用两片74LS190芯片设计一个计数器和倒数器
任意进制计数器的设计
任意进制计数器的设计【摘要】计数器集成芯片一般有4位二进制、8位二进制或十进制计数器,而在实际应用中,往往需要设计一个任意n进制计数器,本文给出它的设计方法和案例。
【关键词】计数器;清零一、利用反馈清零法获得计数器1 集成计数器清零方式异步清零方式:与计数脉冲cp无关,只要异步清零端出现清零信号,计数器立即被清零。
此类计数器有同步十进制加法计数器ct74ls160、同步4位二进制加法计数器ct74ls161、同步十进制加/减计数器ct74ls192、同步4位二进制加/减计数器ct74ls193等。
同步清零方式:与计数脉冲cp有关,同步清零端获得清零信号后,计数器并不立刻被清零,只是为清零创造条件,还需要再输入一个计数脉冲cp,计数器才被清零。
属于此类计数器有同步十进制加法计数器ct74ls162、同步4位二进制加法计数器ct74ls163、同步十进制加/减计数器ct74ls190、同步4位二进制加/减计数器ct74ls191等。
2 反馈清零法对于异步清零方式:应在输入第n个计数脉冲cp后,利用计数器状态sn进行译码产生清零信号加到异步清零端上,立刻使计数器清零,即实现了n计数器。
在计数器的有效循环中不包括状态sn,所以状态sn只在极短的瞬间出现称为过渡状态。
对于同步清零方式:应在输入第n-1个计数脉冲cp后,利用计数器状态sn-1进行译码产生清零信号,在输入第n个计数脉冲cp 时,计数器才被清零,回到初始零状态,从而实现n计数器。
可见同步清零没有过渡状态。
利用计数器的清零功能构成n计数器时,并行数据输入端可接任意数据,其方法如下:①写出n计数器状态的二进制代码。
异步清零方式利用状态sn,同步清零方式利用状态sn-1。
②写出反馈清零函数。
③画逻辑图。
例1 试用ct74ls160的异步清零功能构成六进制计数器。
解:①写出sn的二进制代码。
sn=s6=0110②写出反馈清零函数。
③画逻辑图。
如图1所示。
74LS190内部功能电路设计报告
成绩评定表课程设计任务书摘要74LS190电路是十进制同步可逆计数器,它是单时钟控制的,能够完成置数、加减计数、保持功能,还有进位或借位、级联等功能。
本文详细介绍了依据功能要求74ls190内部电路方案设计的过程。
并在此基础上将整体电路分为加法模块、减法模块、RC信号产生模块、进位借位等主要功能模块。
实现中采用Verilog HDL描述、ModelSim进行功能仿真、通过Design Compiler进行逻辑综合,然后在Cadence公司的encounter13.1上完成布局布线并输出网表,最后再用Modelsim进行后仿真,验证设计的功能与时序的正确性。
关键词Verilog HDL;FPGA;仿真;综合;74LS190可逆计数器;PR目录引言 (1)1 总体电路结构设计 (2)1.1 电路功能与性能 (2)1.2 主要调度算法 (2)1.3 电路接口 (3)1.4 电路功能框图 (3)1.5 74ls190电路原理框图 (4)2 模块设计 (5)2.1 加、减法计数器模块设计 (5)3 设计仿真 (6)3.1 仿真的功能列表 (6)3.2 仿真平台构建和仿真结果 (6)3.2.1 仿真平台与激励 (6)3.2.2 电路功能仿真结果 (7)4 约束及综合实现 (8)4.1 约束策略 (8)4.2 脚本 (8)4.3 综合文件 (10)4.4 综合过程 (11)5 布局布线 (13)5.1 文件准备 (13)5.2 布局布线过程 (13)5.3 物理验证 (15)6 后仿真 (18)总结 (19)参考文献 (20)附录A 电路源代码 (21)附录B 顶层设计源代码 (22)附录C 设计约束代码 (24)附录D IO文件代码 (26)引言随着可编程器件FPGA/CPLD成本的逐渐降低,以及开发测试技术的日益普及,FPGA/CPLD以其较好的集成度和稳定性、可编程实现与升级的特点,在电子设计领域得到了越来越多的应用。
两位同步十进制可逆计数器的设计综述
