交流调速系统及应用
第8章 交流调压调速系统
调压调速的功率损耗
转速负反馈闭环控制交流调压调速系统
1.异步电动机传递函数 • 在机械特性近似线性段上的稳态工作点A附近,可以证明:
2 3 pn U1A Td (2U1A sA U1 ) ' 1R2 1
J G d ( ) Td TL pn dt
转速负反馈闭环控制交流调压调速系统
调压调速和变极调压调速效率曲线及 机械特性曲线
•低速时,多速电动机效率比4极单速电动机提高很多,定子 电流也减小许多。 •机械特性最上面为 4极,最下面为 10 极。中间部为 6 极。端 电压各为U1>U2>U3>U4,可见调速范围扩大了。
Δ-Y变换节电
采用由交流接触器和时间继电器等简单电器就可构成 ΔY切换降压装置。其显著的特点是:体积小、成本低、 寿命长、动作可靠。因此在工矿企业中某些轻载设备上 使用,可取得显著的节电效果。 当电动机定子绕组由 Δ 形联结改接成 Y 形联结后,电动 1 =3 机每相定子绕组电压降为原来的,即:UY/U 。 Δ 电动机线电流、电磁转矩均降为原来的 1/3 ,即: IY/IΔ =1/3,TY/TΔ =1/3。 由于 Y 接法与 Δ 接法虽然有电压变化,但是电动机的转 速变化不大,可近似的认为n近似为nN,所以Y接法时电 动机的功率降为原来的1/3,即: PY TY n 1 = P T nN 3
第8章 交流调压调速系统
8.1概述 8.1.1交流调压调速的发展 8.1.2交流调速系统的分类 8.2异步电动机调压调速系统工作原理 8.2.1调压调速的工作原理 8.2.2交流调压器原理 8.3异步电动机调压调速系统 8.3.1调压调速系统的组成 8.3.2调压调速系统的特性 8.3.3调压调速的功率损耗
交流电机变频调速原理与应用
异步电动机的“多功能控制器”。
3.风机、泵类的调速节能
风机、泵类的调速节能是调压调速系统应用得最多的领域之一。
3 异步电动机变频调速基础
变频调速时s变化很小,效率最高,性能也最好。
变频调速是异步电机交流调速系统的主流。
3.1 变频时的电压控制方式及控制特性
xK
1.变频的同时为什么要变压
r1
x1
②交交变频
电 动
鼠笼式转子
调压调速
机 感应电动机
交流调压
电压源型
常规意义 同步电动机
①变频调速,他控式
②变频调速,矢量控 制
①交直交变频 (整流+无源逆变) ②交交变频
①电流源型 ②电压源型
同 步
无换向器 电机
变频调速,自控式
电
动 机 无刷直流电动机 变频调速,自控式
开关磁阻电动机 变频调速,自控式
I1
定子每相电动势的有效值: E 14.44f1N 1kN 1 mU 1 U1
E1
x2
Im
xm
若f1↓,U1不变,则磁通Φm ↑ ,Im ↑ ↑ 。
rm
r2
I2 Er
若f1↑,U1不变,则磁通Φm↓,I不变时T ↓ 。
B m ,E1
结论:频率变化时,若不同时改变电压, 则会使电机的磁通 mN 大幅变化,这将使电机运行不正常甚至损坏电机,所以变频的
Ui
+
-
GT
U ct
+
TG
~ VVC
M 3~
Hale Waihona Puke 2.3 交流调压调速系统的制动
交调系统制动时,通常采用在定子绕组中通入直流电流(能耗制动)的方法。
第六章 交流调速系统
交流电机的同步转速表达式为:
n1
=
60 f1 p
异步电动机的转速表达式为:
n1=
60 f1 p
(1
s)
因此,异步电动机的调速方法有改变电动机
定子供电频率,改变转差率及改变极对数等三种。
其中改变转差率又可通过调定子电压、转子电阻、
转差电压及定、转子频率差等方法实现。同步电
动机的调速可用改变供电频率从而改变同步转速
Sm
R2
R12 12 (Ll1 Ll2 )2
Tm
21[R1
3 pU12
R12 12 (Ll1 L'l 2 ) 2 ]
华南理工大学
上式表明,当转速或转差率一定时,电磁转
矩与电压平方成正比。对应不同的定子电压,可 得到一组机械特性曲线,如图6—3 所示,图中
U1N表示定子额定电压。
右图分析: 带恒转矩负载时,普 通笼型异步电动机调 压时的稳定工作点为 A—B—C,转差率在 0—Sm范围内变化,调 速范围很小。如带风 机类负载运行,工作 点为D、E、F,调速范 围稍大些。
电路(e)只用三个晶闸管,它们位于三相绕 组后面可减少电网浪涌电压对它的冲击,即使 三相绕组发生相间短路也不致损坏晶闸管,它 的移相范围为2100。此电路要求定子绕组中性 点能拆开,且只能接成Y形。电路上有偶次谐 波,对电机不利。
