因式分解1

合集下载

最新鲁教版五四制八年级数学上册《因式分解》1教学设计-评奖教案

最新鲁教版五四制八年级数学上册《因式分解》1教学设计-评奖教案

《因式分解》教学设计教材选择:鲁教版八(上)第一章第一节一、内容和内容解析(一)内容:因式分解的概念(二)内容解析:因式分解是初中数学中重要的恒等变形,是接下来学习分式运算的基础,在方程、函数的有关运算中也有重要的作用。

学习因式分解的过程也是对已学过的整式乘法“再认识”的一个过程。

本节课是因式分解这一章的起始课,首先在数、式、形三个方面,三管齐下,让学生体验因式分解这一概念的产生过程,其次将因式分解的过程“反过来”进行观察,体会因式分解和整式乘法的互逆关系,这样遇到因式分解问题时能有意识的“反过来”运用整式乘法补全因式分解过程或检验因式分解的正确性。

掌握了这种互逆关系能为以后学习因式分解的具体方法起到铺垫作用。

根据以上分析,本节课的重点为:因式分解的概念和其与整式乘法的关系。

二、目标和目标解析(一)知道因式分解的概念,能辨别哪些变形是因式分解。

(二)掌握因式分解和整式乘法的区别与联系。

(三)体验因式分解和整式乘法的互逆关系,感受逆向思维的作用与价值。

三、教学问题诊断分析(一)本节课看似简单,但涉及到的概念、公式、运算律非常多,有整式、因式、平方差公式、完全平方公式、乘法分配律等。

这些概念、公式、运算律学生很可能会有遗忘,这将给本节课造成一定的困难。

(二)涉及到的整式乘法公式,学生正向运用易接受,但由正向运用变为逆向运用会造成学生的认知障碍,对因式分解的对象、结果、作用不明确。

根据以上分析,确立本节课难点为:因式分解与整式乘法的互逆关系。

四、教学支持条件分析为达到本节课教学目标,采取多媒体教学,利用实物投影展示学生的学习成果,纠正学生出现的问题,调动学生学习积极性。

教学过程中,实行以下教学策略:(一)“先行组织者”教学策略根据教材中呈现的99993-的分解过程,组织学生讨论、交流,再逐级归纳总结,借助“数式通性”,自然地“由数及式”, 让学生尝试分解aa-3。

(二)围绕问题串展开教学本课紧密围绕因式分解的对象是什么,结果是什么,反过来是什么,作用是什么等系列问题展开教学,在学生的“最近发展区”上提出问题,这些问题串使得本节课浑然一体。

多项式的因式分解(1)——提公因式法

多项式的因式分解(1)——提公因式法
(1) 5x3-10x2 (5x2 ) (2) 12ab2c-6ab (6ab ) (3) -2m3+8m2-12m (-2m )
(1)解:原式=5x2·x-5x2·2 =5x2(x-2)
记得写出因数“1”
(2)解:原式=6ab·2bc-6ab·1 =6ab(2bc-1)
(3)解:原式=-(2m3 -8m2 +12m) =-(2m·m2-2m·4m+2m·6) =-2m(m2-4m+6)
二.填空题 5. 多项式 2x2 y3z 4x3 y3z 6x4 yz2 各项的公因式是___________;
6. 12 x2 32 x 4x (________); 5x2 10 xy (________) (x 2y).
7. 若 x=49,y=1007,则 xy-7x=
.
8. 若 a2+a-1=0,则 a -a -a 2019 2020 2021 =___________.
解:原式=32×3198-4×3×3198+10×3198
“数”与“式”
=3198(9-12+10)
的相互变换
提公因式法
=3198×7
∵ 3198为整数, ∴ 3198×7是7的倍数, 即: 3200-4×3199+10×3198的值是7的倍数。
学以致用
3.△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC
=3(x-y)2·[a- 2b(x-y)]
=3(x-y)2(a-2bx+2by)
学以致用
1、已知a+b=5 , ab=3, 求a2b+ab2的值。
解:a2b+ab2=ab·a +ab·b =ab(a+b)

