高考数学一轮复习数列公式总结
高中数学数列公式大全很齐全哟~!

高中数学数列公式大全很齐全哟~!数列公式在高中数学中是非常重要的知识点之一。
数列是数学中一种基本的数学对象,它是由一个有限或无限多个数按照一定规律顺序排列所组成的。
在高中数学中,数列分为等差数列、等比数列、递推数列等各种类型。
下面将为大家介绍一下高中数学数列公式大全。
一、等差数列公式1. 等差数列的通项公式等差数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$ 表示第 $n$ 项,$a_1$ 表示第一项,$d$ 表示公差。
2. 等差数列的前 $n$ 项和公式等差数列的前 $n$ 项和公式为:$S_n =\dfrac{n}{2}[2a_1 + (n-1)d]$,其中 $S_n$ 表示前 $n$ 项和。
3. 等差数列的公差公式等差数列的公差公式为:$d = \dfrac{a_n - a_1}{n-1}$,其中 $d$ 表示公差。
4. 等差数列的中项公式等差数列的中项公式为:$a_{\dfrac{n+1}{2}} =\dfrac{a_1 + a_n}{2}$,其中 $a_{\dfrac{n+1}{2}}$ 表示中项。
5. 等差数列的求和公式等差数列的求和公式为:$S_n = \dfrac{n[\,2a_1 + (n-1)d\,]}{2}$,其中 $S_n$ 表示前 $n$ 项和。
二、等比数列公式1. 等比数列的通项公式等比数列的通项公式为:$a_n = a_1q^{n-1}$,其中$a_n$ 表示第 $n$ 项,$a_1$ 表示第一项,$q$ 表示公比。
2. 等比数列的前 $n$ 项和公式等比数列的前 $n$ 项和公式为:$S_n = \dfrac{a_1(1-q^n)}{1-q}$,其中 $S_n$ 表示前 $n$ 项和。
3. 等比数列的公比公式等比数列的公比公式为:$q = \sqrt[n-1]{\dfrac{a_n}{a_1}}$,其中 $q$ 表示公比。
4. 等比数列的求和公式等比数列的求和公式为:$S_n = \dfrac{a_1(1-q^n)}{1-q}$,其中 $S_n$ 表示前 $n$ 项和。
数列公式知识点归纳总结

数列公式知识点归纳总结数列公式是高中数学中的重要知识点,它在数学中的应用广泛且重要。
本文将对数列公式的相关知识点进行归纳总结,以帮助读者更好地理解和掌握这一内容。
一、等差数列公式等差数列是一种常见的数列,其中每一项与前一项之间的差值相等。
对于等差数列,我们可以通过以下公式来计算其通项公式和前n项和公式:1. 通项公式设等差数列的首项为a₁,公差为d,则该等差数列的通项公式为:an = a₁ + (n - 1)d2. 前n项和公式设等差数列的首项为a₁,公差为d,前n项和为Sn,则该等差数列的前n项和公式为:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n - 1)d) = n/2 * (2 * a₁ + (n - 1)d)二、等比数列公式等比数列是一种常见的数列,其中每一项与前一项之间的比值相等。
对于等比数列,我们可以通过以下公式来计算其通项公式和前n项和公式:1. 通项公式设等比数列的首项为a₁,公比为q,则该等比数列的通项公式为:an = a₁ * q^(n - 1)2. 前n项和公式设等比数列的首项为a₁,公比为q,前n项和为Sn,则该等比数列的前n项和公式为:Sn = a₁ * (1 - q^n) / (1 - q)三、斐波那契数列公式斐波那契数列是一种特殊的数列,第一项和第二项均为1,之后每一项都是前两项的和。
对于斐波那契数列,我们可以通过以下公式来计算其通项公式:1. 通项公式设斐波那契数列的第n项为Fn,则该斐波那契数列的通项公式为:Fn = (1/√5) * ((1 + √5) / 2)^n - (1/√5) * ((1 - √5) / 2)^n四、总结数列公式是数学中的重要内容,通过以上对等差数列、等比数列和斐波那契数列的公式归纳总结,我们可以更好地理解和掌握数列的相关知识点。
在实际应用中,数列公式可以帮助我们解决各种问题,如求解数列的通项、前n项和等。
高中数列公式总结大全