华南理工大学
优胜电路:
综上所述,电路(b)、(e)性能 较好,在交流调压调速系统中多采 用这两个方案。
华南理工大学
6.2.2 异步电动机 在调压时的机械特性
根据电机学原理,异步电动机稳态时的简化 等值电络图如图6—2所示。
I1
R1
Ll1
交流伺服电动机调速系统介绍
交流伺服电动机调速系统介绍概述交流伺服电动机调速系统是一种广泛应用于工业自动化领域的高性能电动机控制系统。
它通过对电机的电流和速度进行精准控制,实现高速度、高精度的电动机调速。
本文将详细介绍交流伺服电动机调速系统的工作原理、组成部分、应用领域以及优势等内容。
工作原理交流伺服电动机调速系统的工作原理基于闭环控制理论。
它通过反馈电机的位置、速度和转矩等信号,与预设值进行比较,并根据比较结果调整电机的控制信号,使电机以预期的速度和转矩运行。
系统主要包含三个部分:电机驱动器、位置反馈装置和控制器。
其中,电机驱动器将控制信号转换为电机驱动所需的电流和电压;位置反馈装置用于实时监测电机的位置和速度;控制器根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。
组成部分1. 电机驱动器电机驱动器是交流伺服电动机调速系统的核心组件。
它通过将控制信号转换为电机驱动所需的电流和电压,控制电机的转速和转矩。
通常使用的电机驱动器有两种类型:直流耦合型和速度闭环型。
直流耦合型驱动器适用于要求较低的精度和转速要求较高的应用,而速度闭环型驱动器则适用于对精度和速度要求较高的应用。
2. 位置反馈装置位置反馈装置用于实时监测电机的位置和速度。
常用的位置反馈装置有编码器、光电传感器和霍尔传感器等。
编码器是最常用的位置反馈装置,它通过检测电机轴上的旋转磁场脉冲来计算电机的位置和速度。
光电传感器和霍尔传感器则通过检测旋转齿轮的牙齿或永磁体的磁场变化来实现位置和速度的反馈。
3. 控制器控制器是交流伺服电动机调速系统的智能核心。
它根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。
常用的控制器有PID控制器和模糊控制器等。
PID控制器通过比例、积分和微分三个控制参数对反馈信号和预设值进行加权求和,得出控制信号。
模糊控制器则是一种基于模糊逻辑的控制方法,它通过定义模糊集合和规则库来实现对电机的控制。
应用领域交流伺服电动机调速系统广泛应用于以下领域:1.机床工业:用于铣床、车床、磨床等机床设备的高速度、高精度调速。
第四章 交流电动机调速控制系统
r12
(X1
c1 X
' 20
)2
]
(4-8)
因 r12
(X1
c1
X
' 20
)
2
,近似得:
Mm
1 2c1
2f1[r1
m1PU12
(X1
c1 X
' 20
)]
(4-9)
2. 生产机械的转矩特性
摩擦类 特性曲线见图(a) 负载: ,位于1、3象限。
生产机械
恒转矩负载:它的负载转矩是一 个恒值,不随转速 而改变。
——定子极对数
(4-3)
4).传给转子的功率(又称电磁功率)与机械功率、转子铜耗之间有如下
关系式 : PMX PM PM 2 (1 S)PM
(4-4)
式中:
PM ——传给转子的功率(又称电磁功率)
PMX ——机械功率
PM 2 ——转子铜耗
5).电机的平均转矩为:
M CP
PMX
M0 Mn 否则电机无法进入正常运转工作区。
交流机的起动电流一般为额定电流的4~6倍 ,起动时 一般要考虑以下几个问题:
图4-7 机械特性曲线
1. 应有足够大的起动力矩和适当的机械特性曲线。 2. 尽可能小的起动电流。 3.起动的操作应尽可能简单、经济。 4.起动过程中的功率损耗应尽可能小。
普通交流电机在起动过程中为了限制起动电流,常用的起动方法有三种。即:
图6-1的等效电路,经化简后得到能耗制动的等效电路如图4-10所示。
图4-10 能耗制动的等效电路
图中:
•
I1 ——直流励磁电流的等效交流电流
简述交流异步电动机变压调速系统的特点及应用场合
简述交流异步电动机变压调速系统的特点及应用场合交流异步电动机变压调速系统是一种常见的电动机调速控制系统,其特点和应用场合如下:特点:1. 变压调速系统采用变压器来调整电动机的输入电压,从而实现调速控制。
