激光器的热透镜效应

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新型光学谐振器和热透镜效应

Thomas Graf Rudolf Weber, and Heinz-P. Weber 应用物理研究所,Beme Sidlerstrasse 5大学,CH - 301 2 Beme,瑞士

概要

激光谐振腔支持稳定的振荡的最大功率范围主要是由活性介质(热)材料常数和冷却方法所决定。通过控制稳定的基本模式操作的功率范围,可以转移到更高的能量,具有特殊的腔设计和腔内光学但稳定范围的宽度不会受到影响。此外,在泵的活性介质强度增加也加剧了非球面元件的热诱导的扭曲。因此,开发新颖的谐振器时,分析这些热效应具有重大意义。我们目前对热诱导的扭曲,一种新型的多棒激光腔,变量配置的谐振器(VCR)进行分析。对热效应进行了数值模拟和实验的研究。我们目前对各种抽水和冷却方案进行比较后发现复合棒端面泵浦激光器提供最有效的冷却。VCR被开发调控基本模式激光器的功率范围。由于其能力作为法布里- 珀罗谐振器,它克服了稳定性与传统的多棒谐振器相关的问题,并允许一个新的Q开关技术作为一种环形腔运行。

关键词:固态激光器,二极管泵浦激光器,光学谐振器,热透镜效应,热致双折射。

1.介绍

二极管泵浦固态激光器,有着广泛的工业和科学应用。二极管激光器价格的不断下降,应用正在扩展到高功率范围。此外,泵浦方式的改善使二极管激光辐射高效和紧聚焦到激光材料。由于大量吸收功率,这将导致强烈的局部加热。因此,在固态激光材料的热效应已经获得了相当高功率,半导体激光泵浦全固态激光器作为一个发展中的关键问题的重要性被提高。

选中激光材料后,热效应只与冷却的方法有关,然后必须采用适当的谐振器设计。我们在下面的实验和数值调查报告二极管激光的热效应泵浦全固态激光器和特殊的光学谐振器的发展。热透镜效应和应力引起的双折射用于比较四种不同的冷却技术。完全验证的数值有限元(FE)代码,它也适用于区分不同的热透镜效应的贡献- 比如弯曲的表面和折射率变化与温度和应力性曲折分析高功率激光器的功率调整的极限。进一步的功率调节功能则需要使用更长的侧面泵浦激光棒多棒谐振器的使用。多棒谐振器特别适合规模在几十瓦的顺序输出功率,高光束质量的激光器的输出功率。在这种情况下,热扭曲分发到几个激光棒,在同一个腔泵的功率降低。我们报告一个独特的激光谐振腔,变量配置的谐振器(VCR),他具有反向泵浦多棒谐振器的可调性。特别是录像机的稳定性能与传统的多棒的法布里- 珀罗谐振解决了严重的稳定性问题,并允许一个新的Q开关技术。在下面的章节中,我们将首先考虑球面镜片的近似热引起的扭曲,并讨论TEM0模式激光器的规定下能量的限制。

我们对不同的激光棒的冷却方法进行了比较。热致双折射所造成的损失在短期内第3节中讨论。

2.近似球面透镜端面泵浦Nd:YAG激光器不同冷却方案

数值模拟比较采用热致端面泵浦Nd束扭曲:YAG激光棒图1所示为不同的冷却方法。首先FE代码SESES的数值计算结果与实验结果进行比较验证,然后比较采用不同的冷却技术,在相同条件下的有限元模拟。热诱导的平均镜头电源限制在本节结束讨论。

2.1.有限元计算验证

最常见的冷却方式激光棒是包裹在铟箔(我们的例子厚100pm),并安装如图所示的冷却底座上。传热系数h=1.5W.c.推导出铟棒表面接触系数。非制冷泵杆的表面,与周围

