【附20套高考模拟试题】2020届山东省东营市胜利二中高考数学模拟试卷含答案
2020年山东省高考数学模拟试卷

2020年山东省高考数学模拟试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.设集合A={(x,y)|x+y=2},B={(x,y)|y=x2},则A∩B=()A.{(1,1)} B.{(﹣2,4)}C.{(1,1),(﹣2,4)} D.∅2.已知a+bi(a,b∈R)是的共轭复数,则a+b=()A.﹣1 B.﹣C.D.13.设向量=(1,1),=(﹣1,3),=(2,1),且(﹣λ)⊥,则λ=()A.3 B.2 C.﹣2 D.﹣34.(﹣x)10的展开式中x4的系数是()A.﹣210 B.﹣120 C.120 D.2105.已知三棱锥S﹣ABC中,∠SAB=∠ABC=,SB=4,SC=2,AB=2,BC=6,则三棱锥S﹣ABC的体积是()A.4 B.6 C.4D.66.已知点A为曲线y=x+(x>0)上的动点,B为圆(x﹣2)2+y2=1上的动点,则|AB|的最小值是()A.3 B.4 C.3D.47.设命题p:所有正方形都是平行四边形,则¬p为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c二、多选题(共4小题)9.如图为某地区2006年~2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年~2018年()A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是()A.C的方程为﹣y2=1B.C的离心率为C.曲线y=e x﹣2﹣1经过C的一个焦点D.直线x﹣﹣1=0与C有两个公共点11.正方体ABCD﹣A1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等12.函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数三、填空题(共4小题)13.某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.14.已知cos(α+)﹣sinα=,则sin(α+)=﹣.15.直线l过抛物线C:y2=2px(p>0)的焦点F(1,0),且与C交于A,B两点,则p=,+=.16.半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.四、解答题(共6小题)17.在①b1+b3=a2,②a4=b4,③S5=﹣25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=﹣81,是否存在k,使得S k>S k+1且S k+1<S k+2?18.在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC.(1)若D为BC的中点,且△CDF的面积等于△ABC的面积,求∠ABC;(2)若∠ABC=45°,且BD=3CD,求cos∠CFB.19.如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SA⊥平面ABCD,E,F分别为AD,SC的中点,EF与平面ABCD所成的角为45°.(1)证明:EF为异面直线AD与SC的公垂线;(2)若EF=BC,求二面角B﹣SC﹣D的余弦值.20.下面给出了根据我国2012年~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x分别为1~7).(1)根据散点图分析y与x之间的相关关系;(2)根据散点图相应数据计算得y i=1074,x i y i=4517,求y关于x的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果(精确到0.01)附:回归方程中斜率和截距的最小二乘估计公式分别为:.21.设中心在原点,焦点在x轴上的椭圆E过点(1,),且离心率为,F为E的右焦点,P为E上一点,PF⊥x轴,⊙F的半径为PF.(1)求E和⊙F的方程;(2)若直线1:y=k(x﹣)(k>0)与⊙F交于A,B两点,与E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|=|BD|?若存在,求l的方程:若不存在,说明理由.22.函数f(x)=(x>0),曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为.(1)求a;(2)讨论g(x)=x(f(x))2的单调性;(3)设a1=1,a n+1=f(a n),证明:2n﹣2|2lna n﹣ln7|<1.2020年山东省高考数学模拟试卷参考答案一、单选题(共8小题)1.【分析】可以选择代入选项中的元素.【解答】解:将(1,1)代入A,B成立,则(1,1)为A∩B中的元素.将(﹣2,4)代入A,B成立,则(﹣2,4)为A∩B中的元素.故选:C.【知识点】交集及其运算2.【分析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【解答】解:===﹣i,∴a+bi=﹣(﹣i)=i,∴a=0,b=1,∴a+b=1,故选:D.【知识点】复数代数形式的乘除运算3.【分析】利用(﹣λ)⊥,列出含λ的方程即可.【解答】解:因为﹣λ=(1+λ,1﹣3λ),又因为(﹣λ)⊥,所以(1+λ,1﹣3λ)•(2,1)=2+2λ+1﹣3λ=0,解得λ=3,故选:A.【知识点】平面向量的坐标运算4.【分析】由二项式展开式通项公式可得:二项式(﹣x)10的展开式的通项为T r+1=,再令2r﹣10=4求解即可.【解答】解:由二项式(﹣x)10的展开式的通项T r+1=得,令2r﹣10=4,得r=7,即展开式中x4的系数是,故选:B.【知识点】二项式定理5.【分析】根据条件可以计算出AC,进而判断出SA⊥AC,所以SA⊥平面ABC,则三棱锥体积可表示为•SA•S△ABC,计算出结果即可.【解答】解:如图,因为∠ABC=,所以AC==2,则SA2+AC2=40+12=52=SC2,所以SA⊥AC,又因为∠SAB=,即SA⊥AB,AB∩AC=A,SA⊄平面ABC,所以SA⊥平面ABC,所以V S﹣ABC=•SA•S△ABC==4,故选:C.【知识点】棱柱、棱锥、棱台的体积6.【分析】作出对勾函数的图象,利用圆的性质,判断当A,B,C三点共线时,|AB|最小,然后进行求解即可.【解答】解:作出对勾函数y=x+(x>0)的图象如图:由图象知函数的最低点坐标为A(2,4),圆心坐标C(2,0),半径R=1,则由图象知当A,B,C三点共线时,|AB|最小,此时最小值为4﹣1=3,即|AB|的最小值是3,故选:A.【知识点】直线与圆的位置关系7.【分析】找出条件和结论,否定条件和结论.【解答】解:命题的否定为否定量词,否定结论.故¬p,有的正方形不是平行四边形.故选:C.【知识点】命题的否定8.【分析】通过和1比较大小判断,特殊值代入排除选项.【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.【知识点】对数值大小的比较二、多选题(共4小题)9.【分析】根据图分析每一个结论.【解答】解:由图知财政预算内收入、城乡居民储蓄年末余额均呈增长趋势,A对.由图知城乡居民储蓄年末余额的年增长速度高于财政预算内收入的年增长速度,B错.由图知财政预算内收入年平均增长量低于城乡居民储蓄年末余额年平均增长,C错.由图知城乡居民储蓄年末余额与财政预算内收入的差额逐年增大,D对.故选:AD.【知识点】进行简单的合情推理10.【分析】根据条件可求出双曲线C的方程,再逐一排除即可.【解答】解:设双曲线C的方程为,根据条件可知=,所以方程可化为,将点(3,)代入得b2=1,所以a2=3,所以双曲线C的方程为,故A对;离心率e====,故B错;双曲线C的焦点为(2,0),(﹣2,0),将x=2代入得y=e0﹣1=0,所以C对;联立,整理得y2﹣2y+2=0,则△=8﹣8=0,故只有一个公共点,故D错,故选:AC.【知识点】双曲线的简单性质11.【分析】取DD1中点M,则AM为AF在平面AA1D1D上的射影,由AM与DD1不垂直,可得AF与DD1不垂直;取B1C1中点N,连接A1N,GN,得平面A1GN∥平面AEF,再由面面平行的性质判断B;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积判断C;利用反证法证明D错误.【解答】解:取DD1中点M,则AM为AF在平面AA1D1D上的射影,∵AM与DD1不垂直,∴AF与DD1不垂直,故A错;取B1C1中点N,连接A1N,GN,可得平面A1GN∥平面AEF,故B正确;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积S=,故C正确;假设C与G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG的中点,连接CG交EF于H,而H不是CG中点,则假设不成立,故D错.故选:BC.【知识点】直线与平面平行的判定12.【分析】利用已知条件推导出f(x)的周期,再利用周期即可得出f(x)与f(x+3)都为奇函数.【解答】解:∵f(x+1)与f(x+2)都为奇函数,∴f(﹣x+1)=﹣f(x+1)①,f(﹣x+2)=﹣f(x+2)②,∴由①可得f[﹣(x+1)+1]=﹣f(x+1+1),即f(﹣x)=﹣f(x+2)③,∴由②③得f(﹣x)=f(﹣x+2),所以f(x)的周期为2,∴f(x)=f(x+2),则f(x)为奇函数,∴f(x+1)=f(x+3),则f(x+3)为奇函数,故选:ABC.【知识点】函数的周期性、函数奇偶性的判断三、填空题(共4小题)13.【分析】先阅读题意,再结合排列组合中的分步原理计算即可得解.【解答】解:由排列组合中的分步原理,从复活选手中挑选1名选手为攻擂者,共=6种选法,从守擂选手中挑选1名选手为守擂者,共=6种选法,则攻擂者、守擂者的不同构成方式共有6×6=36种选法,即攻擂者、守擂者的不同构成方式共有36种,故答案为:36.【知识点】排列、组合及简单计数问题14.【分析】由条件利用两角和差的三角公式求得cos(α+)的值,再利用诱导公式求得sin(α+)的值.【解答】解:∵cos(α+)﹣sinα=cosα﹣sinα﹣sinα=(cosα﹣sinα)=cos(α+)=,∴cos(α+)=.