通过调整输入电压,可以改变电动机的转速,从而满足不同工况下的需求。
2. 交流异步电动机变压调速系统结构简单,成本低廉。
相比其他调速方法,如变频调速系统,变压调速系统的设备和维护成本较低。
3. 变压调速系统的调速响应速度较快,精度较高,可在短时间内实现从低速到高速的平稳调速。
4. 变压调速系统的稳定性较强,适用于工况变化较大的场合。
由于其调速控制是通过调整输入电压实现的,所以对负载的适应性较好。
应用场合:1. 工业生产线:交流异步电动机变压调速系统常用于工业生产线上,如输送带、搅拌设备、风机等。
由于生产线上的负载和工况经常变化,变压调速系统能够快速、稳定地满足不同负载要求。
2. 电梯系统:电梯是一个需要精确调速的系统,交流异步电动机变压调速系统可根据电梯载重情况和乘客需求来调整电梯的运行速度,提高乘坐的舒适性和安全性。
3. 污水处理系统:污水处理系统中的泵和风机需要根据进水量和水质变化来调整运行速度,以保证处理效果。
交流异步电动机变压调速系统能够根据实时需求来调整设备的转速,提高处理效率。
4. 能源系统:交流异步电动机变压调速系统可用于风力发电机组和太阳能跟踪系统中,根据天气条件和电网负荷情况来调整发电设备的转速,最大限度地利用风能和太阳能资源。
总之,交流异步电动机变压调速系统具有调速响应快、稳定性强、成本低廉等特点,广泛应用于工业生产线、电梯系统、污水处理系统和能源系统等场合。
它为各种设备和系统的调速控制提供了可靠的解决方案。
4.交流变频调速系统
交压变频调速系统
第一节 变频调速技术的发展及应用 第二节 变频调速系统的工作原理 第三节 变频调速系统无逆变电路 第四节 晶闸管变频调速系统 第五节 正弦波脉宽调制技术
第一节 变频技术的发展及应用
什么叫变频?变频器有什么特点?
变频调速就是通过变频器将固定频率和固定电压 的交流电源转化为能在宽广的范围内电压和频率 均可调的变频电源。
U1 R1I1 E1 E1 4.44 f1 N1K1
E1 U1 4.44 f1 N1 K1 4.44 f1 N1 K1
由上面推导出来的式子可知,只要控制好 U1 和 f1 ,便可达到控制磁通 的目的, 对此,需要考虑基频(额定频率)以下和基 频以上两种情况。
a、基频以下的变频控制方式
b、基频以上的变频控制方式 在基频以上时,频率可从f1N往上增高,但电压U1却 不能增加得比额定电压U1N大,一般保持U1=U1N,使 磁通与频率成反比地降低,相当于直流电机弱磁升 速的情况。
m
U 1N 4.44 f1 N 1 K N 1
f1 f1 N
恒电压的控制方式用于基频以上的变频系统中,此时 电压恒定,磁通会从额定值ΦN向下调节。
60 f1 n (1 s) 1.异步电动机的转速: n1 (1 s) np
改变电源频率,同步转速发生改变,从而改变电 动机的转速。
2、变频调速的基本控制方式
由电机学知
E1 4.44 f1 N1 K1
/ Te Cm m I 2 cos 2
如果忽略定子上的电阻压降,则有
n
I sb , 1a
I sa , 1a
I sa I sb
1a 1b
I sb , 1b
交流调速简答 (1)
直流调速系统:控制简单、调速平滑、性能良好。
但换向器存在,维护工作量加大,单机容量、最高转速以及使用环境都受到限制交流调速系统:交流调速系统,励磁电流和转矩电流互相耦合,调速困难。
现代交流调速系统由交流电动机、电力电子功率变换器、控制器及电量检测器组成,称为变频器。
课后习题1.交流调速的主要应用领域:1.冶金机械2.电气牵引3.数控机床4.矿井提升机械5.起重、装卸机械6.原子能及化工设备7.建筑电气设备8.纺织、食品机械2.异步电动机的优点:结构简单,运行可靠,便于维护,价格低廉。
3.异步电动的调速方法:改变电源频率、改变极对数以及改变转差率。
4.变频调速的基本要求:1.保持磁通为额定值 2.保持电压为额定值5.交-直-交变频器与交-交变频器的主要特点比较:比较项目类型交-直-交变频器交-交变频器换能方式两次换能,效率略低一次换能,效率高晶闸管换向方式强迫换向或负载换向电网换向所用器件数量较少较多调频范围频率调节范围宽一般情况下,输出最高频率为电网频率的1/3~1/2电网功率因素采用晶闸管可控整流调压,低频低压时功率因数较低,采用斩波器或PWM方式调压,功率因数高较低适用场所可用于各种电力拖动装置,稳频稳压电源和不间断电源适用于低速大功率拖动6.同步电动机变频调速方法:他控式变频调速、自控式变频调速。