整式及因式分解1

整式及因式分解1

整式及因式分解1、整式及有关概念(1)对于字母来说,只含有加、减、乘、乘方运算的代数式叫做 ,其中,不含有加减运算的整式叫做 。

特别地,单独的一个字母或一个数也是单项式。

(2)单项式中的数字因数叫做单项式的 ,单项式的系数包括它前面的符号,一个单项式中所有字母的指数的和叫做这个单项式的 。

(3)几个单项式的和叫做 , 多项式中的每个单项式叫做这个单项式的项。

多项式中 的的次数,叫做这个多项式的次数。

2、合并同类项(1)所含 相同,并且 的指数也相同的项,叫做 。

(2)合并同类项时,把同类项的系数相加,所得的和作为 ,字母与字母的指数 。

3、去括号括号前面是“+”号时,把括号和它前面的“+”去掉,括号里各项的符号都不改变;括号前面是“-”时,把括号和它前面的“-”去掉,括号里的各项都改变符号。

提示:括号前面有系数时,要把它与括号里的每一项都要相乘。

4、整式的加减一般的,整式加减的步骤是先 ,然后 。

5、零指数和负整数指数(1)任何不等于零的数的零次幂都等于1,零的零次幂没有意义,即a 0=1(a ≠0)。

(2)任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数。

零的负整数指数幂没有意义,即a-n=na1(a ≠0,n 是正整数)。

6、幂的运算(1)同底数幂相乘,底数 ,指数 ,即a m .a n =a m+n(m ,n 为正整数)。

(2)同底数幂相除,底数 ,指数 ,即a m ÷a n =a m+n(a ≠0,m ,n 为正整数,m>n )。

(3)积的乘方等于 ,即(ab )n =a n b n(n 为正整数).(4)幂的乘方, 不变, 相乘,即(a m )n =a m+n(m ,n 为正整数)。

7、整式的乘法(1)单项式相乘,把他们的系数相乘,字母部分的同底数幂分别相乘。

对于只在一个单项式里出现的字母,连同他的指数作为积的一个因式。

(2)单项式与多项式相乘,先将单项式分别乘多项式的各项,再把所得的积相加。

初中数学 因式分解(一)

初中数学  因式分解(一)