湖北师范学院文理学院信息工程系2010级电子信息工程专业综合课程设计(一)文理学院综合课程设计(一)Integrated Curriculum Design(1)两位同步十进制可逆计数器的设计1 设计目的(1)熟悉各种触发器的使用及时序逻辑电路的设计方法;(2)掌握中规模集成十进制可逆计数器74LS192的逻辑功能和使用方法;(3)了解计数器的功能扩展及显示器的应用和它们的运行过程中是如何实现相关功能的。
2 设计思路第一步:将两片74LS192进行级联,用“反馈清零法”设计一个两位十进制加法计数器,反馈清零信号取自输出端Q0 ~Q3 ;第二步:将两片74LS192进行级联,用“反馈置数法”设计一个两位十进制减法计数器,反馈置数信号取自计数器最高位的借位端TCD;第三步:将上述加、减计数器电路结合起来,即初步构成一个加/减两位十进制可逆计数器。
余下的问题就是在加/减可逆计数条件下,如何切换计数器最低位的计数脉冲输入端CPD、CPU的信号。
经过分析,这一功能通过单刀双掷开关即可实现。
整个可逆计数器电路(不包括数字显示部分)的设计框图如下图图1(可逆计数器设计框图)3 设计过程整个设计可分为三个部分,具体如下:第一部分:提供持续的脉冲信号;第二部分:计数单元的设计;第三部分:用两个74LS192组成两位十进制可逆计数器。
其中第二部分由74LS192双十钟方式的可逆计数器组成,其引脚图如下图2所示,功能表如下表1所示:图2(74LS192的引脚图)表1(74LS192的功能表)第三部分的设计框图如下图3所示:图3(两个74LS192组成十进制可逆计数器)低位计数器的CPU 端与计数脉冲输入端相连,进位输出端与高一位计数器的CPU 端相连3.1方案论证通过仿真软件进行实际验证,改变脉冲信号进行计数,通过开关控制,看是否能实现相关功能,论证方案:将线路处于工作状态,调节开关置零,然后进行置数,将输入端置为0111,拨动开关使电路进行加计数,当加到99时自动置零,然后将开关调置另一边进行减计数。
交通灯控制逻辑电路设计课程设计
电工学(少学时)课程设计中国人民公安大学交通灯控制逻辑电路设计设计要求和技术指标1、技术指标:设计一个十字路口的交通灯控制电路,每条道路上各配有一组红、黄、绿交通信号灯,其中红灯亮,表示该道路禁止通行;黄灯亮表示该道路上未过停车线的车辆禁止通行,已过停车线的车辆继续通行;绿灯表示该道路允许通行。
该电路自动控制十字路口两组红、黄、绿交通灯的状态转换,实现十字路口自动化。
2.、设计任务与要求一.基本功能1.设计一个十字路口的交通灯控制电路,要求甲车道和乙车道两条交叉道路上的车辆交替运行,每次通行时间都设为25秒;2.要求黄灯先亮5秒,才能变换运行车道;3.黄灯亮时,要求每秒钟闪亮一次。
二.基本扩展功能1.信号灯的倒计时2.进行数字显示三.特色扩展功能1.定时控制信号周期。
实际应用:我们灯控路口的每天都存在着低峰时段(如夜间),不需要设置信号灯的周期,以便节省能源。
我们设计在一个周期的某一时间段内,将交通信号灯自动关闭。
(第8个周期运行,第1-7个周期停止运行)实现手动对关闭周期的时间控制。
(周期在20和40之间通过开关控制)2.定时控制信号周期,实现在一个时段内的不对称周期。
实际应用:我们灯控路口的每天都存在着某时段(如两个车道中的一个车道需要长周期),便于交通。
我们设计在一个周期的某一时间段内,将交通信号灯变为不对称的信号(A 车道为70秒,B车道为30秒)。
暂时设置为(第8个的半个周期(30秒)(自动设置为半个周期)运行,加第7个的上半周期(70秒),形成一个不对称周期。
