(102-x 2)=12×2(x +5)(102-x 2)x +10=(x +5)(10-x )=-x 2+5x +50+2254,当x =52时,y max =2254.综上所述,当x =52时,铭牌的截面面积最大,且最大面积为2254.题型三三角函数的概念例3(1)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则下列选项正确的是()A .sin θ=-217B .α为钝角C .cos α=-277D .点(tan θ,sin α)在第一象限答案ACD解析角θ的终边经过点(-2,-3),sin θ=-217,A 正确;θ与α的终边关于x 轴对称,由题意得α的终边经过点(-2,3),α为第二象限角,不一定为钝角,cos α=-277,B 错误,C 正确;因为tan θ=32>0,sin α=217>0,所以点(tan θ,sin α)在第一象限,D 正确.(2)已知角θ的终边经过点(2a +1,a -2),且cos θ=35,则实数a 的值是()A .-2 B.211C .-2或211D .1答案B解析由题设可知,2a +1(2a +1)2+(a -2)2=352a +1>0,即a >-12,∴4a 2+4a +15a 2+5=925,则11a 2+20a -4=0,解得a =-2或a =211,又a >-12,∴a =211.(3)若sin αtan α<0,且cos αtan α>0,则角α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案B解析由sin αtan α<0,知α是第二象限或第三象限角,由cos αtan α>0,知α是第一象限或第二象限角,所以角α是第二象限角.思维升华(1)利用三角函数的定义,已知角α终边上一点P 的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.跟踪训练3(1)若角α的终边上有一点P (a ,2a )(a ≠0),则2sin α-cos α的值是()A .-355 B.55C .-55 D.355或-355答案D解析若α的终边上有一点P (a ,2a )(a ≠0),则cos α=aa 2+(2a )2=a5|a |=>0,a <0,sin α=2aa 2+(2a )2=2a5|a |=>0,a <0,所以2sin α-cos α>0,a <0.(2)sin 2cos 3tan 4的值()A .小于0B .大于0C .等于0D .不存在答案A解析∵π2<2<3<π<4<3π2,∴sin 2>0,cos 3<0,tan 4>0.∴sin 2cos 3tan 4<0.(3)若A (1,a )是角θ终边上的一点,且sin θ=336,则实数a 的值为________.答案11解析根据三角函数的终边上点的定义可得,r =1+a 2,所以sin θ=aa 2+1=336>0,即a >0且a 2=11,所以a =11.课时精练1.与-2023°终边相同的最小正角是()A .137°B .133°C .57°D .43°答案A解析因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.(2023·合肥模拟)在平面直角坐标系中,若角θ的终边经过点sin π6,coscos θ等于()A.12B .-12C.22D .-22答案D解析由角θ的终边经过点sinπ6,-12,所以cos θ=-1214+14=-22.3.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为α(0<α≤π).若一个半径为1的扇形的圆心角为α,则该扇形的面积为()A.π2B.π4C.π8D.π16答案C解析由图可知,α=18×2π=π4,所以该扇形的面积S =12×π4×12=π8.4.(2023·惠州模拟)如果点P (2sin θ,sin θ·cos θ)位于第四象限,那么角θ所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限答案B解析∵点P (2sin θ,sin θ·cos θ)位于第四象限,θ>0,θ·cos θ<0,θ>0,θ<0,∴角θ所在的象限是第二象限.5.