则sin(α+)=sin(α﹣)=﹣cos(α﹣+)=﹣cos(α+)=﹣,故答案为:﹣.【知识点】两角和与差的余弦函数15.【分析】本题先根据抛物线焦点坐标可得p的值,然后根据抛物线的定义和准线,可知|AF|=x1+1,|BF|=x2+1.再根据直线斜率存在与不存在两种情况进行分类讨论,联立直线与抛物线方程,利用韦达定理最终可得结果.【解答】解:由题意,抛物线C的焦点F(1,0),∴=1,故p=2.∴抛物线C的方程为:y2=4x.则可设A(x1,y1),B(x2,y2).由抛物线的定义,可知:|AF|=x1+1,|BF|=x2+1.①当斜率不存在时,x1=x2=1.∴=+=+=1.②当斜率存在时,设直线l斜率为k(k≠0),则直线方程为:y=k(x﹣1).联立,整理,得k2x2﹣2(k2+2)x+k2=0,∴.∴=+===1.综合①②,可知:=1.故答案为:2;1.【知识点】直线与圆锥曲线的综合问题16.【分析】首先求出长方体的外接球的半径,进一步利用三角形的面积和基本不等式的应用求出结果.【解答】解:半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,如图所示则设四面体ABCD置于长方体模型中,外接球的半径为2,故x2+y2+z2=16,S=S△ABC+S△ACD+S△ABD=,由于2(x2+y2+z2)﹣4S=(x﹣y)2+(y﹣z)2+(x﹣z)2≥0,所以4S≤2•16=32,故S≤8,故答案为:8.【知识点】球内接多面体四、解答题(共6小题)17.【分析】利用等差数列、等比数列的通项公式和前n项和公式,先求出,等比数列{b n}的通项公式,再分别结合三个条件一一算出等差数列{a n}的通项公式,并判断是否存在符合条件的k.【解答】解:∵{b n}是等比数列,b2=3,b5=﹣81,∴,解得,∴b n=﹣(﹣3)n﹣1,∴a5=b1=﹣1,若S k>S k+1,即S k>S k+a k+1,则只需a k+1<0,同理,若S k+1<S k+2,则只需a k+2>0,若选①:b1+b3=a2时,a2=﹣1+(﹣9)=﹣10,又a5=﹣1,∴a n=3n﹣16,∴当k=4时,a5<0,a6>0,符合题意,若选②:a4=b4时,a4=b4=27,又a5=﹣1,∴d=﹣28,∴等差数列{a n}为递减数列,故不存在k,使得a k+1<0,a k+2>0,若选③:S5=﹣25时,S5===5a3=﹣25,∴a3=﹣5,又a5=﹣1,∴a n=2n﹣11,∴当k=4时,a5<0,a6>0,符合题意,综上所求:①,③符合题意.故答案为:①,③.【知识点】等差数列的前n项和、等比数列18.【分析】(1)直接利用三角形的面积公式的应用建立等量关系,进一步求出∠ABC.(2)利用三角形的边的关系式的应用和余弦定理的应用求出cos∠CFB.【解答】解:(1)如图所示在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC,所以,,且△CDF的面积等于△ABC的面积,由于DF=AC,所以CD=AB,D为BC的中点,故BC=2AC,所以∠ABC=60°.(2)如图所示:设AB=k,由于∠A=90°,∠ABC=45°,BD=3DC,DF=AC,所以AC=k,CB=k,BD=,DF=k,由于DF⊥BC,所以CF2=CD2+DF2,则.且BF2=BD2+DF2,解得,在△CBF中,利用余弦定理==.【知识点】余弦定理19.【分析】(1)根据异面直线共垂线的定义进行证明即可.(2)建立空间直角坐标系,求出点的坐标,利用向量法求出平面的法向量,利用向量法进行转化求解即可.【解答】解:(1)取SD的中点H,连EH,FH,则EH∥SA,则EH⊥平面ABCD,∴EH⊥AD,∵FH∥CD,CD⊥AD,∴FH⊥AD,∴AD⊥平面EFH,∴AD⊥EF设BC=2,∴EF=1,EM=FM=,∴CD=AB=,SA=,建立如图的空间直角坐标系,则E(0,1,0),F(,1,),S(0,0,),C(,2,0),则=(,0,),=(,2,﹣),则=1﹣1=0,即EF⊥SC,即EF为异面直线AD与SC的公垂线.(2)若EF=BC,设BC=2,则EF=1,则EM=FM=,CD=AB=,SA=,D(0,2,0),B(,0,0),则=(,2,﹣),=(0,2,0),=(﹣,0,0),设面BCS的法向量为=(a,b,c),则,则,取a=c=1,则=(1,0,1)设面SCD的法向量为=(x,y,z),则,则,取z=,则y=1,则=(0,1,),则cosθ===,∴余弦值为.【知识点】与二面角有关的立体几何综合题20.【分析】(1)根据散点图可以看出,散点均匀的分布在一条直线附近,故y与x成线性相关;(2)根据给出信息,分别计算出x,y的平均值,代入最小二乘法估计公式,即可得到回归方程;(3)根据所给残差图分别区域的宽度分析即可.【解答】解:(1)根据散点图可知,散点均匀的分布在一条直线附近,且随着x的增大,y增大,故y 与x成线性相关,且为正相关;(2)依题意,=(1+2+3+4+5+6+7)=4,=y i=1074≈153.43,===≈7.89,=﹣=154.43﹣7.89×4=121.87,所以y关于x的线性回归方程为:=7.89x+121.87;(3)由残差图可以看出,残差对应点分布在水平带状区域内,且宽度较窄,说明拟合效果较好,回归方程的预报精度较高.【知识点】线性回归方程21.【分析】(1)根据离心率可得,代入a2=b2+c2得a=2b,再代点即可得出E的方程,再求出点F、P的坐标,从而求出圆F的方程;(2)设出C、D的坐标,求出|CF|、|DF|,根据条件得到|AB|=|CD|=1,利用韦达定理代入即可得到结论.【解答】解:(1)由题意可设椭圆的标准方程为,∵椭圆的离心率e=,∴,∵a2=b2+c2,∴a=2b,将点(1,)代入椭圆的方程得:,联立a=2b解得:,∴椭圆E的方程为:,∴F(),∵PF⊥x轴,∴P(),∴⊙F的方程为:;(2)由A、B再圆上得|AF|=|BF|=|PF|=r=,设C(x1,y1),D(x2,y2),|CF|=1同理:,若|AC|=|BD|,则|AB|=|CD|=1,∴4﹣,由得,∴∴4﹣=1得12k2=12k2+3,无解,故不存在.【知识点】直线与椭圆的位置关系22.【分析】(1)求得f(x)的导数,可得切线的斜率和切点,以及切线方程,代入(0,),解方程可得a;(2)求得g(x)的解析式和导数,分解因式可得导数的符号,进而判断单调性;(3)运用分析法证明,结合f(x)和g(x)的单调性,以及a n+1=f(a n),等比数列的性质,对a n与的大小关系讨论,即可得证.【解答】解:(1)函数f(x)=(x>0)的导数为f′(x)=,曲线y=f(x)在点(1,f(1))处的切线斜率为,切点为(1,),切线方程为y﹣=(x﹣1),代入(0,)可得﹣=(0﹣1),解得a=7;(2)g(x)=x(f(x))2=x•()2=,g′(x)=,当x>0时,g′(x)>0,可得g(x)在(0,+∞)递增;(3)要证2n﹣2|2lna n﹣ln7|<1,只需证|lna n﹣ln7|<,即为|ln|<,只要证|ln|<|ln|,由f(x)在(0,+∞)递减,a n>0,若a n>,a n+1=f(a n)<f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12>7,此时a n>,由(2)知a n a n+12=g(a n)>g()=7;若a n<,a n+1=f(a n)>f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12<7,此时a n<,由(2)知a n a n+12=g(a n)<g()=7;若a n=,不等式显然成立.综上可得|ln|<|ln|,(n≥1,n∈N*)成立,则|ln|<•|ln|=•ln7,由ln7<lne2=1,可得|ln|<,则2n﹣2|2lna n﹣ln7|<1成立.【知识点】利用导数研究函数的单调性。
山东省东营市高考数学第二次模拟考试试题 理

数学(理科)测试题注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题,考试时间为120分钟,满分150分.2.把选择题选出的答案标号涂在答题卡上.3.第Ⅱ卷用黑色签字笔在答题纸规定的位置作答,否则不予评分.Ⅰ一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将正确答案填写在答题卷相应位置.1.已知i 是虚数单位,则31ii+-=( ) A.12i - B.2i - C.2i + D.12i + 2.若集合{|0}1xA x x =≤-,2{|2}B x x x =<,则A B =( ) A.{|01}x x << B.{|01}x x ≤< C.{|01}x x <≤ D.{|01}x x ≤≤3.若α,β是第一象限的角,“α>β”是“sin α>sin β”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4. 已知函数)1(+x f 是偶函数,当x∈(1,+∞)时,函数x x x f -=sin )(, 设a =)21(-f ,)3(f b =,)0(f c =,则a 、b 、c 的大小关系为( ) A .b <a <c B .c <a <bC .b <c <aD .a <b <c5.一个几何体的三视图如图所示,该几何体外接球的表面积为( )A.9πB.283π C.8π D.7π6. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( ) A.158或 5 B. 3116或 5 C. 3116D. 俯视图2正视图侧视图1587. 执行右面的程序框图,如果输入的,x t 均为2,则输出的S =( ) A.4 B.5 C.6 D.78.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是( ) A.21 B. 94 C. 32 D. 31 9.已知焦点在x 轴上的椭圆方程为222141x y a a +=-,随着a 的增大该椭圆的形状( ) A. 越扁 B.越接近于圆 C.先接近于圆后越扁 D.先越扁后接近于圆10.