第7个下半周期和1-6个周期正常运行)目录一、交通灯的组成 (4)二、单元电路的设计 (7)1、秒脉冲发生器 (7)2、定时器 (8)3、控制信号发发生器 (10)4.控制绿灯显示器 (13)5.控制器 (14)6、附加功能(1) (17)7、附加功能(2) (18)三、体会总结...................................................................... .. (14)四、鸣谢...................................................................... . (16)五、参考文献...................................................................... (17)一.交通灯的组成交通灯控制系统的原理框图如图12、1所示。
数字电路课程设计_24秒倒计时
赣南师院物理与电子信息学院数字电路课程设计报告书姓名:班级:学号:时间:图1 总原理框图1.1 555定时器555定时器是一种多用途的数字-模拟混合集成电路,用它可以构成施密特触发器、单稳态触发器和多谐振荡器。
本设计用LM555CM定时器设计一个多谐振荡器给电路提供脉冲信号,产生的脉冲信号用由74LS192进行计数,且设置周期为1秒。
1.1.1555定时器管脚名称和功能图2 555的管脚名称1脚为接地端,也是芯片的公共端。
2脚为C2比较器的信号输入端V2l又称为触发端。
它们输入的信号可以图3 555定时器的内部结构1.1.3 555定时器的功能表输入各级输出T 1状态D RV 1l V 2L V 1C V 2C触发器输出Q 1+n输出V OT 1状态0 ⨯ ⨯ ⨯ ⨯0 低电平 导通 1 (32)V CC (31V CC ) 0 1 0 低电平 导通 1 (32)V CC (31V CC ) 0 0 1 高电平 截止 1 (32)V CC (31V CC ) 1 0 0 高电平 截止 1(32)V CC (31V CC ) 11Q不变不变表1 555定时器的功能表1.274LS192十进制同步加减计数器图5 74LS192的内部结构图1.2.374LS192的功能表表2 74LS192的功能表1.374LS48七段译码器本设计中用共阴极七段显示数码管,为使七段显示数码管能正常工作,将74LS190连接到74LS48,74LS48将高低电平信号译成数码管可读信号,从而实现数字的显示。
1.3.174LS48的引脚排列图6 74LS48的引脚排列1.3.274LS48的真值表表3 74LS48的逻辑功能真值表1.4共阴极数码管数码管有共阴和共阳之分,本设计使用共阴数码管,因为译码器使用为74LS48,相应的数码管要用相应的译码器才能实现译码和显示数字。
1.4.1共阴数码管的引脚排列和简易符号图7 八段共阴数码管图8 数码管简易图1.4.2 共阴数码管的内部结构图9 共阴数码管内部结构2电路分析和仿真结果由上对各个元件进行的简介以及相关的原理图,下面对电路进行分部分析。
数电大作业(交通指示灯+电子琴+智能钟表)
数电大作业(交通指示灯+电子琴+智能钟表)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII(交通指示灯是可以实现的电子琴那个是不知道是否正确自己验证吧)(最后还有两个题一个是交通指示灯的有点复杂的另一个是时钟的个人感觉也是有点复杂)一、交通灯电路设计要求:1.设计一个十字路口交通灯控制电路,要求东西方向车道和南北方向车道两条交叉掉路上的车辆交替运行,每次通行的时间设置为24秒。
2.在绿灯转为红灯时,要求黄灯先亮4秒钟,才能变换运行车道。
3.可用LED模拟交通灯。
4.用倒计时显示每个状态的时间。
思路分析:1.电路有四个状态:东西绿南北红→东西黄南北红→东西红南北绿→东西红南北黄一共有四个状态循环,所以可以先用一个模4计数器来转换这四个状态。
设计电路如图所示:这里采用74LS163构成模4计数器,状态由 00 → 01 → 10 → 11 进行循环。
L1(东西绿):当00时亮,其他状态时不亮。
L2(东西黄):当01时亮,其他状态时不亮。
L3(东西红):当10、11时亮,00、01时不亮。
L4(南北绿):当10时亮,其他状态时不亮。
L5(南北黄):当11时亮,其他状态时不亮。
L6(南北红):当00、01时亮,10、11时不亮。