1.定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.2.因式分解结果的要求:因式分解结果的标准形式 常见典型错误或者不规范形式符合定义,结果一定是乘积的形式 ()()()x x x +1+2+3+7既约整式,不能含有中括号 []()()x x +12+3-1 最后的因式的不能再次分解 ()()x x 2-1-1单项式因式写在多项式因式的前面()()x x x -1+1 相同的因式写成幂的形式 ()()()x x x x -1+1-1 每个因式第一项系数一般不为负数 ()()x x x -+1+1 每个因式第一项系数一般不为分数x x x 12⎛⎫⎛⎫-+1+1 ⎪⎪33⎝⎭⎝⎭因式中不能含有分式 x x x 21⎛⎫+ ⎪⎝⎭因式中不能含有无理数()()()x x x +1+2-23.因式分解基本解法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式. 例如:()ma mb mc m a b c 2+4+6=2+2+3把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体. ②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉. 平方差公式()()a b a b a b 22+-=- 完全平方公式:()a b a ab b 222+=+2+()a b a ab b 222-=-2+立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2 完全立方公式:()a b a a b ab b 33223+=+3+3+()a b a a b ab b 33223-=-3+3-大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++---(1)下列各式从左边到右边的变形中,是因式分解的是( )A .()ab a b a b ab 223+=3+3B .x x x x 222⎛⎫2+4=21+ ⎪⎝⎭C .()()a b a b a b 22-4=+2-2D .()x xy x x x y 23-6+3=3-2(2)如果下列式子是因式分解的结果,请判断下列式子形式是否正确,如果错误,请说明理由.①()x y x y 224-3+7;②()m m 23-4;③()()a b a b -4+2-2;④()[()]y x 22+1-1-3;⑤x x x 1⎛⎫+ ⎪⎝⎭;⑥()x x x 1⎛⎫+1-2 ⎪2⎝⎭;⑦()()y x x 2-+3-+3;⑧()()()()x y x y x y x y 2244++++.(1)C ;(2)③正确,①②④⑤⑥⑦⑧错误.【教师备课提示】这道题主要讲解因式分解的概念:(1)因式分解是一种恒等变形.(2)因式分解的结果必须是乘积的形式,每一个因式必须是整式,且不可再分解.(1)多项式x y x y x y 3222236-3+12的公因式是___________.(2)多项式()()()x y z a b x y z a b x y z a b 23433232545-24-+20-+8-公因式是_________.(3)观察下列各式:①a b 2+和a b +;②()m a b 5-和a b -+;③()a b 3+和a b --;④x y 22-和x y 22+,其中有公因式的是___________.(1)x y 223;(2)()x y z a b 223-4-;(3)②③.【教师备课提示】这道题主要讲解怎么找公因式,数和式子单独来看,数找公因数,式子找公因式.模块二 提取公因式法模块一 因式分解的概念因式分解:(1)a x abx y acx 232212+6-15(2)()()()()a b x y b c a b x y b c 223322++-6++(3)()()()x y x y x y 322+-2++2+ (4)abx acx ax 43-3+-(5)()()()()x y x y y x x y 2-33-2+2-32+3(6)a b a b ab 3223273-6+4这6道小题反映了提取公因式法的6大原则:(1)一次提净:应当先检查数字系数,然后再一个个字母逐个检查,将各项的公因式提出来,使留下的式子没有公因式可以提取. 原式()ax ax by c 2=34+2-5(2)视“多”为一:把多项式(如x y +,b c +等)分别整个看成是一个字母.原式2322()()(33)a b x y b c x y ab ab c =+++--(3)切勿漏“1”:当多项式的某一项恰好是所提取公因式时,剩下的式子里应当留下“1”,千万不要忽略掉.原式2(2)[(2)(2)1]x y x y x y =++-++22(2)(4421)x y x xy y x y =+++--+ (4)提负数:原式32(31)ax bx cx =--+(5)提相反数:原式(32)[(23)(23)]x y x y x y =---+6(32y x y =--)(6)化“分”为整:在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把1-作为公因数提出,使第一项系数称为正整数.原式32231(122427)4a b a b ab =-+223(489)4ab a b ab =-+.因式分解(随堂练习):(1)x y xyz xy 25-10+5(2)()()()a x a b a x x a -+--- (3)()()()x x a x x -2+1++1++1(4)()()()()x m x m y m m x m y -----(5)n n b b 3-12-131+26(n 是正整数)(6)()()()p x p x p x 32226-1-8-1-21-(1)=()xy x z 5-2+1原式;(2)=()()()a x a b x a x a -----原式()()x a a b =---1; (3)()()x x a =+1-2++1原式()()x x a =-+12--1;(4)()()m x m y 2=---原式;(5)()n n b b 2-11=9+16原式;(6)()[()]p x x p 2=2-13-1-4-1原式()()p x x p 2=2-13-4-4. 【教师备课提示】例3和例4主要考查提取公因式因式分解.因式分解:(1)()x 2-1-9 (2)()()m n m n 229--4+(3)()()a b a b 22-4-+16+ (4)()()a b a b 222222-3-5+5-3 (5)x xy y 229-24+16 (6)a a 28-4-4 (7)()c a b a b 222222---4(1)()()x x +2-4;(2)[()()][()()]m n m n m n m n =3-+2+3--2+原式()()m n m n m n m n =3-3+2+23-3-2-2 ()()m n m n =5--5;(3)原式()()a b a b 43++3=;(4)()()a b a b a b a b 22222222=5-3+3-55-3-3+5原式()()a b a b 2222=8-82+2 ()()()a b a b a b 22=16+-+;(5)()x y 2=3-4原式;(6)()a a 2=-4-2+1原式()a 2=-4-1;(7)原式()()()()c a b c a b c a b c a b +--+++--=.因式分解(随堂练习):(1)()a b 216-3+2 (2)x y x y 62575-12(3)a b c 444-81+16 (4)()()a b a b 2222223---3(5)()()x y z x y z 22+-6++9 (6)()x y x y 22222+-4(7)m m 4216-72+81模块三 公式法(1)()()a b a b =4+3+24-3-2原式;(2)()x y x y 244=325-4原式()()x y x y x y 22222=35+25-2;(3)()()c a b c a b 222222=4-94+9原式()()()c ab c ab c a b 222=2+32-34+9; (4)()()a b a b a b a b 22222222=3-+-33--+3原式()()a b a b 2222=4-42+2()()()a b a b a b 22=8+-+;(5)原式()x y z 2+-3=; (6)原式()()x y x y 22=+-;(7)()()m m 2222=4-2⋅4⋅9+9原式()m 22=4-9()()m m 22=2-32+3. 【教师备课提示】例5和例6主要考查平方差公式和完全平方公式因式分解.因式分解:(1)x 38+27 (2)y 3-+64(3)x x y 5239-72 (4)a b 66+ (5)a b 66-(1)()()x x x 2=2+34-6+9原式; (2)()()y y y 2=4-+4+16原式;(3)()x x y 233=9-8原式()()x x y x xy y 222=9-2+2+4; (4)()()a b 2323=+原式()()a b a a b b 224224=+-+; (5)()()a b 3232=-原式()()a b a b 3333=+-()()()()a b a b a ab b a ab b 2222=+--+++另解:()()a b 2323=-原式()()a b a a b b 224224=-++()()()a b a b a a b b a b 422422=+-+2+- ()()()()a b a b a ab b a ab b 2222=+--+++;【教师备课提示】这道题主要考查立方差和立方和公式. 因式分解:(1)a b c bc ca ab 2224+9+9-18-12+12(2)x x y xy y 32238-36+54-27(1)()a b c 2=2+3-3原式;(2)()x y 3=2-3原式.【教师备课提示】这道题主要考查三项完全平方和完全立方公式.下列因式分解正确的是( )A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3D .因式分解:(1)abc a b a b 2336-14+12 (2)a a a 324-6+15-12 (3)()x a x a x 22224+--(4)()()p q p 22-1-4-1(5)()()()(a b m p a b m p 5-22+3-2-72+3) (6)()()()x y x y x y 232++6+-4+(1)()ab a c ab 22=26+3-7原式; (2)()a a a 22-34+2-5=原式; (3)()()a x x 22=+4-1原式; (4)原式()()p p q =2-1-2-1; (5)=()()m p a b 2+33+5原式;(6)()[()()]x y x y x y 2=2+1+3+-2+原式()()x y x y x y xy 22=2+1+3+3-2-2-4.模块二 提取公因式法模块一 因式分解的概念已知b c a +-=-2,求()()a a b c b c a b c b c a 22221⎛⎫--+-++2+2-2 ⎪33333⎝⎭的值.()()a b c a b c 2=----3原式()a b c 22=--3.∵b c a +-=-2,∴a b c --=2,则原式8=3.因式分解:(1)()y z x 224-2-(2)(m x y mn 2232--3)(3)x y 88-(4)x x 516-(5)()()x x x x 22225+2-3--2-3 (6)()()x x x x 2222+4+8+4+16(7)n n n a a a +2-2+8+16(1)=()()y z x y z x 2+2-2-2+原式;(2)原式=()()m x y n x y n 32-+2--;(3)=()()x y x y 4444-+原式()()()x y x y x y 222244=-++()()()()x y x y x y x y 2244=+-++;(4)()()()x x x x x 422=16-1=4-14+1原式()()()x x x x 2=2-12+14+1; (5)()()x x x 22=6-64+4原式()()()x x x x =24+1-1⋅⋅+1()()x x x 2=24-1+1; (6)()x x 22=+4+4原式()x 4=+2;(7)()n a a a -242=+8+16原式()n a a -222=+4.因式分解:(1)a b c 3338-1(2)a b b 33932-4(3)x y y 631564+(1)()()abc a b c abc 222=2-14+2+1原式;(2)=原式()b a b 33648-()()b a b a ab b 32224=42-4+2+; (3)()y x y 3612=64+原式()()y x y x x y y 3244248=4+16-4+.模块三 公式法。