不同:他控式变频调速采用独立的变频器(即输出频率由外部振荡器控制)作为同步电机的变压变频电源。
自控式变频器调速由电动机轴上所带的转子位置检测器发出信号来控制逆变器的触发换相,即采用输出频率由转子位置来控制的变压变频电源为同步电机供电。
这样就从内部结构和原理上保证了频率与转速必然同步,构成“自控式”。
7.各种变频调速的基本原理:按结构分为交-直-交变频器与交-交变频器;按电源性质分电压型变频器:变频器主电路中的中间直流环节采用大电容滤波,使直流电压波形比较平直,对于负载来说,是一个内阻抗为零的恒压源,这类变频调速装置叫做电压源变频器。
交流电动机调速方法
交流电动机调速方法
交流电动机调速方法有多种,以下是常见的几种方法:
1. 变频调速:通过调节电动机供电频率,改变电动机转速来实现调速。
变频器可以根据负载情况和工艺要求,自动调整输出频率,从而控制电动机的转速。
2. 阻抗调速:通过改变电动机回路的阻抗,来改变电动机的转速。
常用的方法有电阻调速、自耦变压器调速和感性电压调速等。
3. 矢量控制:利用矢量控制技术,通过改变电动机的电流和电压矢量,来实现对电动机转速的控制。
矢量控制可以实现高精度、高动态性能的调速效果。
4. 直接转矩控制:通过测量电动机的转子位置和转子电流,直接计算出电机的转矩,从而实现对电机转速的控制。
直接转矩控制具有响应速度快、控制精度高的特点。
5. 恒定电压调速:在给电动机供电时保持恒定的电压,通过改变电动机的绕组电阻或连接不同的绕组,来改变电动机的转速。
选择适合的调速方法需要考虑到具体的应用场景、负载要求和经济效益等因素。
在实际应用中,可以根据需要采用单一的调速方法,也可以结合多种调速方法进行组合使用,以达到更好的调速效果。
三相交流调压调速系统设计与仿真
三相交流调压调速系统设计与仿真三相交流调压调速系统是一种常见的电力系统控制技术,广泛应用于电机驱动、风力发电、太阳能发电等领域。
调压调速系统的设计和仿真是一个重要的环节,可以通过仿真分析系统的性能、稳定性和可靠性等,从而指导实际系统的设计和运行。
首先,三相交流调压调速系统主要由三相桥式整流电路、直流侧LC 滤波器、逆变器、电机负载以及控制系统组成。
为了设计一个稳定可靠的系统,首先需要确定系统的输入电压和输出电压、电流的需求。
根据需求确定整流电路和逆变器的参数。
其次,根据确定的参数,进行系统的电路设计,包括整流电路、滤波器和逆变器。
整流电路采用桥式整流电路,可以将交流电转换为直流电;滤波器用于滤除整流电路输出的直流电中的高频脉动;逆变器将直流电转换为交流电,并输出给电机负载。
然后,设计系统的控制策略。
调压调速系统的控制策略通常包括电压闭环控制和速度闭环控制。
电压闭环控制用于控制逆变器输出的交流电电压,保持其稳定在设定值附近;速度闭环控制用于控制电机负载的转速,保持其稳定在设定值附近。
最后,进行系统的仿真。
利用电力仿真软件,可以对系统进行仿真分析,评估其性能、稳定性和可靠性。
通过仿真可以观察系统的响应过程、稳态性能以及系统动态参数等,并进行相应的调整和优化。
在仿真过程中,可以分别对电压闭环控制和速度闭环控制进行仿真。
首先,电压闭环控制仿真分析逆变器输出的交流电电压是否在设定值附近稳定;其次,速度闭环控制仿真分析电机负载的转速是否在设定值附近稳定。
通过分析仿真结果,可以发现系统的问题并进行相应的改进。
综上所述,三相交流调压调速系统的设计与仿真是一个重要的环节,可以帮助工程师评估系统性能并进行优化。
通过合理的参数选择、电路设计和控制策略,可以设计出稳定可靠的调压调速系统,满足实际应用需求。
交流调速的基本方法
交流调速的基本方法交流调速是指在交流电力系统中,通过改变发电机的励磁电流或调整变压器的变比,使得发电机的输出频率保持稳定。
调速的目的是保证系统中的发电机和负荷之间的电力平衡,以及稳定系统的频率和电压,保证电能的供应质量。
交流调速的基本方法有以下几种:1. 励磁调速方法:通过改变发电机的励磁电流来调整发电机的输出频率。
励磁电流越大,发电机的转速就越高,输出频率也就越大。
励磁调速方法适用于具有较大惯性的系统,调速响应时间较长。
2. 变压器调速方法:通过调整变压器的变比来改变发电机的输出频率。
变压器调速方法适用于具有较小惯性的系统,调速响应时间较短。