电路可以这样实现:B A Y0 Y1 Y2 Y30 0 0 1 1 10 1 1 0 1 11 0 1 1 0 11 1 1 1 1 0所以,Y0~Y4口接上非门后可以控制L1、L2、L4、L5。
L3=B,L6=B,所以将L3直接连在1B端,将1A端加非门与L6相连。
通过这样的连接便可以实现这四个状态的循环。
接下来要完成电路的计数部分:由于要实现倒计时显示,所以可以采用两片74LS190,该芯片是十进制加减法计数器。
通过网络找出一下功能表。
由于要实现倒计时,所以U/D端输入高电平,此时计数器进行减计数。
用两片74LS190,通过RC端进行异步级联,由于红灯28秒,黄灯4秒,绿灯24秒,所以各状态及持续时间如下:状态1:东西绿南北红(00):24秒状态2:东西黄南北红(01):4秒状态3:东西红南北绿(10):24秒状态4:东西红南北黄(11):4秒当状态转变时,给计数器置数即可。
数字电路红绿灯课程设计实验报告(改)
《数字逻辑电路设计》课程设计报告题目:红绿灯控制器指导教师:***设计人员:李璧江学号:**********班级:电信132日期:2015.5.7目录第I 条学习目的 (3)节1.01 设计起源 (3)节 1.02 设计目的 (3)第II 条设计任务书及基本要求 (3)节 2.01 基本要求 (3)节 2.02 设计任务书 (4)节 2.03 设计的一般方法及提示 (5)第III 条设计框图及整机概述 (5)第IV 条各单元电路的设计方案及原理说明 (6)节 4.01 计数器的连接和置数 (6)节 4.02 计数器的选通和转换处理 (8)节 4.03 交通灯的连接 (10)第V 条调试过程及结果分析 (11)节 5.01 计数器调试 (11)节 5.02 数码管显示调试 (11)节 5.03数码管的连接 (11)节 5.04 计数器的选通和转换调试 (12)第VI 条设计丶安装及调试中的体会 (14)第VII 条对本次课程设计的意见及建议 (15)第VIII 条附录 (16)节8.01 元器件清单 (16)节8.02 整机逻辑电路图 (16)第 I 条学习目的节 1.01设计起源数字电路发展到今天,其设计思想,方法,手段的变化。
节 1.02设计目的1、掌握数字系统的分析和设计方法;2、能够熟练地、合理地选用集成电路器件;提高电路布局、布线及检查和排除故障的能力;3、培养书写综合实验报告的能力。
第 II 条设计任务书及基本要求节 2.01基本要求1、根据设计任务要求,从选择设计方案开始,首先按单元电路进行设计,选择合适的元器件,最后画出总原理图。
2、通过仿真、电路调试,能实现相应的计时功能、逻辑功能,直至实现任务要求的全部功能。
对电路要求布局合理、走线清楚、工作可靠。
3、写出完整的课程设计报告,其中包括调试中出现异常现象的分析和讨论。
节 2.02设计任务书任务:红绿灯控制器基本设计要求:仿真实现,设计一个红绿灯控制器控制器设计应具有以下功能(1)东西方向绿灯亮,南北方向红灯亮。
74LS系列IC管脚图大全
74LS390 双十进制计数器
74LS624 压控振荡器
74LS625 压控振荡器
74LS626 压控振荡器
74LS627 压控振荡器
74LS628 压控振荡器
74LS629 压控振荡器
两片74LS283构成的8位加法器
74LS289 64位随机存取存储器
74LS289 64位随机存取存储器
74LS290异步2—5—10进制计数器
74LS290异步2—5—10进制计数器
74LS292 可编程分频器/数字定时器
74LS293 4位二进制计数器
74LS294 16位可编程模块
74LS374 八D触发器(三态同相)
74381
符号
A0 A1 A2 A3
B0 B1 B2 B3
C -1
S0 S1 S2
引脚排列
A 1 1 20 VCC
F0
B1
A2
F1
A0
B2
F2
B0
F3
S0
A3 B3
7 43 81
S1
C -1
S2
P
P
F0
G
G
F1
F3
GND 1 0 1 1 F 2
74LS381算术逻辑单元
74LS181 算术逻辑单元/功能发生器