右图是某果园的平面图,实线部分EF DF DE 、、游客观赏道路,其中曲线部分EF 是以AB 为直径的半圆上的一段弧,点O 为圆心,ABD ∆是以AB 为斜边的等腰直角三角形,其中2=AB 千米,x FOB EOA 2==∠∠(40π<<x ),若游客在路线DF DE 、上观赏所获得的“满意度”是路线长度的2倍,在路线EF 上观赏所获得的“满意度”是路线的长度,假定该果园的“社会满意度”y 是游客在所有路线上观赏所获得的“满意度”之和,则下面图象中能较准确的反映y 与x 的函数关系的是( )图6B A第Ⅱ卷 非选择题(共100分)二.填空题:本大题共5小题,每小题5分,共25分. 11.已知,lg ,39a x a == 则=x _________.12.(21x x+)3的展开式中的常数项为a ,则直线y ax =与曲线2y x =围成图形的面积为_________. 13.已知⎩⎨⎧π≤<-≤=)0(,sin 2),0(,)(2x x x x x f ,若3)]([0=x f f ,则=0x ________.14设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,048,022y x y x y x 若目标函数)0,0(4>>+=b a by ax z 的最大值为8,则a=_________时,baa +21取得最小值. 15.在平面直角坐标系中,O 为原点,)0,3(),5,0(),0,1(C B A -,动点D 满足 1CD =,则OA OB OD ++的最大值是__________.三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在ABC ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos A b B a ==. (Ⅰ)求a ,b ,C.(Ⅱ)如图,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,记θ=∠PAB ,求PAC ∆面积最大值.17.(本小题满分12分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.18.(本小题满分12分) 已知正项数列{}n a ,其前n 项和n S 满足2843,n n n S a a =++且2a 是1a 和7a 的等比中项.Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 符号[]x表示不超过实数x 的最大整数,记23[log ()]4n n a b +=,求1232n b b b b +++.19.(本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,2AB =,1AA =D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11ABB A .(Ⅰ)证明:1BC AB ⊥;(Ⅱ)若OC OA =,求直线CD 与平面ABC 所成角的正弦值.20.(本小题满分13分) 设,A B 是椭圆22: 143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与点,A B 不重合),O 为坐标原点.(Ⅰ)如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程;(Ⅱ)设N 为x 轴上一点,且4OM ON ⋅=,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.21.(本小题满分14分) 已知函数1ln(1)()(0)x f x x x++=>. (1)函数()f x 在区间(0,)+∞上是增函数还是减函数?证明你的结论; (2)当0x >时,()1kf x x >+恒成立,求整数k 的最大值; BACD1A1B1O(3)试证明:23(112)(123)(134)(1(1))n n n e -+⋅⋅+⋅⋅+⋅⋅⋅++>(*N n ∈)数学(理科)测试题参考答案一、选择:1-10:DADAB CDCBA 二、填空:11、10; 12、29; 13、3π或32π; 14、32 15、 三、解答: 16、(1)由正弦定理得cos sin cos sin A BB A=, 整理为sin cos sin cos A A B B =,即sin 2sin 2A B =又因为02,22A B π<< ∴22A B =或22A B π+=,即A B =或2A B π+=∵b a =, ∴A B =舍去,故2A B π+= 由2A B π+=可知2C π=,∴ABC ∆是直角三角形(2)由(1)及2c =,得1a =,b =, …7分 设()62PAB ππθθ∠=<<,则6PAC πθ∠=-,在Rt PAB ∆中,cos 2cos PA AB θθ=⋅= 所以 11sin()2cos sin()2626PAC S PA AC ππθθθ∆=⋅⋅-=⋅⋅-sin()6πθθ=⋅-1(sin cos )2θθθ=-⋅23cos sin 2θθθ=31cos 2sin 242θθ+=12cos 2)2θθ=-)6πθ=-因为62ππθ<<所以52666πππθ<-<,当262ππθ-=,即3πθ=时,PAC S ∆. 17.(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. 又因为14p =, 所以q =512. (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事 件C 为“一年后甲、乙两人中至少有一人投资获利”,则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =. 所以()()()()P C P AB P AB P AB =++ 111(1)222p p p =?+?? 1122p =+. 因为114()225P C p =+>, 所以35p >.又因为113p q ++=,0q ≥, 所以23p ≤.所以3253p ≤<. (Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:则113540(2)2884EX =⨯+⨯+-⨯=. 假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:则111520(1)2366EY =⨯+⨯+-⨯=. 因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大. 18、Ⅰ)2843n n n S a a =++①知2111843(2,)n n n S a a n n N ---=++≥∈②由①-②得1118()()44n n n n n n n a a a a a a a ---=-++-整理得11(4)()0(2,)n n n n a a a a n n N ----+=≥∈ ∵{}n a 为正项数列∴10,n n a a -+>,∴14(2,)n n a a n n N --=≥∈所以{}n a 为公差为4的等差数列,由2111843,a a a =++得13a =或11a = 当13a =时,277,27a a ==,不满足2a 是1a 和7a 的等比中项. 当11a =时,275,25a a ==,满足2a 是1a 和7a 的等比中项. 所以1(1)443n a n n =+-=-. (Ⅱ) 由43n a n =-得223[log ()][log ]4n n a b n +==, 由符号[]x 表示不超过实数x 的最大整数知,当122mm n +≤<时,2[log ]n m =,所以令12322222[log 1][log 2][log 3][log 2]n n S b b b b =+++=+++0112341n n =+++++++++-++∴1234112223242(1)2n S n n -=⨯+⨯+⨯+⨯+-⨯+①2345212223242(1)22n S n n =⨯+⨯+⨯+⨯+-⨯+②①-②得234112222...2(1)22(12)(1)2(2)2212n n n n nS n nn n n n ---=+++++----=---=---- (2)22n S n n ∴=-++即1232n b b b b +++(2)22n n n =-++.tan AD ABD AB ∠==11tan 2AB AB B BB ∠==0ABD <∠12AB B π∠<1ABD AB B ∴∠=∠1112AB B BAB ABD BAB π∴∠+∠=∠+∠=2AOB π∠=1AB BD∴⊥11CO ABB A ⊥平面1AB CO∴⊥BD CO O 1AB CBD ∴⊥平面BC CBD ⊂平面1AB BC ∴⊥1,,OD OB OC ,,x y zOO xyz-(0,(A BC D 262323236(,,0),(0,,),(,0,)333333AB AC CD =-==-ABC (,,)n x y z =0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩33x yy x⎧-+=⎪⎪+=1y=1z=-2x=(1)2n=-CD ABCα(1)sin cos,||||CD nCD nCDnα⋅-⋅===⋅0((1)++-⨯-==20.解:(Ⅰ)椭圆W的右焦点为(1,0)M,因为线段MB 的中点在y轴上,所以点B的横坐标为1-,因为点B在椭圆W上,将1x=-代入椭圆W的方程,得点B的坐标为3(1,)2-±.所以直线AB(即MB)的方程为3430x y--=或3430x y+-=.(Ⅱ)证明:由题意,设直线AB的方程为(0)y kx m k=+≠,11(,)A x y,22(,)B x y,则122(,)B x y-.由223412,,x yy kx m⎧+=⎨=+⎩得222(34)84120k x kmx m+++-=,所以222(8)4(34)(412)0km k m∆=-+->,122834kmx xk+=-+,212241234mx xk-=+.在y kx m=+中,令0y=,得点M的坐标为(,0)mk-,由4OM ON⋅=,得点N的坐标为4(,0)km-,设直线NA,1NB的斜率分别为NAk,1NBk,则1211122121212444444()()NA NBk kx y y x y yy y m mk kk k k kx x x xm m m m+⨯++⨯--=-=++++,因为21112244k kx y y x y ym m+⨯++⨯21112244()()()()k kx kx m kx m x kx m kx mm m=+++⨯++++⨯2121242()()8k kx x m x x k m=++++2222412482()()()83434m k kmk m k k m k -=⨯++-+++ 22323824832243234m k k m k k k k k---++=+ 0=,所以 10NA NB k k -=, 所以点A ,N ,1B 三点共线,即点B 与点C 关于x 轴对称.21. 