这种调速方法通常用于小型发电机组或分布式发电系统中。
3. 负载调速方法:通过改变负载的大小来调整发电机的输出频率。
负载增大时,发电机的转速会下降,输出频率也会减小。
负载调速方法适用于具有大幅度负载波动的系统,调速响应时间较快。
4. 水轮机调速方法:对于水轮机发电机组,可以通过控制水轮机的进水量来调整发电机的输出频率。
进水量越大,发电机的转速就越高,输出频率也就越大。
这种调速方法适用于水力发电系统。
5. 发电机组调速方法:对于多台发电机组并联运行的情况,可以通过调整各个发电机组的励磁电流或负载来实现调速。
这种调速方法适用于大型电力系统。
以上是交流调速的基本方法,不同的方法适用于不同的电力系统和发电机组。
在实际应用中,可以根据系统的需求和运行状态选择合适的调速方法,以保证系统的稳定运行和电能供应质量。
需要注意的是,在进行交流调速时,需要考虑系统的稳定性和安全性。
调速过程中,应及时监测和控制发电机的输出频率、电压和负载,以确保系统的稳定运行。
同时,还需要进行合理的调度和管理,以最大限度地提高系统的效率和可靠性。
交流调速是电力系统中非常重要的一项技术,可以有效地控制发电机的输出频率和电压,保证系统的稳定运行。
通过合理选择和应用调速方法,可以实现电能的高质量供应,满足不同负载的需求。
交流调速器工作原理
交流调速器工作原理
调速器是一种用于调节机械设备转速的装置,它使用一种称为调速器的装置来实现工作原理。
调速器通常包含一个控制系统和一个执行系统。
工作原理如下:当控制系统接收到调速信号时,它会根据信号的要求调整执行系统的工作状态。
控制系统通常由一个感知器、一个比较器和一个执行器组成。
感知器是一个用来感知原始信息的装置,可以是传感器或者人工输入。
它能够感知到机械设备的转速,并将其转化为电信号。
比较器负责将感知到的信号与设定值进行比较,然后产生一个偏差信号。
如果实际转速低于设定值,偏差信号会告诉执行器,需要增加动力输出;如果实际转速高于设定值,偏差信号会告诉执行器,需要减少动力输出。
执行器则负责根据比较器发出的指令调整机械设备的工作状态。
它可以通过控制设备的供电电压或调整传动系统的速比来改变输出功率。
综上所述,调速器通过感知器感知机械设备的转速,然后通过比较器和执行器实现对设备转速的调节。
这个过程一直持续进行,以保持设备转速在设定范围内的稳定工作。
交流调速系统..课件
VS
详细描述
模糊控制策略通过将专家的知识和经验转 化为模糊规则,对系统的输入和输出进行 模糊化处理,并根据模糊逻辑进行决策。 这种控制策略能够处理不确定性和非线性 问题,但可能存在计算量大和鲁棒性不足 的问题。
控制策略的比较与选择
总结词
根据系统特性和应用需求,选择合适的控制 策略。
详细描述
在交流调速系统的实际应用中,需要根据电 机的类型、系统的性能要求、控制精度和动 态响应等要求,选择合适的控制策略。同时 ,需要对各种控制策略的优缺点进行比较, 以实现最佳的控制效果。
系统维护保养与故障排除
故障诊断
根据故障现象,分析可能的原因。
故障排除
根据诊断结果,采取相应措施排除故障。
预防措施
对故障进行分析,采取预防措施,避免类似故障再次发生。
系统性能测试与评估
要点一
转速控制精度
测试系统转速控制的准确性。
要点二
调速范围
测试系统调速范围是否满足要求。
系统性能测试与评估
• 稳定性:测试系统在各种工况下的稳定性。
02
交流调速系统的种类与特点
变频器调速系统
01
02
03
种类
交-直-交变频器、交-交变 频器
特点
调速范围宽、动态响应快 、运行效率高、节能效果 好、易于实现自动控制和 过程控制
应用领域
广泛应用于各行业的风机 、水泵、压缩机等通用机 械的调速和节能运行
串级调速系统
工作原理
通过改变电机转子回路电 阻来调节电机转子电流, 进而改变电机转速
行。
系统软件设计
控制算法选择
选择适合的控制系统算法,如PID控制、模 糊控制等。
软件架构设计
4章 交流异步电动机变频调速系统
为交流异步电动机转矩系数,其中Nr为转子绕组有效匝数;
φr为转子功率因数角。
可见,转矩控制的困难体现在以下几点: T T ① m 是由定子电流is iA , iB , iC 和转子电流 ir ia , ib , ic 共同产生的,它的