74LS181 四位算术逻辑运算器
7 4 18 2
G 1 1 16 V cc
P1
P2
G0
G2
P0
C -1
G3
C0
P3
C1
P
G
G ND 8 9 C 2
74LS182先行进位发生器/超前进位产生器
VCC 2Ai 2Bi 2Ci-1 2Ci 2Si VCC2A 2B 2CIn 2COn+1 2F 74LS183 1COn+1 1A 1B 1CIn 1F GND 1Ai 1Bi 1Ci-1 1Ci 1Si 地
74LS190用法
参 数[2] 测 试 条 件‘190 ‘LS190
最小 最大 最小最大
单位
fmax 20 20 MHz
tPLH 33 33 ns
tPHL
LD → 任一Q
50 50 ns
tPLH 22 32 ns
tPHL
D→Q
15 23 ns
tPLH 11 14
tPHL
电平脉冲;行波时钟输出端( RC )输出一个宽度等于CP 低电
平部分的低电平脉冲。
利用 RC 端,可级联成N 位同步计数器。当采用并行CP
控制时,则将RC 接到后一级CT ;当采用并行CT 控制时,
则将RC 接到后一级CP。
引出端符号
CO/BO 进位输出/错位输出端
CP 时钟输入端(上升沿有效)
同时变化,从而消除了异步计数器中出现的计数尖峰。当计数
方式控制(U /D)为低电平时进行加计数,当计数方式控制
(U /D)为高电平时进行减计数。只有在CP 为高电平时CT 和
U /D 才可以跳变
190 有超前进位功能。当计数溢出时,进位/错位输出端
(CO/BO)输出一个低电平脉冲,其宽度为CP 脉冲周期的高
74××× 0~70℃
储存温度 -65℃~150℃
时序图
推荐工作条件:
54/74H190 54/74LS190 单位
最小 额定 最大最小 额定 最大
电源电压VCC 54 4.5 5 5.5 4.5 5 5.5
74 4.75 5 5.25 4.75 5 5.25
V
输入高电平电压ViH 2 2 V
V
2位倒计时报警器
姓名班级学号实验日期节次教师签字成绩2位十进制可调倒计时报警器1.实验目的倒计时十分重要,无论是对于日常生活、社会运转、体育赛事、科研控制等等都有很深的意义。
常用的有24秒倒计时器,90min倒计时器以及交通灯倒时器等。
在许多实际情况下线路可能极其复杂,本次试验为精简内容起见,设计了100s内任意调节倒时器,用以模拟实际情况并可灵活复用于生活中的要求较短计时情形。
若在本电路基础上再简单地级联两个74ls190计数器,即可实现100h内任意倒计时,有一定的的改进升级能力。
2.总体设计方案或技术路线本实验采用两个74ls190单时钟加减计数器作为计数基础。
应用其置数功能预先在计数开始前选定要倒计时的开始值,然后在倒计时到00(十进制)时,应用“或”逻辑将显示00(十进制)转化为终止信号并与输入进行与非使得时钟输入端停止输入,从而终止计数,停在00(十进制),并且应用一电平指示灯亮灯进行报警。
输入脉冲可由ne555振荡电路连接而成,但是需要进一步的周期校准,也可使用波形发生器直接输入较为标准的秒脉冲信号。
3.实验电路图在仿真电路图中将ne555组成的秒脉冲发生器简化为了一个方波发生器。
Ne555电路如下:4.仪器设备名称、型号实验电路板74ls190芯片,74ls00芯片,74ls20芯片,74ls32芯片,数码管各若干。
双踪示波器 数字万用表 函数信号发生器直流稳压电源、各型号电感电容以及导线等5.理论分析或仿真分析结果为方便测试起见,将8个置数开关直接用已定置数代替,将NE555芯片组成的秒脉冲发生电路用信号发生器代替。
可以看到,在~LOAD 信号接地,即接“0”时,系统将置数,可以由逻辑开关输入任意起始数值,并且将显示在两个数码管上。
此处选定70作为起始值。
100kΩKey=AXSC1运行一段时间之后:倒计时结束之后,数码管上显示值恒定为00,且报警灯常亮。