因式分解(一)

因式分解(一)

因式分解(一)撰稿:徐长明审稿:张扬责编:孙景艳一、目标认知学习目标:1. 了解因式分解的意义,以及它与整式乘法的关系;2.能确定多项式各项的公因式,会用提公因式法将多项式分解因式;3.会综合运用提公因式法和公式法把多项式分解因式;4.经历综合利用提公因式法和公式法将多项式因式分解的过程,发展综合运用知识的能力和逆向思维的习惯。

知识结构重点难点:重点:因式分解的概念及各种方法的使用条件。

难点:因式分解方法的综合应用。

二、知识要点梳理知识点一:因式分解的概念把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式,如:,等。

要点诠释:(1)因式分解的实质就是把加减形式化成乘积形式;(2)因式分解的过程和整式乘法的过程正好相反,即因式分解和整式乘法是互逆的,可表示为:多项式几个因式的乘积;(3)分解要彻底:即要使分解后每个因式(在我们所学的范围内)都不能再进行因式分解(不含有因式了).知识点二:公因式的概念1、公因式的定义:在多项式中各项都有的因式叫做这个多项式的公因式.如:多项式中每项都含有因式k,则k就是这个多项式的公因式.2、公因式的特点:a.公因式的系数是原多项式各项系数的最大公约数;b.公因式中的字母是各项中都含有字母;c.公因式字母的次数是相同字母的最低次.也即:知识点三:提公因式法分解因式把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提取公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即(ma+mb+mc)=m(a+b+c);(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式。

(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号。

(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误。

第一章因式分解

第一章因式分解

因式分解(1)目标:1、理解因式分解的概念和意义2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

一、看谁算得快:1、若a=101,b=99,则a 2-b 2=___________;2、若a=99,b=-1,则a 2-2ab+b 2=____________;3、若x=-3,则20x 2+60x=____________。

观察以上结果,请每题答得最快的同学谈思路,得出最佳解题方法。

a 2-b 2=(a+b)(a-b) , a 2-2ab+b 2 = (a-b)2 , 20x 2+60x=20x(x+3), 找出它们的特点。

(等式的左边是一个什么式子,右边又是什么形式?) 因式分解: 也叫分解因式。

(a+b)(a-b)= a 2-b 2 , (a-b)2= a 2-2ab+b 2, 20x(x+3)= 20x 2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?二、、因式分解与整式乘法的关系:因式分解结合:a 2-b 2=========(a+b )(a-b )整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

三、轻松练习1、下列代数式变形中,哪些是因式分解?哪些不是?为什(1)x 2-3x+1=x(x-3)+1 ;(2)(m +n)(a +b)+(m +n)(x +y)=(m +n)(a +b +x +y);(3)2m(m-n)=2m 2-2mn ; (4)4x 2-4x+1=(2x-1)2; (5)3a 2+6a=3a (a+2); (6)x 2-4+3x=(x-2)(x+2)+3x ; (7)k 2+21k +2=(k+k1)2;2、解方程:(1)012=-x (2)x 2–5x = 03、4、6、14的最大公因数是 。

4、分解因式(1)42-x (2) 5x x +2当堂达标一、下列各式从左到右的变形是分解因式的是( )。

数学+第01讲 因式分解(1)

数学+第01讲 因式分解(1)