空间位置相对于定子和转子都是运动的。 ② m 与 I r 是两个相互耦合的变量,且 I 对于一般的鼠笼形异步电机是无法 r ③ r 是与转速相关的时变量(与转差s有关), 且当电机运行时转子电阻 Rr 随温度变化而变化, Te 也随之变化。除此以外,式中的 Te 只是平均转矩的概念, 对平均转矩的控制已十分困难了,更何况瞬时转矩。对转速的控制实质上就是 对转矩的控制,转矩控制的困难是实现交流电机高性能调速的主要障碍,也是 过去限制交流调速系统获得广泛应用的主要原因。 2)调速装置中器件发展的限制:调速装置中两大组成部件是主电路和控制电路。 主电路中的主要器件—电力电子功率器件在近五十年来更新换代了五代之多,以 适应变频调速(PWM脉宽调制)的需要。控制电路中的主要器件—微处理器在 近二十年中运算速度提高了数倍,以适应高性能变频调速复杂算法的需要。交流 调速系统的发展依赖于新型电力电子器件的应用、微电子技术的发展。
直流调速系统中各部分分别为5%,40%和55%,而交流调速系统中各部分分别 为10%,60%和30%。特别是当功率大于500 kW,交流调速系统的成本比直流 调速系统的成本明显降低。 4.1.2交流电动机的调速方法及其主要应用领域 1.交流电动机的调速方法 由电机学可知,交流电动机的同步转速表达式为 60 f s (4.6) ns np ns 为同步转速。 式(4.6)中,np为电机极对数;fs为电机定子供电频率; (1) 同步电动机的调速方法 可见,均匀地改变同步电动机的定子供电频率fs,就可以平滑地调节电动机
交流变频调速技术及应用实训报告
交流变频调速技术及应用实训报告变频调速技术是一种能够通过改变电机运行频率来实现调速的技术。
它主要通过改变电机的输入电压和频率来控制电机的转速。
变频调速技术被广泛应用于各个领域,如工业制造、能源、交通运输等,并且其应用范围不断扩大。
变频调速技术的主要原理是通过交流变频器来改变电源电压的频率和大小,从而实现电机的调速。
交流变频器通常由整流器、逆变器、控制电路和滤波电路等组成。
整流器将交流电源转换为直流电源,逆变器则将直流电源转换为可调的交流电源。
控制电路负责对变频器进行控制和保护,滤波电路则用于过滤器输出的电流波形。
变频调速技术具有很多优点。
首先,它能够实现电机的连续调速,从而满足不同工况下的需求。
其次,变频调速技术能够提高电机的效率,降低能耗和运行成本。
此外,变频调速技术还能够减少设备的机械损耗和电气损耗,提高设备的可靠性和寿命。
变频调速技术在工业制造领域有广泛的应用。
它可以用于水泵、风机和压缩机等能够通过调整转速来控制流量和压力的设备。
通过变频调速技术,可以根据实际需求来调整设备的工作状态,从而实现能源的节约和运行的稳定。
此外,在制造过程中,变频调速技术还能够实现精确的位置控制,提高生产效率和产品质量。
在能源领域,变频调速技术可以应用于风力发电和太阳能发电等可再生能源的转换和调度。
通过变频调速技术,可以实现风力发电机组和太阳能发电系统的高效运行和电网的稳定接入。
此外,变频调速技术还可以用于电动汽车的驱动系统,提高电动汽车的性能和续航里程。
交通运输领域也是变频调速技术的应用领域之一。
他可以应用于高速和城市轨道交通的电机驱动系统。
通过变频调速技术,可以实现电机的高效、安全、稳定的运行,提高交通运输系统的运营效率和乘客的舒适性。
综上所述,变频调速技术是一种重要的控制技术,其在各个领域都有广泛的应用。
通过变频调速技术,可以实现电机的连续调速、节能、安全和稳定运行。
随着科技的不断发展,变频调速技术的应用范围还将继续拓展,并且在未来的发展中将发挥更加重要的作用。
绪论交流调速概述
6
交流调速系统概述
交流电动机调速系统的技术应用:
(1)风机、水泵、压缩机耗能占工业用电的40%,进 行变频、串级调速,可以节能。
(2)对电梯等垂直升降装置调速实现无级调速,运 行平稳、档次提高。
(3)纺织、造纸、印刷、烟草等各种生产机械,采 用交流无级变速,提高产品的质量和效率。
(4)钢铁企业在轧钢、输料、通风等多种电气传动 设备上使用交流变频传动。
(5)有色冶金行业如冶炼厂对回转炉、培烧炉、球 磨机、给料等进行变频无级调速控制。
(6)油田利用变频器拖动输油泵控制输油管线输油。 此外,在炼油行业变频器还被应用于锅炉引风、送风、 输煤等控制系统。
7
交流调速系统概述