(2023·南昌模拟)我国在文昌航天发射场用长征五号运载火箭成功发射探月工程嫦娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月球表面400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转π3弧度,飞过的路程约为(取π≈3.14)()A .1069千米B .1119千米C .2138千米D .2238千米答案D解析嫦娥五号绕月飞行半径为400+1738=2138(千米),所以嫦娥五号绕月每旋转π3弧度,飞过的路程约为l =αr =π3×2138≈3.143×2138≈2238(千米).6.(2023·丽江模拟)屏风文化在我国源远流长,可追溯到汉代.某屏风工艺厂设计了一款造型优美的扇环形屏风,如图,扇环外环弧长为3.6m ,内环弧长为1.2m ,径长(外环半径与内环半径之差)为1.2m ,若不计外框,则扇环内需要进行工艺制作的面积的估计值为()A .2.58m 2B .2.68m 2C .2.78m 2D .2.88m 2答案D解析设扇形的圆心角为α,内环半径为r m ,外环半径为R m ,则R -r =1.2(m),由题意可知,α·r =1.2,α·R =3.6,所以α(R +r )=4.8,所以扇环内需要进行工艺制作的面积的估计值为S =12α(R 2-r 2)=12α(R +r )(R -r )=12×4.8×1.2=2.88(m 2).7.(2023·安阳模拟)已知角α的终边上一点P5π6,α的最小正值为________.答案5π3解析因为sin5π6>0,cos 5π6<0,所以角α的终边在第四象限,根据三角函数的定义,可知sin α=cos 5π6=-32,故角α的最小正值为α=2π-π3=5π3.8.数学中处处存在着美,机械学家莱洛发现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边△ABC ,再分别以点A ,B ,C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角形(如图所示).若莱洛三角形的周长为2π,则其面积是________.答案2π-23解析由条件可知,弧长 AB = BC= AC =2π3,等边三角形的边长AB =BC =AC =2π3π3=2,则以点A ,B ,C 为圆心,圆弧AB ,BC ,AC 所对的扇形面积为12×2π3×2=2π3,中间等边△ABC的面积S =12×2×3= 3.所以莱洛三角形的面积是3×2π3-23=2π-2 3.9.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点|OM |=1(O 为坐标原点),求m 的值及sin α的值.解(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以+m 2=1,解得m =±45.又α为第四象限角,故m <0,从而m =-45,sin α=y r =m |OM |=-451=-45.10.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于点A (1,0),它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(1)若点B 的横坐标为-12,求sin α的值和与角α终边相同的角β的集合;(2)若α,π2,请写出弓形AB 的面积S 与α的函数关系式.(注:弓形是指在圆中由弦及其所对的弧组成的图形)解(1)由题意知,若点B 的横坐标为-12,可得B -12,∴sin α=32于是α=2π3+2k π,k ∈Z ,与角α终边相同的角β|β=2π3+2k π,k ∈Z (2)△AOB 的高为1×cos α2,AB =2sin α2,故S △AOB =12×2sin α2×cos α2=12sin α,故弓形AB 的面积S =12·α·12-12sin α=12(α-sin α),α,π2.11.在平面直角坐标系中,若α与β的终边互相垂直,那么α与β的关系式为()A .β=α+90°B .β=α±90°C .β=α+90°+k ·360°(k ∈Z )D .β=α±90°+k ·360°(k ∈Z )答案D 解析∵α与β的终边互相垂直,∴β=α±90°+k ·360°(k ∈Z ).12.(多选)已知点P (sin x -cos x ,-3)在第三象限,则x 可能位于的区间是()-π4,-π2,-3π4,答案AD 解析由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x -3π4,k =1时,x 所在的一个13.