第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。

因式分解教案-1

因式分解教案-1

因式分解教案因式分解教案3篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y 中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)23a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.因式分解教案篇2第1课时1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解.自主探索,合作交流.1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想.2.通过对因式分解的教学,培养学生“换元”的意识.【重点】因式分解的概念及提公因式法的应用.【难点】正确找出多项式中各项的公因式.【教师准备】多媒体.【学生准备】复习有关乘法分配律的知识.导入一:【问题】一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积.解法1:这块场地的面积=×+×+×=++==2.解法2:这块场地的面积=×+×+×=×=×4=2.从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法.[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.导入二:【问题】计算×15-×9+×2采用什么方法?依据是什么?解法1:原式=-+==5.解法2:原式=×(15-9+2)=×8=5.解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法.[设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础.一、提公因式法分解因式的概念思路一[过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题.如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c).大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解.由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式.由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式.总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.[设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式.思路二[过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来.多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢?结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.多项式2x2+6x3中各项的'公因式是什么?你能尝试将多项式2x2+6x3因式分解吗?结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.[设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念.二、例题讲解[过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧.(教材例1)把下列各式因式分解:(1)3x+x3;(2)7x3-21x2;(3)8a3b2-12ab3c+ab;(4)-24x3+12x2-28x.〔解析〕首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象.解:(1)3x+x3=x3+xx2=x(3+x2).(2)7x3-21x2=7x2x-7x23=7x2(x-3).(3)8a3b2-12ab3c+ab=ab8a2b-ab12b2c+ab1=ab(8a2b-12b2c+1).(4)-24x3+12x2-28x=-(24x3-12x2+28x)=-(4x6x2-4x3x+4x7)=-4x(6x2-3x+7).【学生活动】通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题.总结:提取公因式的步骤:(1)找公因式;(2)提公因式.容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号.教师提醒:(1)各项都含有的字母的最低次幂的积是公因式的字母部分;(2)因式分解后括号内的多项式的项数与原多项式的项数相同;(3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式;(4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等.[设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验.1.提公因式法分解因式的一般形式,如:a+b+c=(a+b+c).这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式的关键在于发现多项式的公因式.3.找公因式的一般步骤:(1)若各项系数是整系数,则取系数的最大公约数;(2)取各项中相同的字母,字母的指数取最低的;(3)所有这些因式的乘积即为公因式.1.多项式-6ab2+18a2b2-12a3b2c的公因式是( )A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C.2.下列用提公因式法分解因式正确的是( )A.12abc-9a2b2=3abc(4-3ab)B.3x2-3x+6=3(x2-x+2)C.-a2+ab-ac=-a(a-b+c)D.x2+5x-=(x2+5x)解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C.3.下列多项式中应提取的公因式为5a2b的是( )A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b2解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A.4.填空.(1)5a3+4a2b-12abc=a( );(2)多项式32p2q3-8pq4的公因式是 ;(3)3a2-6ab+a= (3a-6b+1);(4)因式分解:+n= ;(5)-15a2+5a= (3a-1);(6)计算:21×3.14-31×3.14= .答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4 5.用提公因式法分解因式.(1)8ab2-16a3b3;(2)-15x-5x2;(3)a3b3+a2b2-ab;(4)-3a3-6a2+12a.解:(1)8ab2(1-2a2b).(2)-5x(3+x).(3)ab(a2b2+ab-1).(4)-3a(a2+2a-4).第1课时一、教材作业【必做题】教材第96页随堂练习.【选做题】教材第96页习题4.2.二、课后作业【基础巩固】1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 .2.(20xx淮安中考)因式分解:x2-3x= .3.分解因式:12x3-18x22+24x3=6x .【能力提升】4.把下列各式因式分解.(1)3x2-6x;(2)5x23-25x32;(3)-43+162-26;(4)15x32+5x2-20x23.【拓展探究】5.分解因式:an+an+2+a2n.6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来.【答案与解析】1.2ab2.x(x-3)3.(2x2-3x+42)4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).5.解:原式=an1+ana2+anan=an(1+a2+an).6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1).本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解.在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学.随堂练习(教材第96页)解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).习题4.2(教材第96页)1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1).提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想――类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系.已知方程组求7(x-3)2-2(3-x)3的值.〔解析〕将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便.解:7(x-3)2-2(3-x)3=(x-3)2[7+2(x-3)]=(x-3)2(7+2x-6)=(x-3)2(2x+).由方程组可得原式=12×6=6.因式分解教案篇3教学设计思想:本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。

因式分解(1)

因式分解(1)

把下列各式因式分解
3 2 (1)24x y-18x y
(2) (2)7ma+14ma2 (3) -16x4+32x3-56x2 (4)-7ab-14abx+49aby (5)2a(y-z)-3b(y-z) 2 2 2 2 (6)p(a +b )-q(a +b )
1、20042+2004能被2005整除吗? 2、先分解因式,再求值
怎样分解因式: ma mb mc
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形 式,其中m是各项的公因式,另一个因式 (a+b+c)是ma+mb+mc 除以m的商,像这种分 解因式的方法,叫做提公因式法。
说出下列多项式各项的公因式: 1、ma + mb m 2、4kx - 8ky 4k 3、5y3+20y2 5y2 4、a2b-2ab2+ab ab
路桥实验中学 王万丰 2006.10.25
整式的乘法
计算下列个式: x (x+1)= x2 + x (x+1) (x – 1)= x2 – 1
63能被哪些数整除? 在小学我们知道,要解决这个问题 需要把63分解成质数乘积的形式.
63 3 3 7
类似的,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形 式.
注意:各项系数都是整数时,公因式的系数 应取各项系数的最大公约数;字母取各项 的相同的字母,而且各字母的指数取次数最 低的.
把8a b 12ab c分解因式 例 1、
3 2 3
分析:应先找出 与 再提公因式进行分解

