交流调速系统7

合集下载

交直流调速实验指导书

交直流调速实验指导书

交直流调速实验指导书王兵编写肖伸平审核湖南工业大学电气与信息工程学院2008年8月目录实验一晶闸管直流调速系统各主要单元的调试1实验二电压单闭环不可逆直流调速系统调试4实验三带电流截止负反馈的转速单闭环直流调速系统调试8实验四电压、电流双闭环不可逆直流调速系统调试12实验五转速、电流双闭环不可逆直流调速系统调试16实验六模拟式直流调速装置514C实验21实验七数字式直流调速装置6RA70实验23实验八交流调速装置MM420实验27实验九矢量控制交流调速装置(CUVC)单机实验32十附件35 THWPGZ-2型网络型高级维修电工技能实训智能考核装置简介35实验一晶闸管直流调速系统各主要单元的调试一、实验目的(1) 熟悉直流调速系统各主要单元部件的工作原理。

(2) 掌握直流调速系统各主要单元部件的调试步骤和方法。

二、实验所需挂件及附件三、实验内容(1)调节器Ⅰ的调试(2)调节器Ⅱ的调试(3)反号器的调试(4)零电平检测的调试(5)转矩极性鉴别的调试(6)逻辑控制的调试四、实验方法(1)“调节器Ⅰ”的调试①调零将PMT-04中“调节器Ⅰ”所有输入端接地,再将比例增益调节电位器RP1顺时针旋到底,用导线将“5”、“6”两端短接,使“调节器Ⅰ”成为P (比例)调节器。

调节面板上的调零电位器RP2,用万用表的毫伏档测量调节器Ⅰ“7”端的输出,使调节器的输出电压尽可能接近于零。

②调整输出正、负限幅值把“5”、“6” 两端短接线去掉,此时调节器Ⅰ成为PI (比例积分)调节器,然后将给定输出端接到调节器Ⅰ的“3”端,当加一定的正给定时,调整负限幅电位器RP4,观察输出负电压的变化,当调节器输入端加负给定时,调整正限幅电位器RP3,观察调节器输出正电压的变化。

③测定输入输出特性再将反馈网络中的电容短接(将“5”、“6”端短接),使调节器Ⅰ为P(比例)调节器,在调节器的输入端分别逐渐加入正、负电压,测出相应的输出电压,直至输出限幅,并画出曲线。

交直流调速系统

交直流调速系统

交直流调速系统简介交直流调速系统是一种广泛应用于电机调速的控制系统。

它通过控制电机输入的电压或电流,实现对电机输出转速的精确控制。

交直流调速系统在工业领域中的应用非常广泛,可以用于机械设备、电梯、风机、泵站等各种场合。

原理交直流调速系统的基本原理是采用电力电子技术,将交流电转换为直流电,并通过控制器对直流电进行调节,再将调节后的直流电供给电机,从而实现对电机的转速控制。

交直流调速系统的核心部件是变频器,它通过改变电压或频率的大小,控制电机的转速。

变频器通常由整流器、滤波器、逆变器和控制器组成。

•整流器:将交流电转换为直流电,通过整流和滤波过程,将交流电的波形变换为平滑的直流电。

•逆变器:将调节后的直流电转换成交流电,逆变器可以改变输出的频率和电压大小,从而实现对电机转速的控制。

•控制器:控制系统的大脑,接收输入的控制信号,根据设定的转速要求对逆变器进行控制。

优势交直流调速系统相比传统的电阻调速和磁阻调速有以下几个优势:1.节能高效:交直流调速系统可以根据负载的需求调节电机的转速,避免了不必要的能耗,提高了能源利用效率。