已知△ABC 为锐角三角形,若角θ的终边过点P (sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为()A .1B .-1C .3D .-3答案B 解析因为△ABC 为锐角三角形,所以A +B >π2,A +C >π2,即A >π2-B ,C >π2-A ,所以sin A >cos B ,sin C >cos A ,所以θ是第四象限角,所以sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1.14.在北京冬奥会短道速滑混合接力的比赛中,中国队以2分37秒348的成绩获得金牌.如图,短道速滑的比赛场地的内圈半圆的弯道计算半径为8.5m ,直道长为28.85m ,点O 为半圆的圆心,点N 为弯道与直道的连接点,运动员沿滑道逆时针滑行,在某次短道速滑比赛最后一圈的冲刺中,运动员小夏在弯道上的P 点处成功超过所有对手,并领先到达终点Q (终点Q 为直道的中点).若从P 点滑行到Q 点的距离为31.425m ,则∠PON 等于()A.π2 B.53C .2 D.2π3答案C 解析扇形PON 的弧长为31.425-12×28.85=17,故∠PON =178.5=2.15.(2023·常州模拟)赵爽是我国古代数学家、天文学家,约公元222年,赵爽在注解《周髀算经》一书时介绍了“勾股圆方图”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形.如图所示的是一张弦图,已知大正方形的面积为100,小正方形的面积为20,若直角三角形中较小的锐角为α,则sin αcos α的值为()A.15 B.25 C.55 D.255答案B 解析设直角三角形的短直角边为x ,一个直角三角形的面积为100-204=20,小正方形的面积为20,则边长为2 5.大正方形的面积为100,则边长为10.直角三角形的面积为12·x (x +25)=20⇒x =25.则直角三角形的长直角边为4 5.故sin α=55,cos α=255,即sin αcos α=25.16.如图,点P 是半径为2的圆O 上一点,现将如图放置的边长为2的正方形ABCD (顶点A 与P 重合)沿圆周逆时针滚动.若从点A 离开圆周的这一刻开始,正方形滚动至使点A 再次回到圆周上为止,称为正方形滚动了一轮,则当点A 第一次回到点P 的位置时,正方形滚动了________轮,此时点A 走过的路径的长度为________.答案3(2+2)π解析正方形滚动一轮,圆周上依次出现的正方形顶点为B →C →D →A ,顶点两次回到点P 时,正方形顶点将圆周正好分成六等份,又4和6的最小公倍数为3×4=2×6=12,所以到点A 首次与P 重合时,正方形滚动了3轮.这一轮中,点A 路径A →A ′→A ″→A 是圆心角为π6,半径分别为2,22,2的三段弧,故路径长l =π6·(2+22+2)=(2+2)π3,所以点A 与P 重合时总路径长为(2+2)π.。
新课标人教版高三数学第一轮复习全套教学案
新课标人教版高三数学第一轮复习全套教学案引言本教学案旨在帮助高三学生进行数学第一轮复,以应对新课标人教版高考数学考试。
以下是教学案的详细内容。
目标1. 复并巩固高三数学的核心知识点。
2. 提供高质量的练题和解析,以帮助学生熟悉考试形式和题型,提高解题能力。
3. 培养学生的数学思维和分析能力,以便他们能够在考试中灵活应用知识。
教学内容教学内容主要包括以下部分:1. 数系与代数- 实数与复数- 集合与命题- 数列与数列极限- 等差数列与等比数列2. 函数与方程- 函数与方程基本概念- 一次函数与二次函数- 指数与对数- 三角函数与三角方程3. 解析几何与向量- 平面与空间几何- 二次曲线与常平面- 直线与平面的位置关系- 向量与向量运算4. 概率与统计- 随机事件与概率- 离散型随机变量与连续型随机变量- 统计与抽样调查- 相关与回归分析教学方法为了最有效地进行数学复,我们将采用以下教学方法:1. 系统性研究:按照教学内容的顺序进行研究,逐步巩固知识点。
2. 理论与实践相结合:注重理论知识的讲解,并提供大量的练题和解析,以帮助学生巩固理论知识并提高解题能力。
3. 互动教学:鼓励学生积极参与课堂讨论和提问,激发学生的研究兴趣和数学思维。
4. 小组合作研究:安排学生进行小组合作研究,提倡彼此讨论和合作解题,培养学生的团队合作精神和交流能力。