因式分解1

因式分解1
如:m(a+b+c)=ma+mb+mc是多项式的乘 法,反过来 得ma+mb+mc=m(a+b+c)是因式分解, 这里m是ma+mb+mc的公因式.
5
• 例:把下列各式分解因式: • 1.8a3b-12ab3c 2 • 2.3x -6xy+x 3 2 • 3.-4m +16m -26m
6
• 当堂训练一
1.指出下列各式的公因式: 2b2 2 3 3 2 a (1)a b -a b (2)3xy-9x2y 3xy (3)2m2x3-3mx2-4x x (4)-5m3n-10m2n2+5m
-5m
7
• 2.对下列多项式进行因式解 (1)3a+3b(2)5x-5y+5z
2 2 (3)-5a +25a(4)3a -9ab;
10
当堂训练3
• 先因式分解,再计算: 1. 11.302×9.8+8.698×9.8 2. 2003×99-27 ×11
11
因式分解(1)
1
学习目标
• 1.了解因式分解与整式乘 法之间的关系. • 2.发现因式分解的基本方 法提公因式法.
2
自学指导
自读教材P87页 理解什么是因式分解.以及 因式分解的基本方法Байду номын сангаас公因 式法.能用提公因式法分解因 式.
3
4
• 1.把一个多项式化为几个整式 的乘积形式,这就是因式分解 • 2.把公因式提出来,这种因式分 解的方法,叫做提公因式法。
2 (5)a +a
2 (6)4ab-2a b
8
当堂训练2 对下列多项式进行因式解:
1.4a-8b 3 2 3 3.6x y -5xy

因式分解1讲义模板

因式分解1讲义模板

教学目标
重点、难点
考点及考试要求 教学内容
一、因式分解的意义 把一个多项式化成为几个整式的积的形式,叫做多项式的因式分解. 总结:(1)因式分解是多项式的一种恒等变形,也是单项式与多项式,多项式与多项式相乘的逆变 形. (2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式. (3)分解因式都是在指定的数集内进行(如无特殊说明,一般指有理数),其结果要使每一个因式不 能再分解为止. 二、提公因式法 (1)公因式:多项式中每一项都含有的因式,叫公因式. (2)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多 项式化成几个因式乘积的形式,这种分解因式的方法叫做提公因式法. (3)公因式的构成: ①系数:各项系数的最大公约数; ②字母:各项都含有相同字母; ③指数:相同字母的最低次幂. 提公因式时要一次提尽.公因式可以是单项式,也可以是多项式。 练习: (1)2x2y-xy (2)6a2b3-9ab2 (3)x(a-b)+y(b-a) (4)ax+ay+bx+by
a 4 1 a 2 1 a 1a 1


4、对某些多项式还要了解经过一定变形后才能分解的因式,如:分解 x 2 4 xy 3 y 2 的因式,此题用 现有的方法还不能分解因式.但若适当处理后配成完全平方,就可以继续分解.
x 2 4 xy 3 y 2 x 2 4 xy 3 y 2 y 2 y 2 x 2 4 xy 4 y 2 y 2 x 2 y y 2 x 2 y y x 2 y y x y x 3 y
(2)3ax2+6axy+3ay2
(3)4x2-12x+9
(4)16x4+24x2+9;

1、因式分解

1、因式分解

1、因式分解第1讲因式分解(1)【竞赛导航】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

本讲主要涉及用提公因式法和公式法分解因式.一、提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律。

多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数取各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

二、把乘法公式反过来,就可以得到因式分解的公式。

主要有:平方差公式:a 2-b 2=(a +b )(a -b )完全平方公式:a 2 ±2a b+b 2=(a ±b )2推广公式:a 2+b 2+c 2+2ab+2ac+2bc=(a+b+c)2立方和、立方差公式: a 3±b 3=(a ±b )( a 2 μa b+b 2)和(差)的立方公式:33223)(33b a b ab b a a ±=±+±补充:欧拉公式: a 3+b 3+c 3= (a +b +c )(a 2+b 2+c 2-ab -ac -bc ) +3abc ])()())[((21222a c c b b a c b a -+-+-++=+3abc 特别地:(1)当a +b +c =0时,有a 3+b 3+c 3=3abc(2)当0=c 时,欧拉公式变为两数立方和公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。

但有时需要经过适当的组合、变形后,方可使用公式。

用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。

因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。

【典例解析】例1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213;(2))(2)(2)(223a b ab a b a b a a ---+-例2. 计算:1368987521136898745613689872681368987123?+?+?+?例3. 不解方程组23532x y x y +=-=-,求代数式()()()22332x y x y x x y +-++的值。

因式分解——1.提公因式法教学设计(高效课堂展示)

因式分解——1.提公因式法教学设计(高效课堂展示)

探索因式分解的方法——1、提取公因式法教学设计宁强县第一初级中学张丽琴一、教材分析:“因式分解”是“华东师大版八年级数学(上)”第12章第5节内容。

本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的承上启下的作用。

本节主要讲“提公因式法”,为一个课时。

提取公因式法是因式分解的基本方法,也为学习因式分解的其他方法及利用因式分解解一元二次方程打下坚实的基础。

二、目标分析:知识与技能:1、理解因式分解的含义,能判断一个式子的变形是否为因式分解。

理解公因式的含义,能够快速准确地找出公因式。

2、熟练运用提取公因式法分解因式,达到高效学习的目的。

过程与方法:经历自主探究、合作交流、类比归纳的学习过程,体会类比、整体的数学思想方法,形成自己的数学的学习模式。

情感态度、价值观:培养学生养成探究的习惯,将“探究”作为一种自觉行为,并体会由此带来的快乐,从中感受数学的应用价值。

三、教学重难点:教学重点:理解因式分解的含义及运用提取公因式法分解因式。

教学难点:合理分组,运用提取公因式法分解因式。

四、学习者分析:1、初二学生性格开朗活泼,对新鲜事物较敏感,并且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。