解:(Ⅰ)由题21[ln(1)]10,()0,x x x f x x+++'>=-<故()f x 在区间(0,)+∞上是减函数;(Ⅱ)当0x >时,()1k f x x >+恒成立,即1[1ln(1)]x k x x+<++在(0,)+∞上恒成立,取1()[1ln(1)]x h x x x +=++,则21ln(1)()x x h x x --+=,再取()1ln(1),g x x x =--+则1()10,11x g x x x '=-=>++ 故()g x 在(0,)+∞上单调递增,而(1)ln 20,(2)1ln30,(3)22ln 20g g g =-<=-<=->, 故()0g x =在(0,)+∞上存在唯一实数根(2,3),1ln(1)0a a a ∈--+=, 故(0,)x a ∈时,()0;(,)g x x a <∈+∞时,()0,g x > 故[]min 1()1ln(1)1(3,4),3,a h x a a k a+=++=+∈≤故max 3k =(3)由(2)知:1ln(1)3333(0)ln(1)122111x x x x x x x x x++>>⇒+>-=->-+++令311(1),ln[1(1)]223()(1)1x n n n n n n n n =+++>-=--++,又ln[(112)(123)(134)(1(1))]n n +⋅⋅+⋅⋅+⋅⋅⋅++ln(112)ln(123)ln(1(1))n n =+⨯++⨯+++⨯+1111123[(1)()()]2231n n n >--+-++-+1323(1)232311n n n n n =--=-+>-++即:23(112)(123)(134)(1(1))n n n e -+⋅⋅+⋅⋅+⋅⋅⋅++>。
山东省东营市胜利镇中学2020年高三数学文模拟试卷含解析

山东省东营市胜利镇中学2020年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等比数列的前项和为,且,,则=A. B. C. D.参考答案:A2. 已知函数,如果,且,下列关于的性质:①,②不存在反函数,③,④方程在上没有实数根,其中正确的是A.①② B.①④ C.①③ D.③④参考答案:B3. 设函数有两个极值点,且,则()A.B.C.D.参考答案:D略4. 已知实数满足,则的最大值为( )(A)(B)(C)(D)参考答案:C5. 已知复数z1=cos 23°+isin 23°和复数z2=cos 37°+isin 37°,则z1·z2为A.+iB. +iC. -iD. -i参考答案:A略6. “”是“”的(▲)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A7. ( )A. iB. -iC. 0D. 1参考答案:B【分析】利用复数的除法运算,即得解.【详解】化简:故选:B【点睛】本题考查了复数的除法运算,考查了学生概念理解,数学运算的能力,属于基础题.8. 如图1,程序结束输出的值是A. B. C. D.参考答案:C9. 如图所示的程序框图,若输入的n是100,则输出的变量S和T的值依次是( )A.2500,2500 B.2550,2550 C.2500,2550D.2550,2500参考答案:D10. 若函数f(x)=﹣sin2ωx﹣6sinωxcosωx+3cos2ωx(ω>0)的最小正周期为2π,若对任意x∈R都有f(x)﹣1≤|f(α)﹣1|,则tanα的值为( )A.B.C.﹣D.﹣参考答案:C考点:三角函数的周期性及其求法;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:将三角函数进行化简,利用三角函数的周期公式求出ω,即可得到结论.解答:解:f(x)=﹣sin2ωx﹣6sinωxcosωx+3cos2ωx=﹣(sin2ωx+cos2ωx)﹣6sinωxcosωx+4cos2ωx=﹣1﹣3sin2ωx+4×=2cos2ωx﹣3sin2ωx+1=[cos2ωx ﹣sin2ωx]+1,设cosθ=,sinθ=,则tanθ=,则函数f(x)=cos(2ωx+θ)+1,θ为参数,则函数的周期T=,则,即f(x)=2cosx﹣3sinx+1=cos(x+θ)+1,若对任意x∈R都有f(x)﹣1≤|f(α)﹣1|,则f(α)为函数f(x)的最值,即α+θ=kπ,则α=﹣θ+kπ,则tanα=tan(﹣θ+kπ)=﹣tanθ=﹣,故选:C点评:本题主要考查三角函数的图象和性质,重点考查三角函数的周期性和最值性,利用辅助角公式是解决本题的关键.二、 填空题:本大题共7小题,每小题4分,共28分11. 在平面中,△ABC 的角C 的内角平分线CE 分△ABC 面积所成的比=.将这个结论类比到空间:在三棱锥A -BCD 中,平面DEC 平分二面角A -CD -B 且与AB 交于E ,则类比的结论为=________.参考答案:12. 若则5.参考答案:13. 下列4个命题:①?x∈(0,1),()x >logx .②?k∈[0,8),y=log 2(kx 2+kx+2)的值域为R .③“存在x∈R,()x+2x≤5”的否定是”不存在x∈R,()x+2x≤5”④“若x∈(1,5),则f (x )=x+≥2”的否命题是“若x∈(﹣∞,1]∪[5,+∞),则f (x )=x+<2”其中真命题的序号是 .(请将所有真命题的序号都填上)参考答案:①④【考点】命题的真假判断与应用.【分析】①根据指数函数和对数函数的性质进行判断. ②根据对数函数的性质进行判断.③根据特称命题的否定是全称命题进行判断. ④根据否命题的定义进行判断.【解答】解:①当x∈(0,1),()x >0,logx <0.∴?x∈(0,1),()x>logx .故①正确,②当k=0时,满足k∈[0,8),但此时y=log 2(kx 2+kx+2)=log 22=1,此时函数的值域为{1},不是R .故②错误③“存在x∈R,()x +2x≤5”的否定是”任意x∈R,()x +2x >5”,故③错误,④“若x∈(1,5),则f (x )=x+≥2”的否命题是“若x∈(﹣∞,1]∪[5,+∞),则f (x )=x+<2”,正确,故④正确, 故答案为:①④.【点评】本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,但难度不大. 14. 已知直线,则直线斜率的取值范围________。
2020年2020届山东省高三高考模拟考试数学试卷及解析

2020年2020届山东省高三高考模拟考试数学试卷★祝考试顺利★ (解析版)一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 10,1,2⎧⎫⎨⎬⎩⎭D. 11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭.故选D2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项. 【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。
山东省2020年高考模拟考试数学试题 Word版含答案

山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
2020年山东省高考数学模拟试卷(理科)含答案解析

2020年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2020年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高:=2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1,=﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11.【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a <10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20.【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15.【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log[(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=,=2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z 可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+=cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有:sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n }的前n 项和S n =a n +.(1)求数列{a n }的通项公式; (2)若b n =,且数列{b n }的前n 项和为T n ,求T 2n .【考点】数列的求和;数列递推式. 【分析】(1)由于数列{a n }的前n 项和S n =a n +,可得a 1+a 2=a 2+﹣2,解得a 1.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],化简整理即可得出.(2)b n =,可得b 2n ﹣1==.b 2n =.即可得出.【解答】解:(1)∵数列{a n }的前n 项和S n =a n +,∴a 1+a 2=a 2+﹣2,解得a 1=3.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],解得a n ﹣1=n+1.∴a n =n+2,当n=1时也成立.∴a n=n+2.=(2)b n=,∴b2n﹣1==.b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.2020年7月18日。