(7)变频器用于供水企业、高层建筑的恒压供水。 (8)变频器在食品、饮料、包装生产线上被广泛使用, 提高调速性能和产品质量。 (9)变频器在建材、陶瓷行业也获得大量应用。如水 泥厂的回转窑、给料机、风机均可采用交流无级变速。 (10)机械行业。是企业最多、分布最广的基础行业。 从电线电缆的制造到数控机床的制造。电线电缆的拉制需 要大量的交流调速系统。一台高档数控机床上就需要多台 交流调速甚至精确定位传动系统,主轴一般采用变频器调 速(只调节转速)或交流伺服主轴系统(既无级变速又使 刀具准确定位停止),各伺服轴均使用交流伺服系统,各 轴联动完成指定坐标位置移动。
机床调速的三种形式及应用范围
一、直流调速直流调速是一种较为常见的机床调速形式,它通过改变直流电动机的电压或电流来实现机床的调速。
在直流调速中,常用的调速方法包括电阻调速、励磁调速和变极调速。
1. 电阻调速电阻调速是通过改变直流电动机的电阻来调节电机的转速。
在电路中串联或并联不同的电阻来改变电动机的电压和电流,从而实现不同速度下的工作。
2. 励磁调速励磁调速是通过改变电动机的励磁电流或电压来调节电机的转速。
通过改变励磁电流的大小和方向,达到调速的目的。
3. 变极调速变极调速是通过改变电动机的极数来调节电机的转速。
通过改变电动机的励磁电流和电压,使电动机在不同的工作情况下具有不同的极数,从而实现调速。
直流调速的应用范围较广,适用于需要频繁调速和对速度精度要求较高的场合,如机床加工、风机、泵类设备等。
二、交流调速交流调速是指通过改变交流电动机的电压、频率或相数来实现机床的调速。
常用的交流调速方法包括变频调速、多极调速和串联/并联运行调速。
1. 变频调速变频调速是通过改变电动机的供电频率和电压来实现调速。
将交流电源转换为直流电源后再通过变频器对直流电源进行调节,使电动机的转速随之改变。
2. 多极调速多极调速是通过改变电动机的极数来实现调速。
在不同的工作情况下,通过改变电动机的极数以达到调速的目的。
3. 串联/并联运行调速串联/并联运行调速是通过改变电动机的接线方式来实现调速。
通过改变电动机绕组的串联或并联方式来改变电机的转速。
交流调速适用于对转速要求不是特别高,且频繁启停、节能及运行平稳的设备,如输送机、提升机、通风设备等。
三、伺服调速伺服调速是一种较为精密的调速形式,它通过改变伺服电机的控制信号来实现机床的调速。
伺服调速是通过伺服系统对电动机进行高精度控制,具有速度响应快、位置精度高等特点。
伺服调速适用于对转速、位置精度要求高的设备,如数控机床、印刷设备、包装设备等。
机床调速的三种形式各有特点,在不同的应用场合有着各自的优势和适用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PAM 方式--------脉冲幅值调节方式
是通过改变直流侧的电压幅值进行调压的。在变频器中,逆 变器只负责调节输出频率,而输出电压则由相控整流器或直流斩 波器通过调节直流电压去实现 PWM 方式--------脉冲宽度调节方式
IGBT不会立即进入放大状态。
UR VT1 VT3
VT4 VT6
(a)
ura
VC1 +
-
urb
VC4 VC3
+ -
GM
VC6
VC5
urc
VC2
+ -
+ -
+ -
+ -
UI VT5
M
VT2 3
生产机械
AP1 ug1 AP4 ug4 AP3 ug3 AP6 ug6 AP5 ug5 AP2 ug2
UR
+
交—交变频器 是将恒压频的交流电一次 变换成调压调频的交流电, 它由三组可逆整流器组成
通常用于大功率(500kw或1000kw 以上)、低速(600r/min以下)的 场合,如扎钢机、球磨机、水泥回 转窑等
交-直-交变频器的结构
是将恒压恒频的交流电通过整流电路变换成直流,然后 再经过逆变电路将直流变换成调压调频的交流电
矢量控制从原理上说可以得到与直流电动机相同的控制性
能,但是矢量控制的运算中要使用电动机的参数。
变频器的基本类型
3、 按变频器的用途分类
通用变频器
基本上采用电路结构简单的U/f控制方式
专用变频器
分为高性能变频器(采用VC控制方式)、 高频变频器和高压变频器
交-直-交变频器的内部结构简介
~
整流
Udc
1、载波频率高 大多数变频器的载波频率可在3~15kHz的范围内任意可调。
2、电流波形大为改善 载波频率高的结果是电流的谐波成分减小,电流波形十分接近正弦波,
故电磁噪声减小,而电动机的转矩增大。