2、初二学生对整式的运算比较熟悉,对互逆过程也有一定的感知。

3、初二学生已经具备了一定的自我学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究如何用提公因式法分解因式。

五、教法学法:教法:类比、启发式、探究式教学方法1、教学过程中渗透类比的数学思想,形成新的知识结构体系;2、设置启发式、探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。

学法:自主、合作、探索的学习方式在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,以促进学生发展为目的。

因式分解(一)

因式分解(一)

D.
a2 7a 12 a 3 a 4
【知识点二】提公因式法 计算: 3.8 5 4.3 5 1.9 5 逆用乘法分配律
3.8 5 4.3 5 1.9 5 5 3.8 4.3 1.9
提取公因式: ap bp cp p a b c , p 公因式 思考 :如何确定公因式? 例: 6a 3b 8a 2b2 12a 2bc ①先系数:系数的最大公约数为 2 ②再字母:所有项公共字母为 ab
例 3. ( 1)因式分解: a2 ab
.
(2)因式分解: 3x2 18x (3)因式分解: 16x2 y xy (4)因式分解: 3m2n 6mn2
. . .
练习 3-1 . (1)因式分解: a2 a
.
(2)因式分解: 2a2 4a
.
(3)因式分解: 2m2 m
.
练习 3-2 . 把多项式 4a3 4a 2 16a 因式分解,结果是( )
.
(2)因式分解: x2 9
.
(3)因式分解: 9x2 4
.
练习 6-1 . (1)因式分解: x2 4
.
(2)因式分解: x2 9 y2
.
练习 6-2 . (1)因式分解: 9 4 p2
.
(2)因式分解: 16m2 25
.
例 7. 因式分解: x4 y4
.
练习 7-1 . 因式分解: a4 16
.
③后指数:公共字母最小指数为 a2b
因式分解: 6a3b 8a2b2 12a2bc 2a2b 3a 4b 6c
注意:(1)公因式要提尽,千万不能有所遗漏 . (2) 要符合 代数式的书写规范 ①单项式要写在多项式的前面 ②相同的因式要写成幂的形式 ③括号内多项式的首项系数一般变为正数 例: 9a2b 15ab2c 3ab 3a 5bc

因式分解方法大全1

因式分解方法大全1

因式分解方法大全(一)因式分解是将一个多项式转化成几个整式的积的形式,叫因式分解或分解因式。

它与整式乘法是方向相反的变形.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。

因式分解的主要方法:⑴提公因式法;⑵运用公式法;⑶分组分解法;⑷十字相乘法;⑸添项折项法;⑹配方法;⑺求根法;⑻特殊值法;⑼待定系数法;⑽主元法;⑾换元法;⑿综合短除法等。