山东省2020年高考理科数学模拟试题及答案(二)

山东省2020年高考理科数学模拟试题及答案(二)(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知集合M ={x|x 2﹣2x ﹣3≤0},N ={x|y =lg (x ﹣2)},则M∪N =( )A. [﹣1,+∞)B. (﹣1,+∞)C. (2,3]D. (1,3)2. 若复数(2﹣i )(a+i )的实部与虚部互为相反数,则实数a =( )A. 3B.C.D. ﹣33.若,则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.已知()()4,f x g x =-函数()g x 是定义在R 上的奇函数,若(2017)2017,f =则(-2017)f = ( )。
A .-2017B .-2021C .-2025D .20255. 已知过球面上三点A 、B 、C 的截面到球心距离等于球半径的一半,且AC =BC =6,AB =4,则球面面积为( ) A. 42πB. 48πC. 54πD. 60π6是R 上的增函数,则实数a 的取值范围是( ) A .()1,8B .()1,+∞C .()4,8D .[)4,87. 已知α为第二象限角,sin cos αα+=,则cos2α= ( ) A.B.CD8. 如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有( )A. 24B. 48C. 96D. 1209. 定义运算:32414321a a a a a a a a -=,将函数xx x f ωωcos 1sin 3)(=(0>ω)的图像向左平移32π 个单位所得图像对应的函数为偶函数,则ω的最小值是( ) A.45 B.41 C.47 D.43 10.设x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+2211y x y x y x ,若目标函数y ax z 3+=仅在点(1,0)处取得最小值,则a的取值范围( )A.(-6,-3)B.(-6,3)C.(0,3)D.(-6,0]11.已知过点A (a ,0)作曲线C :y =x•e x的切线有且仅有两条,则实数a 的取值范围是( ) A. (﹣∞,﹣4)∪(0,+∞) B. (0,+∞) C. (﹣∞,﹣1)∪(1,+∞) D. (﹣∞,﹣1)12.在平面直角坐标系中,已知双曲线的左焦点为F ,点B 的坐标为(0,b),若直线BF 与双曲线C 的两条渐近线分别交于P ,Q 两点,且,则双曲线C 的离心率为( ) A.B.C.D. 2二、填空题(本题共4小题,每小题5分,共20分。
山东省东营市胜利中学2020年高二数学理模拟试题含解析

山东省东营市胜利中学2020年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题“?x∈R,2x>0”的否定是()A.?x0∈R,2>0 B.?x0∈R,2≤0C.?x∈R,2x<0 D.?x∈R,2x≤0参考答案:B【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“?x∈R,2x>0”的否定是?x0∈R,2≤0.故选:B2. 欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率()A. B. C. D.参考答案:A3. 已知全集,集合,则()A. B.C. D.参考答案:B4. 已知空间四边形ABCD的对角线为AC、BD,设G是CD的中点,则+(+)等于()A.B.C.D.参考答案:C【考点】M2:空间向量的基本定理及其意义.【分析】直接根据G是CD的中点,可得(),从而可以计算化简计算得出结果.【解答】解:因为G是CD的中点;∴(),∴+(+)==.故选:C.5. 已知物体的运动方程为(是时间,是位移),则物体在时刻时的速度为( )A. B. C. D.参考答案:D略6. 在数列中,,且(N),则为A.B.C.D.参考答案:C7. 是椭圆的两个焦点,为椭圆上一点,且∠,则Δ的面积为()A. B. C. D.参考答案:C 解析:8. 有下列四个命题:①“若,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“”,则有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A.①②B.①③C.②③D.③④参考答案:B9. 某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是()A. B. C. D.参考答案:C【分析】先求得“数学不排第一节,物理不排最后一节”的概率,然后求得“数学不排第一节,物理不排最后一节,化学排第四节”的概率.再根据条件概型概率计算公式,计算出所求概率. 【详解】设事件:数学不排第一节,物理不排最后一节. 设事件:化学排第四节.,,故满足条件的概率是.故选C.【点睛】本小题主要考查条件概型计算,考查古典概型概率计算,考查实际问题的排列组合计算,属于中档题.10. 抛物线的焦点坐标是( ) .A. B. C. D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. P为双曲线右支上一点,M、N分别是圆上的点,则|PM|-|PN|的最大值为参考答案:512. 从如图所示的长方形区域内任取一个点M(x,y), 则点M 取自阴影部分的概率为.参考答案:略13. 在等比数列{a n}中,S n表示前n项和,若,则公比q等于________.参考答案:3在等比数列{a n}中,∵a3=2S2+1,a4=2S3+1,∴a4-a3=2S3+1-(2S2+1)=2(S3-S2)=2a3,∴a4=3a3,∴q= =3.14. 给出下面的数表序列:其中表(=1,2,3 )有行,表中每一个数“两脚”的两数都是此数的2倍,记表中所有的数之和为,例如,,.则.=参考答案:略15. 的展开式中的常数项为.参考答案:-516. 已知点A、B、C、D在同一球面上,AB面BCD,BC CD,若AB=6,AC=,AD=8,则B,C两点间的球面距离为_________参考答案:略17. 若焦点在x轴上的椭圆的离心率为,则m=参考答案:三、解答题:本大题共5小题,共72分。
2020年山东省东营市第二中学高二数学理模拟试卷含解析

2020年山东省东营市第二中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为()A. 83%B. 72%C. 67%D. 66%参考答案:A【分析】把y=7.675代入回归直线方程求得x,再求的值.【详解】当居民人均消费水平为7.675时,则7.675=0.66x+1.562,即职工人均工资水平x≈9.262,∴人均消费额占人均工资收入的百分比为故选:A.【点睛】本题考查了回归直线方程的应用,熟练掌握回归直线方程变量的含义是解题的关键.2. 设双曲线的一条准线与两条渐近线交于A.B两点,相应的焦点为F,若以AB为直径的圆恰好过F点,则双曲线的离心率为()A. B. C.2D.参考答案:D3. 已知数列-1,a1,a2,-4成等差数列,数列-1,b1,b2,b3,-4成等比数列,则(A) ± (B) ±(C) -(D)参考答案:D略4. 如图,在正三棱柱ABC-A1B1C1中,AB=2.若二面角C-AB-C1的大小为60°,则异面直线A1B1和BC1所成角的余弦值为()A. B. C. D.参考答案:D如图取AB的中点D,连接CD,C1D,则有CD⊥AB,C1D⊥AB,∴∠C1DC=60°,CD=,CC1=CDtan60°=3,AC1=BC1=.在△ABC1中,cos∠ABC1=.∵AB∥A1B1,因此∠ABC1是直线A1B1与BC1所成的角或补角,因此直线A1B1与BC1所成的角的余弦值是.本题选择D选项.5. 下列命题中错误的是 ( )A. 如果平面平面,平面平面,,那么B. 如果平面平面,那么平面内一定存在直线平行于平面C. 如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D. 如果平面平面,过内任意一点作交线的垂线,那么此垂线必垂直于参考答案:D略6. 用数学归纳法证明不等式++…+>(n>1,n∈N*)的过程中,从n=k到n=k+1时左边需增加的代数式是()A.B.﹣C. +D.参考答案:B【考点】RG:数学归纳法.【分析】求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【解答】解:当n=k时,左边的代数式为++…+,当n=k+1时,左边的代数式为++…+++,故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:+﹣=﹣.故选B.7. 设,则的值为()参考答案:B略8. 某班有的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B,则E(-X)的值为()A. B. -C. D. -参考答案:D本题考查二项分布的含义和性质.若则,其中是常数;因为,所以故选D9. 已知等差数列{a n}中,,公差,则等于( )A.8 B.11 C.14 D.5参考答案:B10. 函数f(x)在x=x0处导数存在,若p:f‘(x0)=0;q:x=x0是f(x)的极值点,则( )A. p是q的充分必要条件B. p是q的充分条件,但不是q的必要条件C. p是q的必要条件,但不是q的充分条件D. p既不是q的充分条件,也不是q的必要条件参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知数列满足,,令,类比课本中推导等比数列前项和公式的方法,可求得= .参考答案:略12. 一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下:甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”,经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是.参考答案:乙【考点】F4:进行简单的合情推理.【分析】这个问题的关键是四人中有两人说真话,另外两人说了假话,这是解决本题的突破口;然后进行分析、推理即可得出结论.【解答】解:在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假(即都是真话或者都是假话,不会出现一真一假的情况);假设乙、丁两人说的是真话,那么甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯.故答案为乙.【点评】此题解答时应结合题意,进行分析,进而找出解决本题的突破口,然后进行推理,得出结论.13. 如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1的夹角是参考答案:60014. 在等差数列中,若任意两个不等的正整数,都有,,设数列的前项和为,若,则(结果用表示)。