教学评估为了评估学生的研究效果和掌握程度,我们将采用以下评估方法:1. 阶段性测试:安排定期的阶段性测试,检验学生对各个知识点的理解和掌握情况。
2. 作业批改:及时批改学生的作业,给予针对性的指导和建议。
3. 课堂互动评估:评估学生在课堂上的积极参与程度和表现。
4. 模拟考试:进行模拟考试,让学生体验真实考试环境,以便他们熟悉考试形式和提高应试能力。
结语通过本教学案的实施,相信学生们在第一轮数学复习中将取得良好的成绩。
希望学生们能够认真学习、勤于练习,并与老师和同学们积极合作,共同进步。
高三数学高考第一轮复习计划
高三数学高考第一轮复习计划高三数学年高考第一轮复习方案为了备战年的高考,合理而有效的利用各种资源科学备考,特制定高三数学复习方案。
一、复习步骤我们准备分3个阶段来完成数学复习。
第一阶段:从2023年7月16日开头至年4月20日结束其次阶段:从年4月21日至5月25日结束第三阶段:从年5月26日至6月6日结束详细任务和要求如下:第一阶段:注意基础,落实教材。
这一届同学基础差,但是教学进度快,许多同学的基础学问不扎实,课本上的题也不会做。
因此,一轮复习按课本的章节挨次来进行,以课本为依托,以章节为单位,将零碎与散乱的学问点串起来,并将它们系统化,加强学问的纵向与横向联系。
坚持先读课本,落实课本的基本习题;再讲资料,删除偏,难,怪题。
紧接着大容量练习基础题。
收上来仔细批改,再发下去,针对性讲解。
在此过程穿插七个专题小综合复习,坚持基础。
专题如下:不等式;函数与导数;数列;三角函数与平面对量;解析几何;立体几何;计数原理与概率统计;明确分工,各自编写材料复习。
其次阶段:综合模拟依据各地的高考信息编拟好冲刺训练的模拟试卷,通过规范训练,发觉平常复习的薄弱点和思维的易错点,提高实践力量,走近高考。
每周两套的训练与讲评。
第三阶段:5月底6月初,回归课本,查缺补漏。
树立信念,轻松应考。
二、高三数学备课组复习初步方案:理科数学:7月中旬7月底选修4-4坐标系与参数方程8月初-8月底集合、常用规律用语9月初-10月中旬不等式、函数、导数及其应用10月中旬-11月中旬三角函数、解三角形11月中旬-11月底平面对量、数列12月初-12月底解析几何(直线与圆的方程、圆锥曲线)元月初-元月底立体几何与空间向量预备期末考试2月初-3月中旬统计、统计案例、计数原理与概率、算法初步预备3月统考3月中旬4月20日复数、推理与证明、选修4系列(4-1几何证明选讲4-4坐标系与参数方程4-5不等式选讲)文科数学:7月中旬7月底集合、常用规律用语8月初-8月底不等式、函数、导数及其应用(前三节)9月初-10月中旬函数、导数及其应用10月中旬-11月中旬三角函数、解三角形11月中旬-12月中旬平面对量、数列12月中旬-元月底解析几何(直线与圆的方程、圆锥曲线)预备期末考试2月初-3月中旬立体几何预备3月统考3月中旬-3月底统计、统计案例、概率、算法初步3月底4月20日框图复数、推理与证明、不等式选讲三、复习措施1、加强备课组的协作,发挥集体才智。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐城市文峰中学美术生高中数学一轮复习教学案
§ 5指、对数函数
【考点及要求】:
1.理解指数函数的概念和意义;理解指数函数的性质,会画指数函数的图象;
2.理解对数函数的概念;理解对数函数的性质,会画对数函数的图象.
【基础知识】:
1.函数f x a x 11(a 0,且a 1)过定点.
, -5 1 (x)
2. -------------------------- 已知a ,函数f(x) a ,若实数m,n满足f (m) f (n),则m,n的
大小关系为.
3.若函数fx 3x 1a不经过第二象限,则a的范围是.
4.已知集合A x|log2 x 2 , B ( ,a),若A B则实数a的取值范围是
(c, ),其中c .
【典型例题讲练】
例1.已知函数f (x) log4(4x1) kx(x R)是偶函数,求k的值.
练习.试证明函数f x ln 1 a 0为奇函数.
3ax4x的定义域为[0, 1].
例2.已知函数f(x) 3x, f (a 2) 18 , g(x) (1))求a的值;
⑵ 若函数g(x)在[0, 1]上是单调递减函数,求实数的取值范围
1
练习.已知函数f(log a x) x x ,(a 0, a 1)
⑴若f(1) 5,求a ;⑵证明f(x)在[0,)是增函数
2
【课堂小结】【课堂检测】【课后作业】。