2.转速范围广:通过控制器的精确调节,交直流调速系统可以实现广范围的转速调节,满足不同应用场景的需求。

3.控制精度高:交直流调速系统具有良好的转速控制性能,可实现对电机的精确控制,提高生产过程的稳定性和产品质量。

4.可靠性强:交直流调速系统采用先进的电力电子技术,具有较高的可靠性和抗干扰能力,可以适应恶劣的工作环境。

5.维护成本低:交直流调速系统的维护成本相对较低,设备运行稳定可靠,减少了维修和更换的频率。

应用领域交直流调速系统广泛应用于各个领域,特别适用于以下场合:1.机械设备:交直流调速系统可以应用于各种机械设备的转速调节,如印刷机、纺织机、切割机等。

2.电梯:交直流调速系统可以实现电梯的平稳起动和停止,提高电梯运行的安全性和舒适性。

3.风机:交直流调速系统可以应用于风机的转速调节,根据风量需求自动调节风机的运行速度,降低能耗。

第六章 交流调速系统

第六章 交流调速系统
华南理工大学
交流电机的同步转速表达式为:
n1

60 f1 p
异步电动机的转速表达式为:
n1=
60 f1 p
(1
s)
因此,异步电动机的调速方法有改变电动机
定子供电频率,改变转差率及改变极对数等三种。
其中改变转差率又可通过调定子电压、转子电阻、
转差电压及定、转子频率差等方法实现。同步电
动机的调速可用改变供电频率从而改变同步转速
Sm
R2
R12 12 (Ll1 Ll2 )2
Tm
21[R1
3 pU12
R12 12 (Ll1 L'l 2 ) 2 ]
华南理工大学
上式表明,当转速或转差率一定时,电磁转
矩与电压平方成正比。对应不同的定子电压,可 得到一组机械特性曲线,如图6—3 所示,图中
U1N表示定子额定电压。
右图分析: 带恒转矩负载时,普 通笼型异步电动机调 压时的稳定工作点为 A—B—C,转差率在 0—Sm范围内变化,调 速范围很小。如带风 机类负载运行,工作 点为D、E、F,调速范 围稍大些。
电路(e)只用三个晶闸管,它们位于三相绕 组后面可减少电网浪涌电压对它的冲击,即使 三相绕组发生相间短路也不致损坏晶闸管,它 的移相范围为2100。此电路要求定子绕组中性 点能拆开,且只能接成Y形。电路上有偶次谐 波,对电机不利。
华南理工大学
优胜电路:
综上所述,电路(b)、(e)性能 较好,在交流调压调速系统中多采 用这两个方案。
华南理工大学
6.2.2 异步电动机 在调压时的机械特性
根据电机学原理,异步电动机稳态时的简化 等值电络图如图6—2所示。
I1
R1
Ll1

交流伺服电动机调速系统介绍

交流伺服电动机调速系统介绍

交流伺服电动机调速系统介绍概述交流伺服电动机调速系统是一种广泛应用于工业自动化领域的高性能电动机控制系统。

它通过对电机的电流和速度进行精准控制,实现高速度、高精度的电动机调速。

本文将详细介绍交流伺服电动机调速系统的工作原理、组成部分、应用领域以及优势等内容。

工作原理交流伺服电动机调速系统的工作原理基于闭环控制理论。

它通过反馈电机的位置、速度和转矩等信号,与预设值进行比较,并根据比较结果调整电机的控制信号,使电机以预期的速度和转矩运行。

系统主要包含三个部分:电机驱动器、位置反馈装置和控制器。

其中,电机驱动器将控制信号转换为电机驱动所需的电流和电压;位置反馈装置用于实时监测电机的位置和速度;控制器根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。

组成部分1. 电机驱动器电机驱动器是交流伺服电动机调速系统的核心组件。

它通过将控制信号转换为电机驱动所需的电流和电压,控制电机的转速和转矩。

通常使用的电机驱动器有两种类型:直流耦合型和速度闭环型。

直流耦合型驱动器适用于要求较低的精度和转速要求较高的应用,而速度闭环型驱动器则适用于对精度和速度要求较高的应用。

2. 位置反馈装置位置反馈装置用于实时监测电机的位置和速度。

常用的位置反馈装置有编码器、光电传感器和霍尔传感器等。

编码器是最常用的位置反馈装置,它通过检测电机轴上的旋转磁场脉冲来计算电机的位置和速度。

光电传感器和霍尔传感器则通过检测旋转齿轮的牙齿或永磁体的磁场变化来实现位置和速度的反馈。

3. 控制器控制器是交流伺服电动机调速系统的智能核心。

它根据反馈信号和预设值进行控制算法运算,并输出控制信号给电机驱动器。

常用的控制器有PID控制器和模糊控制器等。

PID控制器通过比例、积分和微分三个控制参数对反馈信号和预设值进行加权求和,得出控制信号。

模糊控制器则是一种基于模糊逻辑的控制方法,它通过定义模糊集合和规则库来实现对电机的控制。

应用领域交流伺服电动机调速系统广泛应用于以下领域:1.机床工业:用于铣床、车床、磨床等机床设备的高速度、高精度调速。

第四章 交流电动机调速控制系统

第四章 交流电动机调速控制系统

r12

(X1

c1 X
' 20
)2
]
(4-8)
因 r12

(X1

c1
X
' 20
)
2
,近似得:
Mm

1 2c1

2f1[r1
m1PU12

(X1

c1 X
' 20
)]
(4-9)
2. 生产机械的转矩特性
摩擦类 特性曲线见图(a) 负载: ,位于1、3象限。
生产机械
恒转矩负载:它的负载转矩是一 个恒值,不随转速 而改变。
——定子极对数
(4-3)
4).传给转子的功率(又称电磁功率)与机械功率、转子铜耗之间有如下
关系式 : PMX PM PM 2 (1 S)PM
(4-4)
式中:
PM ——传给转子的功率(又称电磁功率)
PMX ——机械功率
PM 2 ——转子铜耗
5).电机的平均转矩为:
M CP

PMX
M0 Mn 否则电机无法进入正常运转工作区。
交流机的起动电流一般为额定电流的4~6倍 ,起动时 一般要考虑以下几个问题:
图4-7 机械特性曲线
1. 应有足够大的起动力矩和适当的机械特性曲线。 2. 尽可能小的起动电流。 3.起动的操作应尽可能简单、经济。 4.起动过程中的功率损耗应尽可能小。
普通交流电机在起动过程中为了限制起动电流,常用的起动方法有三种。即:
图6-1的等效电路,经化简后得到能耗制动的等效电路如图4-10所示。
图4-10 能耗制动的等效电路
图中:

I1 ——直流励磁电流的等效交流电流

交流调速部分-复习及习题解答

交流调速部分-复习及习题解答

二、交流调速系统问题2-1:交流调速技术引起人们广泛重视的原因是什么?交流电动机优点,20世纪30年代,交流调速系统存在问题,70年代电子技术发展,高性能交流调速技术的不断涌现:矢量变换控制、直接转矩控制、无速度传感器控制系统、数字化技术等,非线性解耦控制、人工神经网络自适应控制、模糊控制等新的控制策略不断推进。

问题2-2:简述异步电机的工作原理。

三相异步电动机的定子通入对称三相电流产生旋转磁场 → 与静止的转子有相对运动 → 产生感应电动势 →转子导体有感应电流 → 转子导体带电导体在磁场中受电磁力的作用 → 两边同时受到电磁力的作用,产生电磁力矩 →转子转动 → 带动生产机械运动。

问题2-3:设异步电动机运行时,定子电流的须率为f 1,试问此时定子磁势F1、转子磁势F2是多少?请画出异步动电机的等效电路,并按频率折算(折算前后磁动势不变)和绕组折算(折算前后电机内部的电磁性能和功率不变)对相关参数进行折算,最后得出T 形效电路。

问题2-4:请写出异步电动机的电磁关系。

定子输入功率: P 1= P m + P cu1+ P fe定子铜耗:P cu1=3I 12R 1定子铁耗: P Fe = P Fe1=3I 12R 1转子铜耗:P cu2=3I’22R’2电磁功率: P m = P out + P cu2机械损耗:P s 附加损耗: P’f轴上输出功率: P out = P 2 + P s + P’f输出功率: P 2问题2-5:常用的异步电动机调速有哪些?哪些属于转差功率消耗型?哪些属于转差功率不变型?哪些属于转差功率回馈型?① 异步电动机调速方法有:降电压调速、绕线式异步电机转子串电阻调速、串级调速、变极调速、变频调速等。

② 降电压调速、绕线式异步电机转子串电阻调速属于转差功率消耗型③ 串级调速属于转差功率回馈型④ 变极调速、变频调速属于转差功率不变型。

问题2-6:变极调速方法对笼型与绕线式电动机是否都适用,为什么?变极调速只适合于本身具备改变极对数的笼型电动机(双速电动机、三速和四速电动机),它们可以通过改变极对数是用改变定子绕组的接线方式来完成调速,绕线式电动机一般采用转子传电阻或串级调速。

交流异步电机调速系统实验报告

交流异步电机调速系统实验报告

交流异步电机调速系统实验报告引言在电力系统中,电机调速是一个非常重要且复杂的问题。

随着技术的不断发展,异步电机调速系统成为了广泛应用的一种方案。

本实验旨在通过搭建和调试一个交流异步电机调速系统,来研究其调速性能和控制策略。

实验目的1.理解交流异步电机调速系统的工作原理;2.掌握电机调速系统的基本组成和实验搭建方法;3.研究不同控制策略对电机调速性能的影响;4.分析实验结果,评价不同控制策略的优劣。

实验原理1.异步电机工作原理:异步电机由主电路和励磁电路组成。

主电路中的三相对称电压产生一个旋转磁场,而励磁电路中的电压和电流则产生感应转子电动势和转矩,使得电机运转起来。

2.异步电机调速原理:异步电机调速主要通过控制转子电阻、定子电压以及改变电机的励磁电流来实现。

常见的调速方法有直接转矩控制(DTC)、矢量控制(VC)等。

实验设备和步骤1.实验设备:–交流异步电动机–实验控制器–电压调节器–电流测量仪–速度测量仪–控制软件2.实验步骤:1.搭建电机调速系统的硬件连接,确保各设备按照要求连接并接通电源。

2.在控制软件中选择合适的控制策略,并设置调速参数。

3.运行实验控制器,观察电机的调速性能,并记录实验数据。

4.根据实验数据分析电机的调速性能,并评价不同控制策略的优劣。

实验结果分析根据实验数据,我们可以得出以下结论:1.不同控制策略对电机调速性能的影响:–直接转矩控制(DTC)可以实现较好的转矩和速度响应,但对转子电阻参数变化较为敏感。