第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:⑴平方差公式:22()()a b a b a b -=+-⑵完全平方公式:2222()a ab b a b ±+=±⑶立方和公式:3322()()a b a b a ab b +=+-+(新课标不做要求)⑷立方差公式:3322()()a b a b a ab b -=-++(新课标不做要求)⑸三项完全平方公式:2222222()a b c ab ac bc a b c +++++=++⑹ 3332223()()a b c abc a b c a b c ab bc ac ++-=++++---例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)abc c b a 3333-++四、十字相乘法.㈠二次项系数为1的二次三项式:2x bx c ++,条件:如果存在两个实数p 、q ,使得c pq =且b p q =+,那么2()()x bx c x p x q ++=++例1、分解因式:652++x x分析:将6分解成两个数的积,且这两个数的和等于5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手工课上,老师给周杰伦同学发下一张如左图形 状的纸张,要求他在恰好不浪费纸张的前提下剪 拼成右图形状的长方形,作为一幅精美剪纸的衬 底,请问你能帮助周杰伦同学解决这个问题吗? 能给出数学解释吗?
a a b b
a+b
a–b
a
a2– b2 =(a + b)(a – b)
第四环节
范例学习,练习反馈
例 检验下列因式分解是否正确: (1)x2y-xy2=xy(x-y) (2) 2x2-1=(2x+1)(2x-1) (3) x2+3x+2=(x+1)(x+2)
m= ,n= 。 ),且m= 。
(2)x2-8x+m=(x-4)(
PC蛋蛋群 PC蛋蛋群
wrg52xua
活力的食物。我用法术把其它猫隔离在外,独自享用这从未有过的美味。同时,我尾巴上的金色花纹持续增加,第四条 尾巴又出现了。”“正在我欣喜之时,石壁上居然打开了一道门,石门打开的同时,一股浓烈的杀气从石门背后涌出, 我转身看去,身后猫还没来得及发出惨叫,就已经死去了。我惊恐的等着那扇门,走进来的并不是什么可怕的魔鬼,而 是一个银色头发的少女,给人一种澄澈清纯的感觉。尽管她隐藏的很好,但我还是看出,她不过是一只修为极高的 妖。”“哦……没想到百蝶也有清纯的时代……可惜当时没有照相机……”慕容凌娢貌似有些抓错了重点,“那之后又 怎么样了?百蝶为什么单单没有杀你?”“‘没想到旧地重游还能碰见同类,你我都是修炼的妖,相遇也算是缘分,我 叫百蝶。来吧,我带你出去。’那时的百蝶伸出手,对我如是所说……”茉莉45°角仰望星空,一看就是在回忆过去。 “那是的百蝶还真是心地善良啊……我是说,抛开那几只被秒的猫,百蝶确实挺乐于助人……”看到茉莉阴森的眼神, 慕容凌娢马上改了口。“她把我带出了墓地,并且告诉我,像我这样不需掠夺生命就可以增长修为的妖是很少见的,我 尾巴上的条纹就是我经历的劫数,我其实已经死过很多次,只是自己没有发觉而已。她还说她有办法可以快速提高修为, 问我愿不愿和她一起修炼。我不愿意为了增长修为而打开杀戒,毕竟,修炼对于我来说,是一种顺其自然的东西……于 是,百蝶就带着我来到了大陆东南边的海岸上,她的速度很快,几乎是在一瞬间就到达了目的地。海岸边停止一支船队, 她指着那艘最大的船对我说,‘登上它吧,它也许能带你回家。’我趁人不注意,偷偷爬上了甲板,向百蝶道谢时,她 又问我,‘真的不跟我去闯荡世界?我说‘不去。’‘不后悔?’‘绝对不后悔。’”“SO……”慕容凌娢好不容易理 清了思路,“你是登上某航海家的船才偷渡到天朝来的?这算不算生物入侵啊!”“我其实也是被百蝶坑了,本来以为 能坐上这条船回老家,结果又跑到了这个国度。然后呢……我就开始在这附近游荡,顺便等着百蝶。因为……我确实后 悔了。现在没实力干什么都麻烦,我要赶快突破万年修为大关,然后就可以为所欲为了!”“额……茉莉啊,你变 了……”第073章 古代版家长寄语“这样很好啊,朝廷需要你这样的人才,(虽然不知道你除了弹琴好听,还有什么特 长)晴朝等着你去发展(比如说那个没事儿就乱嗑 药的皇帝),历史等着你去改写(圆明园的建成及毁灭,列强入侵, WW2……要是这些都消失,那我们的历史书要少好多页啊!保护树木,从你开始。)”慕容凌娢边开导边在脑海中吐槽, 这个时代的BUG实在是太多了,要是真的修
(4) x2-3x+1=x(x-3)+1 2.填空:(1)∵3a(a+4) =3a2+12a
∴ 3a2+12a = (
∴a2+6a+9 = ( ∴4-a2 = (
)(
);
(2)∵ (a+3)2=a2+6a+9 )( ); (3)∵(2-a)(2+a) = 4-a2 )( );
第四环节
范例学习,练习反馈
(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400 (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000 (3)20x2+60x= 20x(x+3)= 20x(-3)(-3+3)=0。
第六环节
思维拓展:
布置作业,巩固提高
(1)若 x2+mx-n能分解成(x-2)(x-5),则
6.1 因式分解
6.1 因式分解
温三中 吴立
七年级数学备课组
第一环节
设置问题,以趣激情
手工课上,老师给周杰伦同学发下一张如左图形状的纸 张,要求他在恰好不浪费纸张的前提下剪拼成右图形状的 长方形,作为一幅精美剪纸的衬底,请问你能帮助周杰伦 同学解决这个问题吗?能给出数学解释吗?
b
b
a
a
第二环节
整数乘法
(2) a2+a=______ (3) m2-16=_________ (4) x2-6x+9=________ (5) a3-a=______
因式分解:把一个多项式转化为几 个整式积的形式 (也称分解因式)
第三环节
做一做:初步应用,巩固新知源自1、下列代数式变形中,哪些是因式分解?哪些不是?为什么? (1) 2m(m-n)=2m2-2mn (2) 5x2y - 10xy2=5xy(x - 2y) (3) 4x2-4x+1=(2x-1 )2 (1)因式分解是对 多项式而言的一种变形; (2)因式分解的结果 是几个整式的积的形式; (3)因式分解与整式乘法 正好相反。
以旧探新,引出课题
2×3×7=42
42=2×3×7
因数分解
计算下列各式: (1) x(x-y)= _____ (2) a(a+1) = _____ (3) (m+4)(m-4)=____ (4) (x-3)2= _______ (5) a(a+1)(a-1)= ___
根据左面的算式填空:
(1) x2-xy=_______
第五环节
知识整理,归纳小结
“想一想”: 下列式子从左边到右边是因式分解吗, 为什么? A. (a+3)(a-3)=a2-9 B. t2-16+3t=(t+4)(t-4)+3t C.4x2+12xy+9y2=(2x+3y)2
第五环节 看谁算的快
知识整理,归纳小结
(1)若a=101,b=99,则a2-b2=___________; (2)若a=99,b=-1,则a2-2ab+b2=_______; (3)若x=-3,则20x2+60x=____________。
相关文档
最新文档