6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录)6.1计数测试:任意选取100以内3个数作为计数开始并进行测试,记录从测试结果6.2时钟测试对Ne555电路时钟信号进行标定,并用示波器检测结果,计算时钟信号精度7.实验结论本实验通过对数字电路相应芯片等的设计完成了100s内任意时间(以1s为最小单位)的倒计时功能。
交通信号灯控制器设计
前言红绿交通灯自动控制系统在城市十字(或丁字)路口有着广泛的应用。
随着社会的进步,人们生活水平的提高,私家车数量会不断增加,对城市交通带来前所为有的压力。
道路建设也将随之发展,错综复杂的道路将不断增多。
为维持稳定的交通秩序,红绿灯自动控制系统将得到更为广泛的应用。
无论在大城市还是中小城市街道的十字路口,每条道路都各有一组红,黄,绿信号灯,用以指挥车辆和行人有序地通过十字路口。
红灯(R)亮表示该道路禁止通过;黄灯(Y)亮表示停车;绿灯(G)亮表示允许通过。
交通灯控制器即交通信号定时控制系统就是用来自动控制十字路口三组红、黄、绿三色交通信号灯,指挥各种车辆和行人安全通信,以实现十字路口交通管理的自动化。
本设计应用基本数字电路知识,采用LED灯作红、绿、黄三交通灯,用数码管作同步倒计时显示,实现两方向通行时间相等的控制并配有倒计时。
目录第一章.系统概要 (3)1.1 设计思路 (3)1.2原理和总体设计方案 (4)1.2.1原理 (4)1.2.2总体设计方案构思 (4)1.3功能的划分及组成 (4)第二章.总的设计方案 (5)2.1设计任务及主要技术指标和要求 (5)2.2工作流程: (5)2.3工作流程图 (6)2.4方案设计 (6)2.4.1方案构思 (6)2.4.2方案的可行性论证 (6)第三章.单元电路设计 (7)3.1秒信号产生电路 (7)3.2主控电路(交通灯信号状态控制器设计) (8)3.2.1状态指令和编码 (8)3.2.2求交通灯控制函数及电路 (9)3.3定时译码显示系统的设计 (11)3.3.1定时电路 (11)3.3.2计数译码显示电路 (12)第四章元器件选择及介绍 (13)第五章.电路调试设计总结 (17)附录1:完整的设计电路图附录2:元器件清单参考文献交通信号灯控制器设计摘要:分析交通信号灯控制系统应用要求及设计原理,设计出能够满足实际应用要求的交通信号灯控制器。
通过采用数字电路对交通灯控制电路的设计,提出使交通灯控制电路用数字信号自动控制十字路口两组红、黄、绿交通灯的状态转换的方法,指挥各种车辆和行人安全通行,实现十字路口交通管理的自动化。
时序逻辑电路 课后答案
第六章 时序逻辑电路【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.3【解】驱动方程:11323131233J =K =Q J =K =Q J =Q Q ;K =Q ⎧⎪⎨⎪⎩ 输出方程:3YQ =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+11313131n 12121221n+13321Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +⎧=+=⎪=+=⊕⎨⎪=⎩e 电路能自启动。
状态转换图如图【题 】分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入逻辑变量。
图A6.3Y图P6.5【解】驱动方程: 1221212()D AQ D AQ Q A Q Q ⎧=⎪⎨==+⎪⎩输出方程: 21Y AQ Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+112n+1212()Q AQQ A Q Q ⎧=⎪⎨=+⎪⎩ 电路的状态转换图如图1图A6.5【题 】 分析图时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。
说明电路实现的功能。
A 为输入变量。