高中数列公式总结大全数列是数学中比较基础的概念,也是高中数学中常出现的内容之一。
在学习数列时,我们需要掌握一些基本的公式,下面是高中数列公式总结大全。
一、定义1. 数列:按照一定的规律排列成的数的序列。
2. 通项公式:数列中第 n 项 a_n 与 n 之间的关系式。
3. 通项公式(递推公式):数列中第 n 项 a_n 与前几项(如前一项)之间的关系式。
二、等差数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的差等于同一个常数 d,那么这个数列就称为等差数列。
2. 通项公式:a_n = a_1 + (n-1)d3. 前 n 项和公式:S_n = n/2( a_1 + a_n) = n/2[2a_1 + (n-1)d]4. 差值公式:d = a_n - a_{n-1} = a_{n+1} - a_n = ... = a_2 - a_15. 求和公式:(1)n 为奇数时:S_n = [n/2(a_1+a_n)](2)n 为偶数时:S_n = n/2 [a_1+a_n]6. 证明:设等差数列有n项,公差为d,则:S_n = a_1 + (a_1+d) + ... + (a_1 + (n-1)d)将公式第一项和最后一项括起来,第二项和倒数第二项括起来,以此类推:S_n = [(a_1+a_n)+(a_2+a_{n-1})+...+(a_{n-1}+a_2)+(a_n+a_1)]/2设 a_1 + a_n = a_2 + a_{n-1} = ... = a_{n/2}+a_{n/2+1} = S则 S_n = [n/2]S三、等比数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的比等于同一个常数 q,那么这个数列就称为等比数列。
2. 通项公式:a_n = a_1*q^{n-1}3. 前 n 项和公式(n≠1):S_n = a_1*(1-q^n)/(1-q)4. 无穷级数收敛条件(|q|<1):S = a_1/(1-q)5. 等比中项公式:a_m = sqrt(a_{m-1}*a_{m+1})6. 连续 n 项的和:Sn = a_1*(q^n-1)/(q-1)四、等差数列与等比数列的转化1. 等差数列转化为等比数列令 b_n = a_n/d,则有:b_n = a_n/d = a_1/d*q^{n-1}即 b_n 是以 q 为公比的等比数列,通项公式是 b_n = (a_1/d)*q^{n-1}。
高中数学一轮复习等比数列及数列综合:第7节数列求和之公式求和法

2
= 240
-110= 130.
【答案】 C
5.已知数列 { an} 满足 a1 =1, an+ 1·an= 2n(n∈ N*),则 S2 016= (
)
A . 22 016- 1
B . 3·21 008- 3
C. 3·21 008- 1
D. 3·21 007- 2
6.设
f
(
x)=
4
4x x+
2
,利用倒序相加法,可求得
,
.
= c=
解: 原式 =
答案:
Sn 3.等差数列 { an} 的通项公式为 an=2n+ 1,其前 n 项和为 Sn,则数列 n 的前 10 项的 和为 ( )
A . 120
B . 70
C. 75
D . 100
【解析】因为 Sn= n+ 2,所以 Sn 的前 10 项和为 10×3+10×9= 75.
1 f 11 + f
2 11 + … +f
10 11 的值为 ________.
7.在等差数列 { an} 中, a1>0,a10·a11<0,若此数列的前 10 项和 S10= 36,前 18 项和 S18= 12, 则数列 {|an|} 的前 18 项和 T18 的值是 ________.
【解析】由 a1>0, a10·a11<0 可知 d<0, a10>0 ,a11<0,
和立方数列等)也可以直接使用公式求和 .
【典例讲解】
【例 1】设数列 { an} 的前 n 项和 Sn 2an a1 ,且 a1,a2 1,a3 成等差数列 .
( 1)求数列 { an} 的通项公式;
( 2)记பைடு நூலகம்列
高中数列知识点总结公式大全

高中数列知识点总结公式大全一、数列的概念与简单表示法。
(一)数列的定义。
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),往后各项依次叫做这个数列的第2项,第3项,…,第n项,…。
(二)数列的表示法。
1. 列举法。
将数列中的项一一列举出来表示数列的方法。
例如数列1,3,5,7,9,·s。
2. 通项公式法。
如果数列{a_n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。
例如数列a_n=2n - 1,n∈ N^*就表示首项为1,公差为2的等差数列。
3. 图象法。
数列是特殊的函数,可以用图象来表示。
以序号n为横坐标,相应的项a_n为纵坐标,描点画图来表示数列。
其图象是一群孤立的点。
4. 递推公式法。
如果已知数列{a_n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a_n与它的前一项a_n - 1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
例如斐波那契数列a_1=1,a_2=1,a_n=a_n - 1+a_n -2(n≥slant3,n∈ N^*)。
二、等差数列。
(一)等差数列的定义。
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
即a_n-a_n - 1=d(n≥slant2,n∈ N^*)。
(二)等差数列的通项公式。
a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
1. 推广公式。
a_n=a_m+(n - m)d,(m,n∈ N^*)。
(三)等差数列的前n项和公式。
1. S_n=frac{n(a_1+a_n)}{2}2. S_n=na_1+(n(n - 1))/(2)d(四)等差数列的性质。
1. 若m,n,p,q∈ N^*,且m + n=p + q,则a_m+a_n=a_p+a_q。
数列公式总结