2020年山东省东营市胜坨中学高二数学理模拟试题含解析

2020年山东省东营市胜坨中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的()A.白色B.黑色C.白色可能性大D.黑色可能性大参考答案:A2. 函数在的最小值是(A) (B) (C)(D)参考答案:A3. 等比数列中,若公比,且前3项之和等于21,则该数列的通项公式为( )A. B. C.D.参考答案:A4. 设F1,F2是椭圆(a>5)的两个焦点,且|F1F2|=8,弦AB过点F1,则△ABF2的周长为A.10B.20C.2D.4参考答案:D略5. 数列1,3,6,10,x,21,28,…中,由给出的数之间的关系可知x的值是()A.12 B.15 C.17 D.18参考答案:B【考点】数列的概念及简单表示法.【专题】等差数列与等比数列.【分析】由数列1,3,6,10,x,21,28,….可知:3﹣1=2,6﹣3=3,10﹣6=4,x﹣10=5.即可得出.【解答】解:由数列1,3,6,10,x,21,28,…可知:3﹣1=2,6﹣3=3,10﹣6=4,x﹣10=5,∴x=15.故选:B.【点评】本题考查了求数列的通项公式,属于基础题.6. 数列{a n}的通项a n是关于x的不等式x2﹣x<nx(n∈N*)的解集中的整数个数,则数列{a n}的前n项和S n=()A.n2 B.n(n+1)C.D.(n+1)(n+2)参考答案:C【考点】数列的求和.【分析】通过解不等式求出数列{a n}的通项a n判断数列{a n}是什么数列,即可数列{a n}的前n项和S n【解答】解:不等式x2﹣x<nx(n∈N*)的解集为{x|0<x<n+1}∵通项a n是解集中的整数个数∴a n=n(n∈N*)∵a n+1﹣a n=n+1﹣n=1(常数),∴数列{a n}是首先为1,公差为1的等差数列.∴前n项和S n=.故选C7. 设x,y满足约束条件,则z=2x﹣y的最大值为( )A.10 B.8 C.3 D.2参考答案:B考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.8. 右图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:① -3是函数y=f(x)的极小值点;② -1是函数y=f(x)的极小值点;③ y=f(x)在x=0处切线的斜率小于零;④ y=f(x)在区间(-3,1)上单调递增.则正确命题的序号是A.①④B.①②C.②③ D.③④参考答案:A根据导函数图象可知当x∈(-∞,-3)时,f'(x)<0,在x∈(-3,1)时,f'(x)0.∴函数y=f(x)在(-∞,-3)上单调递减,在(-3,1)上单调递增,故④正确,则-3是函数y=f(x)的极小值点,故①正确,∵在(-3,1)上单调递增∴-1不是函数y=f(x)的极小值点,故②不正确;∵函数y=f(x)在x=0处的导数大于0,∴切线的斜率大于零,故③不正确.故选A.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;函数在某点取得极值的条件9. 若圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B. 6C. 5D. 3参考答案:A设上底面半径为r,因为圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,所以S侧面积=π(r+3r)l=84π,r=7.10. 某几何体的三视图如图所示,且该几何体的体积是12,则正视图中的x的值是()A.3 B.4 C.9 D.6参考答案:A【考点】由三视图求面积、体积.【分析】由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,高为x,根据已知中棱锥的体积构造方程,解方程,可得答案.【解答】解:由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,高为x,棱锥的底面是上底长2,下底长4,高为4的梯形,故S=×(2+4)×4=12,又由该几何体的体积是12,∴12=×12x,即x=3,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11. 在的展开式中,所有奇数项的系数之和为1024,则中间项系数是 .参考答案:462略12. 在中,分别是三内角的对边,且,则角等于_______参考答案:13. 比较大小:.参考答案:>略14. 将二进制数101 101(2)化为八进制数,结果为__________.参考答案:55(8)15. 有名同学在玩一个哈哈镜游戏,这些同学的编号依次为:1,2,…n,在游戏中,除规定第k位同学看到的像用数对(p,q)(p<q)(其中q-p=k)表示外,还规定:若编号为k的同学看到的像用数对(p,q),则编号为k+1的同学看到的像为(q,r),(p,q,r),已知编号为1的同学看到的像为(4,5),则编号为5的同学看到的像是。
2020年山东省东营市中国石油大学(华东)附属中学高二数学理模拟试卷含解析

2020年山东省东营市中国石油大学(华东)附属中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设非空集合P,Q满足P∩Q=P,则()A.?x∈Q,有x∈P B.?x?Q,有x?PC.?x0?Q,使得x0∈P D.?x0∈P,使得x0?P参考答案:B【考点】特称命题.【分析】根据交集运算结果判定集合关系,再结合Venn图判断元素与集合的关系即可.【解答】解:∵P∩Q=P,∴P?Q∴A错误;B正确;C错误;D错误.故选B.2. 若的展开式中各项系数之和为256,则展开式的常数项是( )A.第3项 B.第4项 C.第5项 D.第6项参考答案:C3. 从一箱产品中随机地抽取一件,设事件A=“抽到一等品”,事件B=“抽到二等品”,事件C=“抽到三等品”,且已知 P(A)=0.65,P(B)=0.2 ,P(C)=0.1。
则事件“抽到的不是一等品”的概率为()A.0.65B.0.35C.0.3D.0.005参考答案:B略4. 函数则()A.仅有最小值B.仅有最大值C.既有最小值0,也有最大值D.既无最大值,也无最小值参考答案:C略5. 若b为实数,且a+b=2,则3a+3b的最小值为()A.18 B.6 C.2D.2参考答案:B【考点】基本不等式.【分析】3a+3b中直接利用基本不等式,再结合指数的运算法则,可直接得到a+b.【解答】解:∵a+b=2,∴3a+3b故选B6. 已知为定义在上的可导函数,且对于任意恒成立,则A.B.C.D.参考答案:A略7. 在△ABC中,角A、B、C所对的边分别为,且,则△ABC的形状是()A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形参考答案:B略8. 采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为,抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷,则抽到的人中,做问卷的人数为源:]、、、、C9. 利用数学归纳法证明不等式(,)的过程中,由变到时,左边增加了()A.1项B.k项 C.项D.项参考答案:D时左面为,时左面为,所以增加的项数为10. 将半径相同,圆心角之比为1:2的两个扇形作为两个圆锥的侧面,这两个圆锥底面面积依次为,那么()A.1:2 B.2:1 C.1:4 D.4:1参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知椭圆:的焦距为4,则m为参考答案:4或812. 某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n= .参考答案:19213. 在△ABC中,,,则_________.114. 已知,是双曲线的两个焦点,P为双曲线C上一点,且,若的面积为9,则b= .参考答案:3分析:由题意得焦点三角形为直角三角形,根据双曲线的定义和三角形的面积为9求解可得结论.详解:设,分别为左右焦点,点P在双曲线的右支上,则有,∴,又为直角三角形,∴,∴,又的面积为9,∴,∴,∴,∴.15. 若2x+4y=8,则x+2y的最大值是.参考答案:4【考点】7F:基本不等式.【专题】34 :方程思想;4R:转化法;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】利用基本不等式的性质、指数运算性质即可得出.【解答】解:∵8=2x+4y=2x+22y≥2,则x+2y≤4,当且仅当x=2y=2时取等号.故答案为:4.【点评】本题考查了基本不等式的性质、指数运算性质,考查了推理能力与计算能力,属于基础题.16. 如图所示,在正方体ABCD﹣A1B1C1D1中,O1、O为上、下底面的中心,在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有条.参考答案:2【考点】空间中直线与直线之间的位置关系.【分析】DD1与平面AB1C相交;由A1D∥B1C,知A1D∥平面AB1C;A1D1与平面AB1C相交;C1D1与平面AB1C相交;由O1D∥OB1,知O1D∥平面AB1C.【解答】解:在正方体ABCD﹣A1B1C1D1中,O1、O为上、下底面的中心,∵DD1∥BB1,BB1∩平面AB1C=B1,∴DD1与平面AB1C相交;∵A1D∥B1C,AD1?平面AB1C,B1C?平面AB1C,∴A1D∥平面AB1C;A1D1∥B1C1,B1C1∩平面AB1C=B1,∴A1D1与平面AB1C相交;∵C1D1∥A1B1,A1B1∩平面AB1C=B1,∴C1D1与平面AB1C相交;∵O1D∥OB1,OB1?平面AB1C,∴O1D∥平面AB1C.∴在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有2条.故答案为:2.【点评】本题考查直线与平行的位置关系的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.17. 对于曲线C∶=1,给出下面四个命题:①曲线C不可能表示椭圆;②当1<k<4时,曲线C表示椭圆;③若曲线C表示双曲线,则k<1或k>4;④若曲线C表示焦点在x轴上的椭圆,则1<k<其中所有正确命题的序号为___ ___ ______.参考答案:③④三、解答题:本大题共5小题,共72分。