–矢量控制(VC)具有较好的转矩和速度响应特性,并且对转子电阻参数变化不敏感。

2.不同电机负载对调速系统的影响:–在轻载情况下,不同控制策略的性能相对较为接近。

–在重载情况下,矢量控制(VC)表现出较好的调速稳定性和承载能力。

结论本实验通过搭建和调试交流异步电机调速系统,研究了不同控制策略对电机调速性能的影响,并分析了不同负载下的调速系统性能。

通过实验结果,我们得出了以下结论:1.矢量控制(VC)相比直接转矩控制(DTC)具有更好的转矩和速度响应特性,且对转子电阻参数变化不敏感。

电力拖动自动控制系统第7章 交流调压调速系统

电力拖动自动控制系统第7章 交流调压调速系统
第7章 异步电动机调压调速系统
7.1 交流调速系统概述
7.1.1 交流调速的发展概况
交流调速系统:由交流电动机拖动、电机转速为控制目标的电力拖动自动控制系统 直流电动机优点:调速性能好 直流电动机缺点:体积大、容量小、制造成本高、有机械换向装置,维护困难 交流电动机优点 :结构简单可靠,维护少,无机械换向火花,制造成本低 20世纪70年代,研究开发高性能的交流调速系统,期望用它来节约能源。 同期,电力电子技术、大规模集成电路、各种控制理论、计算机控制技术的 飞速发展,为交流调速电力拖动的发展创造了有利条件。 20世纪80年代,原有的交直流调速拖动系统的分工格局被逐渐打破。 20世纪90年代,交流调速系统已经占到了调速系统的主导地位。 目前的许多交流调速系统在装置容量上、动静态性能上、可四象限运 行的要求上,以至在系统制造成本上都可以与直流调速系统相媲美。
只要改变转速给定信号就可 以使静特性平行地上下移动, 达到调速的目的。
该系统与直流 V-M系统有许多 本质上的不同之处
Ks
不但与 α 角的大小有关,还与负载的功率因数角有关。
n f ( U 1 ,T ) 是一个复杂的非线性函数,且 R2 X2 、
也不是一个定值,随电机转速变化而大幅度变化
当电机转子的转速与 定子电流的频率有严格 比例关系的电动机称同 步电动机,无严格比例 关系的电动机称异步电 动机。
无刷直流电动机及 开关磁阻电动机都满足 “定子电流的频率与转 速有严格比例关系”的 条件,所以也把它归入 同步电动机。
7.1.3 异步电动机的机械特性
1.固有机械特性
转矩的物理表达式
xK r1 I 1 U 1 x1 x2


r2
2 r1 ( x1 x ) 2 2

7第七章直流调速系统ppt课件

7第七章直流调速系统ppt课件
第7章 直流调速系统
7.1 直流调速系统概述 7.2 单闭环直流调速系统 7.3 带电流截止负反馈的闭环调速系统 7.4 闭环调速系统设计实例 7.5 多环直流调速系统
精选2021版课件
1
7.1 直流调速系统概述
7.1.1.直流调速系统的基本概念
在自动控制系统中,电力拖动系统是最重要的应用系统之一,
而电动机又是电力拖动系统的核心部件,它是将电能转化为机械能
的一种有力工具。根据电动机供电方式的不同,它可分为直流电动
机和交流电动机。由于直流电动机具有良好的启、制动性能,而且
可以在较大范围内平滑的调速,因此,在轧钢设备、矿井升降设备、
挖掘钻探设备、金属切削设备、造纸设备、电梯等需要高性能可控
制电力拖动的场合得到了广泛的应用。但直流电动机本身有着一些
7.1 直流调速系统概述
转速下限受低速时运转不稳定性的限制。对于要求在一定范围 内无级平滑调速的系统来说,此调速方式较好。改变电枢电压调速 (简称调压调速)是直流调速系统的主要调速方式。
2.改变励磁电流调速方式
改变电动机励磁回路的励磁电压大小,可改变励磁电流大小, 从而改变励磁磁通大小而实现调速,此种调速方式称为改变励磁电 流调速方式。其机械特性如图7-2所示。
这种调速方案属于恒功率调速。调磁调速的调速范围不大,一
般只是配合调压调速方式,在电动机额定转速之上作小范围的升速。
将调压调速和调磁调速复合起来则构成调压调磁复合调速系统,
精选2021版课件
上一页 下一页 返6 回
7.1 直流调速系统概述
可得到更大的调速范围,额定转速以下采用调压调速,额定转 速以上采用调磁调速。 3.电枢回路串电阻调速方式 在电动机电枢回路串接附加电阻,改变串接电阻的阻值,也可 调节转速,此种调速方式称为电枢回路串电阻调速方式。 这种调速方式只能进行有级调速,且串接电阻有较大能量损耗, 电动机的机械特性较软,转速受负载影响大,轻载和重载时转速不 同。另外,该调速方式中的调速电阻损耗大,经济性差,一般只应 用于少数性能要求不高的小功率场合。其机械特性如图7-3所示。