的空气接触,只提供了一个非常薄弱的冷却(h = 0.005 W.cm^(-2).K^(-1)).在图1b中,端面泵浦的杆在边缘和末端被水冷却(20毫米长,直径9.5毫米),如果水的流速是2L/MIN并且冷却棒的直径是16mm那么传热系数可以算出是h=1.0 W.cm^(-2).K^(-1),在图C中棒(20mm 长9.5毫米直径)仍然是与水直接冷却的边缘,但部分水冷却是依靠紧密安装在冷却泵浦表面泵杆面蓝宝石板(1毫米厚的),蓝宝石板表面进行了λ/10抛光。如果没有HR涂激光波长的激光棒端面,蓝宝石板必须用AR镀膜。由于高杆的表面质量和蓝宝石板,没有水渗入两种材料之间的区域。

表1:受调查的四个不同的冷却方法的计划,a)“非致冷”:铟箔包裹的激光棒安装在水冷铜散热器,泵的表面未被致冷b)“水冷”:圆柱面和泵浦的激光棒的表面与水直接冷却C)“蓝宝石板冷却”:蓝宝石板压住泵杆面,杆和部分蓝宝石板进行水冷却d)“复合棒”:激光棒的两端未掺杂。棒是用水冷却的边缘。

图2:计算(线)和测量(点)根据非激射条件的OPD。(一)水冷式杆泵功率15 W。(二)蓝宝石板冷却泵功率15 W。(三)复合棒与泵浦功率25 W。虚线计算H =1.3 W.cm^(-2).K^(-1)) “(而不是1.0 W.cm^(-2).K^(-1))”。随着1 1/mim的水流量和冷却装置直径23毫米,推导出在与水接触的所有表面传热系数H =0.67 W.cm^(-2).K^(-1))

根据11/mm的水流量和一个直径23毫米的FBR冷却装置,推导出在与水接触的所有表面传热系数H =0.67W.cm^(-2).K^(-1)) ,最后,在1d图中的边缘冷却的激光棒泵浦末端部分是保持未掺杂的,直径为4毫米的复合棒由一个16毫米长,10.3%掺杂的中心部分,和每边5毫米的未掺杂部分,随着0.41/mm水流量和一个直径6毫米的冷却装置,推导出棒和水之间的传热系数h=1.0 W.cm^(-2).K^(-1)),我们将把这些不同的泵浦棒表面的冷却方法分别分为“非致冷”,“水冷却”,“蓝宝石冷却板”和“复合棒”,棒的中心使用DL-50泵浦其规模为0.96 x0.68 mm2,发散角是235 mrad x 96 mrad,在808纳米中心的相对广谱的1.04%掺杂棒的平均吸声系数为3.5c,对于10.3%掺杂复合棒,吸收系数为4.5 c

图2显示了空间分辨的干涉测量(点)和计算(实线)光学路径的差异,非激射条件下(OPD)在飞机具有较大的泵光斑直径的结果为三种情况(一)水冷却,,(二)蓝宝石板冷却,及(c)复合棒,很好的计算和测量OPD之间的办法是实现所有三种冷却方式。请注意,热透镜只依赖于OPD的形状,而不是其绝对值,。

一个理想的薄透镜OPD是抛物线形。正如在参考文献9所讨论的,在一阶近似,一个长度为L的纵向泵浦棒的热透镜可以形容为薄理想的镜头之间夹在两个不失真激光棒的长度为L/ 2件(空气中)。这个理想透镜近似焦距的解析表达式是:

其中P是吸收的泵浦功率,二是P的分数转换为热能,WP为泵点半径和C是一个常数称为特定的焦距。这种特定的焦距只取决于冷却方法和材料和激光棒的常量。常数,i在1.04%掺钕:YAG激光和非激光条件下,分别等于0.32和0.43,利用光束传播法,平均热透镜可

在激光条件下测得,等价于一个抛物线最小二乘拟合计算OPD。这分别产生了特定的焦距约2400,3300和2900mmW/mm2的水冷,蓝宝石板冷却,以及复合棒。从实验和FE代码的平均热透镜之间的协议在整个泵的范围内,所有的冷却方法,所有实验的几何实验中最好。这些值不能直接比较,因为实验条件和几何形状不同的冷却方法不相同。但良好的协议之间的

相关文档
最新文档