(word完整版)山东省2020届高考数学模拟试题附答案(最新)(2021年整理)

(word完整版)山东省2020届高考数学模拟试题附答案(最新)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)山东省2020届高考数学模拟试题附答案(最新)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)山东省2020届高考数学模拟试题附答案(最新)(word版可编辑修改)的全部内容。
山东省2020届高考数学模拟试题(最新)。
东营市年高考第二次模拟考试数学试题及答案(文)

高三数学(文科)测试题第Ⅰ卷 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将正确答案填写在答题卷相应位置. 1.已知i 是虚数单位,则31ii+-=( ) A.12i - B.2i - C.2i + D.12i + 2.若集合{|0}1xA x x =≤-,2{|2}B x x x =<,则A B =( ) A.{|01}x x << B.{|01}x x ≤< C.{|01}x x <≤ D.{|01}x x ≤≤3.若α,β是第一象限的角,“α>β”是“sinα>sinβ”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.一个几何体的三视图如图所示,该几何体的体积为( )A. 34B.334 C.332 D.325. 执行如下的程序框图,如果输入的,x t 均为2,则输出的S =( )A.4B.5C.6D.76. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( ) A.158或5 B. 3116或5 C. 3116 D. 1587.有下列四种说法:①命题:“,使得”的否定是“,都有”;○2已知随机变量服从正态分布,,则; ○3函数图像关于直线对称,且在区间上是增函数;○4设实数,则满足:的概率为.其中错误的个数是( )A.0B.1C.2D.3R x ∈∃002>-x x R x ∈∀02≤-x x x ),1(2σN 79.0)4(=≤x P 21.0)2(=-≤x P )(,1cos sin 2)(R x x x x f ∈-=43π=x ⎥⎦⎤⎢⎣⎡-4,4ππ[]1,0,∈y x 122<+y x 4π8.已知函数)1(+x f 是偶函数,当x ∈(1,+∞)时,函数x x x f -=sin )(,设a =)21(-f ,)3(f b =,)0(f c =,则a 、b 、c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c9.已知a 是实数,则函数1cos )(-=ax a x f 的图象不可能是( )10.已知焦点在x 轴上的椭圆方程为222141x y a a +=-,随着a 的增大该椭圆的形状( ) A. 越扁 B.越接近于圆 C.先接近于圆后越扁 D.先越扁后接近于圆第Ⅱ卷 非选择题(共100分)二.填空题:本大题共5小题,每小题5分,共25分. 11.已知,lg ,39a x a == 则=x _________.12.某单位员工按年龄分为A ,B ,C 三级,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C 组中甲、乙二人均被抽到的概率是则该单位员工总数为 _______.13.已知⎩⎨⎧π≤<-≤=)0(,sin 2),0(,)(2x x x x x f ,若3)]([0=x f f ,则=0x ________.14.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,048,022y x y x y x 若目标函数)0,0(4>>+=b a by ax z 的最大值,451为8,则a =_________时,baa +21取得最小值. 15.在平面直角坐标系中,O 为原点)0,3(),5,0(),0,1(C B A -,动点D 满足 1CD =,则 OA OB OD ++的最大值是__________.三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人,陈老师采用A 、B 两种不同的教学方式分别在甲、乙两个班级进行教改实验。
2019-2020学年山东省东营市胜利第二高级中学高三数学文测试题含解析

2019-2020学年山东省东营市胜利第二高级中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量若时,∥;时,,则A.B.C. D.参考答案:答案:C解析:向量若时,∥,∴;时,,,选C.2. 复数z=i?(1+i)(i为虚数单位)在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B考点:复数的代数表示法及其几何意义.专题:计算题.分析:化简复数z,根据复数与复平面内点的对应关系可得答案.解答:解:z=i?(1+i)=﹣1+i,故复数z对应的点为(﹣1,1),在复平面的第二象限,故选B.点评:本题考查复数的代数表示法及其几何意义,属基础题.3. 若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为,则该几何体的俯视图可以是( )参考答案:C略4. 若复数为纯虚数,则的虚部为()A. B. C.D.参考答案:B5. 是“实系数一元二次方程有虚根”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件参考答案:A6. 函数的图象可能是()参考答案:A7. 角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,“角α的终边在射线x+3y=0(x≥0)上”是“sin2α=﹣”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据三角函数的定义以及充分条件和必要条件的定义进行判断即可.【解答】解:∵角α的终边在射线x+3y=0(x≥0)上,∴设点P(3,﹣1),则sinα=﹣,cosα=,则sin2α=2sinαcosα=2×(﹣)()=﹣,即充分性成立,当M(﹣3,1),则sinα=,cosα=﹣,此时满足sin2α=﹣,但M(﹣3,1)不在射线x+3y=0(x≥0)上,即必要性不成立,即“角α的终边在射线x+3y=0(x≥0)上”是“sin2α=﹣”的充分不必要条件,故选:A.8. 已知变量x,y满足的最大值为()A.5 B.6C.7 D.8参考答案:C略9. “”是“直线和直线平行”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件参考答案:A略10. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.参考答案:A【考点】球内接多面体;球的体积和表面积.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π?()2=.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11. 某高中共有2000名学生,采用分层抽样的方法,分别在三个年级的学生中抽取容量为100的一个样本,其中在高一、高二年级中分别抽取30、30名学生,则该校高三有 _________名学生.参考答案:80012. 已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.参考答案:【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先根据约束条件画出可行域,欲求z=log4(2x+y+4)的最大值,即要求z1=2x+y+4的最大值,再利用几何意义求最值,分析可得z1=2x+y+4表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13. 若一个长方体的长、宽、高分别为、、1,则它的外接球的表面积是▲ .参考答案:略14. 一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.参考答案:略15. 已知数列中,则_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届山东省东营市胜利二中高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,,(0,1)m n p ∈,且35log log lg m n p ==,则( ) A .1113510m n p << B.1115310n m p <<C .1111035p m n <<D .1113105m p n <<2.设0,0a b >>,若3是33a b 与的等比中项,则11a b+的最小值为( ) A .8B .14 C .1D .43.已知:2610a b ==,则3,ab ,+a b 的大小关系是( ) A .3ab a b <+< B .3ab a b <<+C .3a b ab <+<D .3ab a b <<+4.已知一个几何体的三视图所示,其中正视图由两个小正方形组成,俯视图为正三角形,则此几何体的体积为( )A .B .C .D .5.设向量(2,1),(,1)a x b x =+=r r , 则"1"x =是“//a b r r”的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件6.已知变量,x y 满足约束条件240150x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则2z x y =+的最小值为( )A .9B .8C .7D .67.已知点()3,a 和()2,4a 分别在角β和角45β-︒的终边上,则实数a 的值是( )A .-1B .6C .6或-1D .6或18.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20479.若曲线21:C y x =与曲线()2:0xe C y a a=>存在公共切线,则a 的取值范围为( )A .()01,B .214e ⎛⎤ ⎥⎝⎦, C .2,24e ⎡⎤⎢⎥⎣⎦ D .2,4e ⎡⎫+∞⎪⎢⎣⎭ 10.已知是定义在上的奇函数,且;当时,,则( )A .-1B .0C .1D .211.若函数43219(),(,)42f x x ax x b a b R =++-∈仅在0x =处有极值,则a 的取值范围为( ) A .[2,2]- B .[1,1]- C .(2,2)-D .[1,4]-12.已知集合则( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