交流电动机调速方法

交流电动机调速方法

交流电动机调速方法
交流电动机调速方法有多种,以下是常见的几种方法:
1. 变频调速:通过调节电动机供电频率,改变电动机转速来实现调速。

变频器可以根据负载情况和工艺要求,自动调整输出频率,从而控制电动机的转速。

2. 阻抗调速:通过改变电动机回路的阻抗,来改变电动机的转速。

常用的方法有电阻调速、自耦变压器调速和感性电压调速等。

3. 矢量控制:利用矢量控制技术,通过改变电动机的电流和电压矢量,来实现对电动机转速的控制。

矢量控制可以实现高精度、高动态性能的调速效果。

4. 直接转矩控制:通过测量电动机的转子位置和转子电流,直接计算出电机的转矩,从而实现对电机转速的控制。

直接转矩控制具有响应速度快、控制精度高的特点。

5. 恒定电压调速:在给电动机供电时保持恒定的电压,通过改变电动机的绕组电阻或连接不同的绕组,来改变电动机的转速。

选择适合的调速方法需要考虑到具体的应用场景、负载要求和经济效益等因素。

在实际应用中,可以根据需要采用单一的调速方法,也可以结合多种调速方法进行组合使用,以达到更好的调速效果。

交流调速器工作原理

交流调速器工作原理

交流调速器工作原理
调速器是一种用于调节机械设备转速的装置,它使用一种称为调速器的装置来实现工作原理。

调速器通常包含一个控制系统和一个执行系统。

工作原理如下:当控制系统接收到调速信号时,它会根据信号的要求调整执行系统的工作状态。

控制系统通常由一个感知器、一个比较器和一个执行器组成。

感知器是一个用来感知原始信息的装置,可以是传感器或者人工输入。

它能够感知到机械设备的转速,并将其转化为电信号。

比较器负责将感知到的信号与设定值进行比较,然后产生一个偏差信号。

如果实际转速低于设定值,偏差信号会告诉执行器,需要增加动力输出;如果实际转速高于设定值,偏差信号会告诉执行器,需要减少动力输出。

执行器则负责根据比较器发出的指令调整机械设备的工作状态。

它可以通过控制设备的供电电压或调整传动系统的速比来改变输出功率。

综上所述,调速器通过感知器感知机械设备的转速,然后通过比较器和执行器实现对设备转速的调节。

这个过程一直持续进行,以保持设备转速在设定范围内的稳定工作。

运动控制系统习题集解交流部分

运动控制系统习题集解交流部分

第二篇 交流调速系统习题五 闭环控制的异步电动机变压调速系统--- 一种转差功率消耗型调速系统5-1按照交流异步电从定子传入转子的电磁功率Pm 可分成两部分:一部分是拖动负载的有效功率P 2,称作机械功率;另一部分是传输给转子电路的转差功率P S , 根据对P S 的处理方式的不同,可把交流调速系统分成哪几类?并举例说明。

答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统效率高低的标志。

从这点出发,可以把异步电机的调速系统分成三类 。

① 转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,上述的第降电压调速、转差离合器调速、转子串电阻调速这三种调速方法都属于这一类。

在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。

可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。

②.转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通过变流装置馈出或馈入,转速越低,能馈送的功率越多,上述第绕线电机串级调速或双馈电机调速方法属于这一类。

无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成有用的功率,因此这类系统的效率较高,但要增加一些设备。

③ 转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,上述的变极对数调速和变压变频调速等调速方法属于此类。

其中变极对数调速是有级的,应用场合有限。

只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。

5-2 有一台三相四极异步电动机,其额定容量为5.5KW, 频率为50HZ ,在某一情况下运行,自定子方面输入的功率P 1为6.32 KW ,定子铜损耗P cu1为341W ,转子铜损耗P cu2为237.5 W ,铁心损耗P Fe 为167.5W ,机械损耗P s 为45 W ,附加损耗P’f 为29 W ,是绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。

4章 交流异步电动机变频调速系统

4章 交流异步电动机变频调速系统

为交流异步电动机转矩系数,其中Nr为转子绕组有效匝数;
φr为转子功率因数角。
可见,转矩控制的困难体现在以下几点: T T ① m 是由定子电流is iA , iB , iC 和转子电流 ir ia , ib , ic 共同产生的,它的
空间位置相对于定子和转子都是运动的。 ② m 与 I r 是两个相互耦合的变量,且 I 对于一般的鼠笼形异步电机是无法 r ③ r 是与转速相关的时变量(与转差s有关), 且当电机运行时转子电阻 Rr 随温度变化而变化, Te 也随之变化。除此以外,式中的 Te 只是平均转矩的概念, 对平均转矩的控制已十分困难了,更何况瞬时转矩。对转速的控制实质上就是 对转矩的控制,转矩控制的困难是实现交流电机高性能调速的主要障碍,也是 过去限制交流调速系统获得广泛应用的主要原因。 2)调速装置中器件发展的限制:调速装置中两大组成部件是主电路和控制电路。 主电路中的主要器件—电力电子功率器件在近五十年来更新换代了五代之多,以 适应变频调速(PWM脉宽调制)的需要。控制电路中的主要器件—微处理器在 近二十年中运算速度提高了数倍,以适应高性能变频调速复杂算法的需要。交流 调速系统的发展依赖于新型电力电子器件的应用、微电子技术的发展。
直流调速系统中各部分分别为5%,40%和55%,而交流调速系统中各部分分别 为10%,60%和30%。特别是当功率大于500 kW,交流调速系统的成本比直流 调速系统的成本明显降低。 4.1.2交流电动机的调速方法及其主要应用领域 1.交流电动机的调速方法 由电机学可知,交流电动机的同步转速表达式为 60 f s (4.6) ns np ns 为同步转速。 式(4.6)中,np为电机极对数;fs为电机定子供电频率; (1) 同步电动机的调速方法 可见,均匀地改变同步电动机的定子供电频率fs,就可以平滑地调节电动机