数列公式总结数列是数学中常见的概念之一,是按照一定规律排列的一组数的集合。
常见的数列有等差数列、等比数列和斐波那契数列等。
数列公式是数列中规律性的表达式,可以用来计算数列中任意项的值。
下面对常见的数列公式进行总结。
一、等差数列等差数列是指数列中相邻两项之差都相等的数列。
通常用字母a表示首项,d表示公差。
1. 第n项公式:an = a + (n-1)d2.前n项和公式:Sn=n/2(a+l)=n/2(a+a+(n-1)d)=(n/2)(2a+(n-1)d),其中l表示最后一项的值3. 通项公式逆推:an = a + (m-1)d,若已知m项与n项的值和公差,可以求出第n项的值二、等比数列等比数列是指数列中相邻两项之比都相等的数列。
通常用字母a表示首项,q表示公比。
1. 第n项公式:an = aq^(n-1)2.前n项和公式:Sn=a(1-q^n)/(1-q),当,q,<1时成立3. 通项公式逆推:an = aq^(m-1),若已知m项与n项的值和公比,可以求出第n项的值三、斐波那契数列斐波那契数列是指数列中每一项都是前两项之和的一种数列。
通常用字母f表示首项,s表示第二项。
1. 第n项公式:fn = fn-1 + fn-2,其中f1 = f, f2 = s2. 通项公式:fn = (sqrt(5) / 5) * (((1 + sqrt(5)) / 2)^n - ((1 - sqrt(5)) / 2)^n)四、算术-几何数列算术-几何数列是指数列中每一项由算术数列和几何数列的对应项相乘得到的一种数列。
通常用字母a表示首项,d表示算术数列的公差,r表示几何数列的公比。
1. 第n项公式:an = a * d^(n-1) * r^(n(n-1)/2)2.前n项和公式:Sn=a*(d^n-1)/(d-1)*(r^n-1)/(r-1),当,r,<1时成立五、其他数列除了以上常见的数列之外,还有一些特殊的数列有其独特的数列公式,例如:1. 平方数列:an = n^22. 立方数列:an = n^33. 斯特灵数列:an = n!4. 单位根数列:an = cos(nθ) + i · sin(nθ)数列公式的应用非常广泛,可以用来求解各种问题,例如在金融领域中可以用来计算存款利息,或者在物理领域中可以用来描述物体的运动规律等。
高考数学公式大全:数列

2021年高考数学公式大全:数列如何提高学习率,需要我们从各方面去努力。
小编为大家整理了2021高考数学数列公式,希望对大家有所帮助。
数列
数列的基本概念等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal
不等式
不等式的基本性质重要不等式
ab b
ab,bc
ab a+cb+c
a+bc-b
ab,cd a+cb+d
ab,cbc
ab,c0 ac
a0,c0 ac
a0 dnbn(nZ,n1)
a0 (nZ,n1)
(a-b)20
a,bR a2+b22ab
|a|-|b||ab||a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式ab(或a
a-b0(或a-b0=即可
(2)若b0,要证ab,只需证明,
要证a
综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出持果索因
2021高考数学数列公式已经呈现在各位考生面前,更多精彩
尽在高考频道!。
数列公式大全(高考)

一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-高考数学一轮复习数列公式总结数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。
以下为整理的数列公式总结,希望对考生复习有帮助。
数列的基本概念等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal
不等式
不等式的基本性质重要不等式
ab b
ab,bc
ab a+cb+c
a+bc-b
ab,cd a+cb+d
ab,cbc
ab,c0 ac
a0,c0 ac
a0 dnbn(nZ,n1)
a0 (nZ,n1)
(a-b)20
a,bR a2+b22ab
|a|-|b||ab||a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式ab(或a
a-b0(或a-b0=即可
(2)若b0,要证ab,只需证明,
要证a
综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出持果索因
数列公式总结的全部内容就是这些,更多精彩内容请考生持
续关注。