13.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________. 14.若直线21y x =-是曲线ln y ax x =+的切线,则实数a 的值为_______.15.小王同学骑电动自行车以24/km h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,20min 后到点B 处望见电视塔在电动车的北偏东75︒方向上,则电动车在点B 时与电视塔S 的距离是__________km .16.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2 的点有______个. 三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数,).当时,求直线的普通方程及曲线的普通方程;过点的直线交曲线于两点,若,求线段的长.18.(12分)某工厂在两个车间A ,B 内选取了12个产品,它们的某项指标分布数据的茎叶图如图所示,该项指标不超过19的为合格产品.从选取的产品中在两个车间分别随机抽取2个产品,求两车间都至少抽到一个合格产品的概率;若从车间A ,B 选取的产品中随机抽取2个产品,用X 表示车间B 内产品的个数,求X 的分布列与数学期望.19.(12分)设数列{}n a 满足()*1141,4n n a a n N a +==∈-求证:数列12n a ⎧⎫⎨⎬-⎩⎭是等差数列;设221n n n a b a -=,求数列{}n b 的前n 项和为nT.20.(12分)已知等差数列{}n a 的前n 项的和为nS ,35a =,10100S =.求数列{}n a 的通项公式;设2(5)n n b n a =+,记数列{}n b 的前n 项和为n T ,求n T .21.(12分)选修4-4:坐标系与参数方程在直角坐标版权法吕,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标方程为.写出的直角坐标方程;为直线上一动点,当到圆心的距离最小时,求点的坐标.22.(10分)求下列函数的解析式:已知()()221121f x f x x ---=-,求二次函数()f x 的解析式;已知)1fx x=,求()f x 的解析式.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A 2.D 3.D 4.C 5.A 6.D 7.B 8.C 9.D 10.A 11.A 12.A二、填空题:本题共4小题,每小题5分,共20分。
13.跑步 14.1. 15.4216.3三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(1);(2)【解析】【分析】(1)利用代入消参法与平方消参法,得到直线的普通方程及曲线的普通方程;;(2) 将直线参数方程代入得,利用韦达定理表示即可. 【详解】(1)解:当时,直线方程为消参数得:又由得.(2)解:将直线参数方程代入得,由韦达定理可得:,,依题意,,,又由,解得,所以,所以,.【点睛】过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0),若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.18.(1)5584(2)见解析【解析】【分析】(1)利用茎叶图,求出两个车间的产品数,然后求解概率.(2)写出X的所有可能取值并求出取每个值时对应的概率,得到分布列,然后求解期望即可. 【详解】(1)由茎叶图知,车间A 内合格的产品数为4,车间B 内合格的产品数为2,则所求概率22422284551184C C P C C ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭. (2)由题意知,X 的所有可能取值为0,1,2.则()2821214033C P X C ===,()114821216133C C P X C ===,()242121211C P X C ===, 所以X 的分布列为所以()0123333113E X =⨯+⨯+⨯=. 【点睛】本题考查茎叶图的应用,考查离散型随机变量的分布列以及期望的求法,考查计算能力. 19.(1)详见解析;(2)21n nT n n =++. 【解析】 【分析】 (1)由144n n a a +=-可得21242n n a a -=--为常数,从而可得结果;(2)由(1)知2,1n n a n =+则()()222142121n n n a n b a n n -==-+ ()()111111212122121n n n n ⎛⎫=+=+- ⎪-+-+⎝⎭,利用分组求和法与裂项相消法求和即可. 【详解】(1)11411,42n n n n a a a a ++=∴---Q 114224n na a =----4211242242n n n n n a a a a a --=-==----为常数又1111,1,2a a =∴=-∴-Q 数列12n a ⎧⎫⎨⎬-⎩⎭是以1-为首项12-为公差的等差数列. (2)由(1)知()11111,222n n n a +⎛⎫=-+--=- ⎪-⎝⎭ 222,11n na n n ∴=-=++ ()()()2221442122121212n n n na n nb n a n n n -+∴===--+ ()()111111212122121n n n n ⎛⎫=+=+- ⎪-+-+⎝⎭1231111111112335572121n n T b b b b n n n ⎛⎫∴=++++=+-+-+-++- ⎪-+⎝⎭L L11122121nn n n n ⎛⎫=+-=+ ⎪++⎝⎭ 所以,数列{}n b 的前n 项和为21n nT n n =++. 【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误. 20.(1)数列{}n a 的通项公式为21n a n =- (2)()()3234212n n T n n +=-++ 【解析】试题分析:(1)建立方程组11251045100a d a d +=⎧⇒⎨+=⎩ 11,2a d ==⇒ 21n a n =-; (2)由(1)得:()211121522n b n n n n ⎛⎫==- ⎪-++⎝⎭进而由裂项相消法求得()()3234212n n T n n +=-++.试题解析:(1)设等差数列{}n a 的公差为d ,由题意知11251045100a d a d +=⎧⎨+=⎩ 解得11,2a d ==.所以数列{}n a 的通项公式为21n a n =- (2)()()21111215222n b n n n n n n ⎛⎫===- ⎪-+++⎝⎭∴11111111111232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111112212n n ⎡⎤=+--⎢⎥++⎣⎦()()3234212n n n +=-++21.(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)由,得,从而有,所以(Ⅱ)设,又,则,故当时,取得最小值,此时点的坐标为.试题解析:(Ⅰ)由,得,从而有 所以 (Ⅱ)设,又,则,故当时,取得最小值,此时点的坐标为.考点:1.极坐标系与参数方程;2.点与圆的位置关系. 22.(1)()24213f x x x =++(2)()()()211f x x x =+≥- 【解析】 【分析】(1)设()()20f x ax bx c a =++≠,利用待定系数法得到关于,,a b c 的方程组,求解方程组可得二次函数的解析式为()24213f x x x =++. (2)令1t x =,1t ≥-,利用换元法可得函数的解析式为()()()211f x x x =+≥-.【详解】(1)设()()20f x ax bx c a =++≠,则()()()2111f x a x b x c -=-+-+,()()()2111f x a x b x c -=-+-+,所以:()()()()2222211242222223321f x f x ax ax a bx b c ax ax a b bx c ax a b x a b c x ---=-++-+--++-+=--+-+=-,,所以223031a ab a bc =⎧⎪-=⎨⎪-+=-⎩,解得2431a b c =⎧⎪⎪=⎨⎪=⎪⎩所以()24213f x x x =++.(2)令1t x =-,1t ≥-,则()21x t =+,()()()211f t t t ∴=+≥-.()()()211f x x x ∴=+≥-.【点睛】求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(3)方程法:已知关于f(x)与1f x ⎛⎫⎪⎝⎭或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x). 高考模拟数学试卷本试题卷包括选择题、填空题和解答题三部分,时量120分钟。