交流调速实验指导书

交流调速实验指导书

实验一双闭环三相异步电机调压调速系统实验一、实验目的(1) 了解并熟悉双闭环三相异步电机调压调速系统的原理及组成。

(2) 了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。

(3) 通过测定系统的静态特性和动态特性,进一步理解交流调压系统中电流环和转速环的作用。

二、实验所需挂件及附件三、实验线路及原理异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电机或线绕式异步电动机在转子中串入适当电阻后使机械特性变软其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此常采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“电流调节器”、“速度变换”、“触发电路”、“正桥功放”等组成。

其系统原理框图如图1-1所示:整个调速系统采用了速度、电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同,而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网扰动仍有较大的抗扰作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

给左转子bII加电卩 1.异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正、反转,反 接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率P s = SR 全部消耗在转子电阻中,使转子过热。

图1-1双闭环三相异步电机调压调速系统原理图四、实验内容 (1) 测定三相绕线式异步电动机转子串电阻时的机械特性。

(2)测定双闭环交流调压调速系统的静态特性。

五、 预习要求(1) 复习电力电子技术、 交流调速系统教材中有关三相晶闸管调压电路和异步电机晶闸管调压调速系 统的内容,掌握调压调速系统的工作原理。

(2) 学习有关三相晶闸管触发电路的内容,了解三相交流调压电路对触发电路的要求。

第六章交流异步电动机变频调速系统PPT课件

第六章交流异步电动机变频调速系统PPT课件

电动势值较高时,可以忽略定子绕组的漏磁阻
抗压降,而认为定子相电压 Us ≈ Eg,
8
则得 U s 常值
这是恒压频f1 比的控制方式。
(6-3)
但是,在低频时 Us 和 Eg 都较小,定子阻 抗压降所占的份量就比较显著,不再能忽略。
这时,需要人为地把电压 Us 抬高一些,以便 近似地补偿定子压降。
3
第一节 变频调速的基本控制方式和机械特性 通过改变定子供电频率来改变同步转速实现
对异步电动机的调速,在调速过程中从高速到 低速都可以保持有限的转差率,因而具有高效 率、宽范围和高精度的调速性能。可以认为, 变频调速是异步电动机的一种比较合理和理想 的调速方法 。
原理:利用电动机的同步转速随频率变化的特 性,通过改变电动机的供电频率进行调速。保
带定子压降补偿的恒压频比控制特性示于下
图中的 b 线,无补偿的控制特性则为a 线。
2. 基频以上调速
在基频以上调速时,频率应该从f1N向上升高,
但定子电压Us 却不可能超过额定电压
9
UsN ,最多只能保持Us = UsN ,这将迫使磁通
与频率成反比地降低,相当于直流电机弱磁升 速的情况。
Us UsN
11
Us Φm
恒转矩调速
UsN ΦmN
Us
恒功率调速
Φm
O
f1N
f1
图6-2 异步电机变压变频调速的控制特性
异步电动机的变压变频调速是进行分段控制的:
基频以下,采取恒磁恒压频比控制方式;
基频以上,采取恒压弱磁升速控制方式。
12
U Te
P
N
UN
Te
U
P
O
变电压调速

交流调速部分-复习及习题解答

交流调速部分-复习及习题解答

二、交流调速系统问题2-1:交流调速技术引起人们广泛重视的原因是什么?交流电动机优点,20世纪30年代,交流调速系统存在问题,70年代电子技术发展,高性能交流调速技术的不断涌现:矢量变换控制、直接转矩控制、无速度传感器控制系统、数字化技术等,非线性解耦控制、人工神经网络自适应控制、模糊控制等新的控制策略不断推进。

问题2-2:简述异步电机的工作原理。

三相异步电动机的定子通入对称三相电流产生旋转磁场 → 与静止的转子有相对运动 → 产生感应电动势 →转子导体有感应电流 → 转子导体带电导体在磁场中受电磁力的作用 → 两边同时受到电磁力的作用,产生电磁力矩 →转子转动 → 带动生产机械运动。

问题2-3:设异步电动机运行时,定子电流的须率为f 1,试问此时定子磁势F1、转子磁势F2是多少?请画出异步动电机的等效电路,并按频率折算(折算前后磁动势不变)和绕组折算(折算前后电机内部的电磁性能和功率不变)对相关参数进行折算,最后得出T 形效电路。

问题2-4:请写出异步电动机的电磁关系。

定子输入功率: P 1= P m + P cu1+ P fe定子铜耗:P cu1=3I 12R 1定子铁耗: P Fe = P Fe1=3I 12R 1转子铜耗:P cu2=3I’22R’2电磁功率: P m = P out + P cu2机械损耗:P s 附加损耗: P’f轴上输出功率: P out = P 2 + P s + P’f输出功率: P 2问题2-5:常用的异步电动机调速有哪些?哪些属于转差功率消耗型?哪些属于转差功率不变型?哪些属于转差功率回馈型?① 异步电动机调速方法有:降电压调速、绕线式异步电机转子串电阻调速、串级调速、变极调速、变频调速等。