3、控制功耗减小 IGBT的驱动电路取用电流极小,几乎不损耗功率。
4、瞬间停电可以不停机 这是因为IGBT的栅极电流极小,停电后,栅极控制电压衰减较慢,
基本构成框图
中间环节是大电容器滤波,使 直流侧电压 恒定,变频器 的输出电压随之恒定,相当于 理想的电压源,称为交-直- 交电压型变频器
中间环节是电感很大的电抗器 滤波,电源阻抗很大,直流环 节中的电流 可近似于恒定, 逆变器输出电流随之恒定,相 当于理想的电流源,称为交- 直-交电流型变频器
变频器电压调节方式
用PWM逆变器,输出电压是 一系列脉冲,调节脉冲宽 度就可以调节输出电压值
用可控整流器调压、逆变器调频 用斩波器调压的交—直—交变频器
用PWM逆变器同时调压调频
2、 按变频器的控制方式分类
(1)U/f控制变频器(压频比控制)
对变频器的输出的电压和频率同时进行控制,保持U/f恒定 使电动机获得所需的转矩特性
(2)SF控制变频器(转差频率控制)
变频器通过电动机、速度传感器构成速度反馈闭环调速系统。 在S很小的范围内,电动机的转矩近似地与转差角频率成正比。 控制转差频率就代表了控制转矩,这就是转差频率控制的基本概念。
(3)VC变频器(矢量控制)
将异步电动机的定子电流分解为产生磁场的电流分量和与其 垂直的产生转矩的电流分量,并分别加以控制。
2、门极可关断晶闸管(GTO)
属于全控型器件,开通和关闭都可以由脉冲实现。无须强迫换相装置,损耗小, 装置效率高,易于实现PWM控制。
3、电力晶体管(GTR) 又称双极型晶体管,目前常用的GTR有单管、达林顿管和GTR模块3大
系列。缺点是耐冲击能力较差,易受二次击穿而损坏。
4、绝缘栅双极型晶体管IGBT
是场效应管(MOSFET)和电力晶体管(GTR)的产物。当栅极加正向电压时, IGBT导通;当栅极加负电压时,IGBT关断。
K G
A 图2-3 GTO的电气符号
D
D
G
G
S
S
N沟道
P沟道
图2-4 功率MOSFET电气符号沟道
A)小电流封装式 B)小电流螺旋式 D)大电流平板式
K G
A
C)大电流螺旋式
变频器的基本类型
1、 按变频的原理分类 交-交 变频器
变频器
交-直-交 变频器
按相数分 按环流情况分 按输出波形分 按储能方式分 按调压方式分
单相 三相 有环流 无环流 正弦波 方波 电压型 电流型 脉幅调制 脉宽调制
变频器的工作原理
变频器简单工作原理图
A 交-交变频器
B 交-直-交变频器
交-交变频器的主电路结构
交流调速系统及应用
无锡职业技术学院
黄麟
模块二 通用变频器使用及变频器 典型调速系统
项目二 通用变频器使用 项目三 学会通用变频器典型调速系统
模块二:通用变频器使用及变频器典型调速系统
项目二 通用变频器使用
变频器简介
变频器是将固定频率的交流电变换为 频率连续可调的交流电的装置。 变频器的问世,使得交流调速在很大 程度上取代了直流调速。
E)电气符号图
图2-1 晶闸管的外形和电气图形符号
C
ID RB
IC
C
G G
E
E
(a)内部结构
(b)简化等效电路 (c)电气图形符号
图2-6 IGBT的结构、简化等效电路及电气图形符号
ID
G
R1
C
VT2
VT1
R2
E 图2-7 IGBT的实际等效电路
二、逆变电路
以IGBT为逆变器件的逆变电路。其主要特点如下:
VT1
Us
VT4 -
(a) ura
+ -
GM urb
+ -
+
-
urc
+ -
UI VT3 VT6
VT5
M
VT2 3
生产机械
AP1 ug1 -1 AP4 ug4
AP3 ug3 -1 AP6 ug6
2
V1Βιβλιοθήκη V3V5MUdc
2
V4
V6
V2
Udc
逆变
Uabc, f 可调
一、变压器中的半导体开关器件
1、晶闸管(SCR)
属于半控型电力电子器件,在晶闸管的阳极和阴极间加正向电压,同时在它的门 极和阴极间也加正向电压形成触发电流,使晶闸管导通,一旦导通,门极即失去控制作用。
特点是耐压高,电流大,抗冲击能力强
变频器中的整流器采用不可控的整流二极管整流电路。变频 器的输出电压和输出频率均由逆变器PWM方式调节。PWM信号 作为各晶体管的基极驱动信号控制各晶体管的通断。 SPWM 方式-------正弦脉冲宽度调节方式
变频器电压调节方式
调压和调频分别在两个环节 上,由控制电路进行协调
整流环节采用二极管不可 控整流,增设斩波器进行 调压,再用逆变器调频