② 降电压调速、绕线式异步电机转子串电阻调速属于转差功率消耗型③ 串级调速属于转差功率回馈型④ 变极调速、变频调速属于转差功率不变型。

问题2-6:变极调速方法对笼型与绕线式电动机是否都适用,为什么?变极调速只适合于本身具备改变极对数的笼型电动机(双速电动机、三速和四速电动机),它们可以通过改变极对数是用改变定子绕组的接线方式来完成调速,绕线式电动机一般采用转子传电阻或串级调速。

电梯交流调速系统应用论文

电梯交流调速系统应用论文

电梯交流调速系统应用研究【摘要】本文阐述了电梯交流调速的类型,以及这几种交流调速类型的应用特点,在何种状态下适用于什么样的类型电机,发挥其最大的特点。

【关键词】电梯交流调速;应用现代大都市的发展越来越快,人口也越来越多,随着而来的是城市的高层建筑越建越多也越建越高。

所以电梯现在成为了人们工作和生活密不可分的一部分,电梯的快速发展对电梯的驱动系统提出越来越高的要求。

今天我们要探讨的就是电梯交流调速系统应用。

一、目前建筑对电梯驱动系统的硬性要求一个电梯的加速起动、稳速的运行以及减速的制动起到整个控制作用的系统就是电梯的驱动系统。

也就是说电梯驱动系统整个性能好坏会直接地影响到电梯的加速、起动、制动以及减速,还会影响到楼层的精度和乘坐着感受的舒适度等一些指标,比如说交流变极的调速系统,这个调速系统进行调速的原理是通过改变自身电机的极数,这种调速系统的特点是线路比较简单,成本低。

缺点是它只能选择两道三种的转速,只是适用额定速度小于1m/s的电梯上;交流调速这个系统则是采用的是相控的晶闸管闭环调压调速的方式,制动减速是用反接制动或涡流制动的方式来实现的,这样可以让乘坐的舒适感在平层的情况下比之前会有所改善,这种驱动系统主要是用在速度小于2.5m/s的电梯上,高效、节能、驱动控制的设备体积、重量都较小,这些是我们常规使用的vvvf控制的异步电动机所具有的优点。

但是,它的运行速度还是无法达到我们的要求。

由此可见。

想要更进一步地将电梯的运行速度提高、同时提高电梯的平层精度以及电梯的乘坐的舒适性就一定要依赖现代的一个交流调速的这样的一种技术。

为了加快运行速度、缩短电梯运行的时间就必须尽快使电机的加速可以达到它所设定的最大的速度并在这样速度之下非常平稳地运行,在制动减速的阶段下电机是定位控制的最关键的一个阶段因为它会直接影响到平层稳定性的精度。

二、矢量变换控制的高速电梯驱动系统根据上面一节说论述的一个常规的vvvp所控制的异步变频电动机的调速系统,虽然在性能上比较优良,但是如果是用在高速的电梯系统当中仍然是没有办法来满足在动态的情况下的一些基本要求,特别是电梯在负载运行的过程当中会受到一些外来的因素干扰的时候,比如说在电梯运行的过程中可能会遇到一个导轨接头的台阶,安全钳制动之后在导轨的工作表面会出现拉伤以及变形,当门刀碰撞到门锁的滚轮时所引起的短时间的冲击等,这些都可能会使异步电动机里的电磁转矩发生一些变化,这些都会影响到电梯的一些运行的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)转差功率馈送型——控制绕线转子异步电动机 的转子电压,利用其转差功率并达到调节转速的目的, 这种调节方式具有良好的调速性能和效率;但要增加一 些设备。
前两章已分别讨论了转差功率消耗型和不变型两 种调速方法,本章将讨论转差功率馈送型调速方法。
2020/8/13
4
7.1 异步电机双馈调速工作原理
– 概述 – 异步电机转子附加电动势的作用 – 异步电机双馈调速的五种工况
2020/8/13
3
交流调速系统按转差功率的分类
1)转差功率消耗型——异步电机采用调压控制等 调速方式,转速越低时,转差功率的消耗越大,效率越 低;但这类系统的结构简单,设备成本最低,所以还有 一定的应用价值。
2)转差功率不变型——变频调速方法转差功率很 小,而且不随转速变化,效率较高;但在定子电路中须 配备与电动机容量相当的变压变频器,相比之下,设备 成本最高。
6
绕线转子异步电动机
绕线转子异步电动 机结构如图所示,从 广义上讲,定子功率 和转差功率可以分别 向定子和转子馈入, 也可以从定子或转子 输出,故称作双馈电 机。
2020/8/13
P1
Ps
7
绕线转子异步电动机转子串电阻调速
根据电机理论,改变 转子电路的串接电阻,可 以改变电机的转速。
转子串电阻调速的原 理如图所示,调速过程中 ,转差功率完全消耗在转 子电阻上。
Ir
~ Eadd ~ ~
附加电动势与转子 电动势有相同的频 率,可同相或反相 串接。
2020/8/13 图7-1 绕线转子异步电动机转子附加电动势的原理图
15
有附加电动势时的转子相电流:
如图7-1所示,绕线转子异步电动机在外接 附加电动势时,转子回路的相电流表达式
Ir
sEr0 Eadd Rr 2 (sX r0 )2
9
电网
K1
K2
M
TI
3~
功率变换单元
如上图所示,在双馈调速工作时,除了电机定子侧与交流 电网直接连接外,转子侧也要与交流电网或外接电动势相 连,从电路拓扑结构上看,可认为是在转子绕组回路中附 加一个交流电动势。
2020/8/13
10
功率变换单元
由于转子电动势与电流的频率随转速变 化,即 f2 = s f1 ,因此必须通过功率变换单 元(Power Converter Unit—CU)对不同频 率的电功率进行电能变换。
2020/8/13
1
绕线转子异步电机双馈调速系统 7.0 引言 7.1 异步电机双馈调速工作原理 7.2 异步电机在次同步电动状态下的双馈系统——串级调速系统 7.3 异步电动机串级调速时的机械特性 7.5 双闭环控制的串级调速系统
2020/8/13
2
7.0 引言
转差功率问题 转差功率始终是人们在研究异步电动机调速 方法时所关心的问题,因为节约电能是异步电动 机调速的主要目的之一,而如何处理转差功率又 在很大程度上影响着调速系统的效率。 如第5章所述,交流调速系统按转差功率的处 理方式可分为三种类型。
~
Pm
Pmech Ps
2020/8/13
8
双馈调速的概念
所谓“双馈”,就是指把绕线转子异步电机 的定子绕组与交流电网连接,转子绕组与其他含电 动势的电路相连接,使它们可以进行电功率的相互 传递。
至于电功率是馈入定子绕组和/或转子绕组,还 是由定子绕组和/或转子绕组馈出,则要视电机的工 况而定。
2020/8/13
对于双馈系统来说,CU应该由双向变频 器构成,以实现功率的双向传递。
2020/8/13
11
双馈调速的功率传输
(1)转差功率输出状态
异步电动机由电网供电并以电动状态运行时, 它从电网输入(馈入)电功率,而在其轴上输出 机械功率给负载,以拖动负载运行;
P1
3M~
Pmech
Ps
2020/8/13
CU
12
使得s1:Er0 Eadd Ir Te n s
这里:
s1 Er 0
Eadd
s2 Er 0
E' 020/8/13
18
转子附加电动势的作用(续)
2. Er 与 Eadd反相 同理可知,若减少或串入反相的附加电 动势,则可使电动机的转速降低。
所以,在绕线转子异步电动机的转子侧 引入一个可控的附加电动势,就可调节 电动机的转速。
动势,或称转子开路电动势,也就是转子额定相电压值。 转子相电流的表达式为:
Ir
sEr0 Rr2 (sX r0 )2
(7-2)
式中 Rr — 转子绕组每相电阻; Xr0 — s = 1时的转子绕组每相漏抗。
2020/8/13
14
转子附加电动势
~
引入可控的交 流附加电动势
M 3~
Er sEr0
2020/8/13
19
7.1.2 异步电机双馈调速的五种工况
本节摘要
• 电机在次同步转速下作电动运行 • 电机在反转时作倒拉制动运行 • 电机在超同步转速下作回馈制动运行 • 电机在超同步转速下作电动运行 • 电机在次同步转速下作回馈制动运行
2020/8/13
20
异步电机的功率关系
忽略机械损耗和杂散损耗时,异步电机在任 何工况下的功率关系都可写作
(2)转差功率输入状态
当电机以发电状态运行时,它被拖着运转, 从轴上输入机械功率,经机电能量变换后以电 功率的形式从定子侧输出(馈出)到电网。
P1
3M~
Pmech
Ps
CU
2020/8/13
13
7.1.1 异步电机转子附加电动势的作用
异步电机运行时其转子相电动势为
Er sEr0
(7-1)
式中 s — 异步电动机的转差率; Er0 — 绕线转子异步电动机在转子不动时的相电
2020/8/13
5
7.1.0 概述
转差功率的利用 作为异步电动机,必然有转差功率,要提高调
速系统的效率,除了尽量减小转差功率外,还可以 考虑如何去利用它。但要利用转差功率,就必须使 异步电动机的转子绕组有与外界实现电气联接的条 件,显然笼型电动机难以胜任,只有绕线转子电动 机才能做到。
2020/8/13
(7-3)
2020/8/13
16
转子附加电动势的作用
1. Er 与 Eadd 同相
当 Eadd ,
s1Er0 Eadd Ir Te n s
使得: 这里:
s1 Er 0
Eadd
s2 Er 0
E' add
s1 s2
转速上升;
2020/8/13
17
转子附加电动势的作用(续)
当 Eadd ,
相关文档
最新文档