AY图P6.6【解】驱动方程: 112211J K J K A Q ==⎧⎨==⊕⎩输出方程: 1212Y AQ Q AQ Q =+将驱动方程带入JK 触发器的特性方程后得到状态方程为:n+111n+1212Q Q Q A Q Q ⎧=⎪⎨=⊕⊕⎪⎩ 电路状态转换图如图。
A =0时作二进制加法计数,A =1时作二进制减法计数。
01图A6.6【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
Y图P6.7【解】驱动方程: 001023102032013012301;;;J K J Q Q Q K Q J Q Q K Q Q J Q Q Q K Q==⎧⎪=•=⎪⎨==⎪⎪==⎩ 输出方程: 0123Y Q Q Q Q =将驱动方程带入JK 触发器的特性方程后得到状态方程为:*00*1012301*2023012*3012303()Q ()Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q⎧=⎪=++⎪⎨=++⎪⎪=+⎩ 设初态Q 1Q 3Q 2Q 1 Q 0=0000,由状态方程可得:状态转换图如图。
天数倒计时数字电子技术课程设计
综述计时器,是用特定的原理来测量时间的装置,在我们生活中随处可见,如电子秒表、微波炉倒计时器、比赛计时器等,本设计将采用555定时器、减法器、与门、或非门、LED数码显示管等器件,完成一个天数倒计时功能的设计,并用multisim软件进行仿真,确保计时器的可行性。
1.器件选择和基本电路1.1主要器件的选择本设计采用74ls190作为主要器件,74ls190是同步十进制加、减计数器,因设计需要,主要用其减计数功能。
74ls190的引脚排列和功能表见图1-1,功能表如图1-2图1-174ls190的引脚排列图1-274ls190的功能表1.2 脉冲发生电路脉冲发生装置主要由555定时器组成,555定时器是一种多用途的数字 - 模拟混合集成电路,利用它可以极方便地构成施密特触发器、单稳态触发器和多谐振荡器。
由于使用灵活、方便,所以555定时器在波形的产生与交换、测量与控制等许多领域中都得到了应用。
该设计用555定时器构成单稳态触发器,并可通过改变R1、R2和C2来控制输出频率。
555定时器的引脚排列如图1-3,用555定时器组成的脉冲发生装置如图1-4,该脉冲发生装置发出的脉冲如图1-5。
图1-3 555定时器的引脚排列U1LM555CM GND1DIS 7OUT 3RST 4VCC 8THR 6CON5TRI 2VCC5VC110nFXSC1ABG TR2100kOhm_5%C2100nFR140.2kOhm_1%图1-4 用555定时器组成的脉冲发生装置图1-5 脉冲发生装置发出的脉冲1.3 减计数器为了实现减计数的功能,由74ls190功能表可知,须使引脚5与11接高电平,引脚4接低电平,并通过引脚14输入脉冲,此处暂用V1代替。
同时,为了设置预置数为9,须将引脚9与15也接至高电平,预置输入端为二进制1001,即十进制的9。
由引脚3、2、6、7引出接线接至LED数码管的四个输入端上。
接线如图1-6所示。
四人智力抢答器课程设计报告
数字电子技术课程设计报告设计课题: 四人智力竞赛抢答器学院:专业: 电子信息工程班级: 2010级电信(1)班姓名:学号:日期 2012年 12月9日——2012年12月23日指导教师:摘要在各种智力竞赛场合,抢答器是必不可少的最公正的用具。
通过本学年的《数字电路技术》的学习我们知道了它的原理其实是比较简单的,主要就是通过四D触发器74LS175为中心构成编码锁存系统控制选手的抢答情况,再通过逻辑电路将输入开关、脉冲及输出LED灯、数码管和扬声器连接起来即可。
电路由主体电路和扩展电路两部分组成,主体电路主要由74LS175,即4D触发器来构成抢答锁存器,由主持人来控制74LS175的清零端。
当清零端为高电平“1”时,选手开始抢答,最先按键的选手相应的LED发光二极管发光,并且扬声器发出声音,同时,由4个Q及门电路组成的锁存电路来控制其他选手再按键时不再起作用。
扩展电路主要包括秒脉冲发生电路和定时电路,并且在设计中加入了报警电路,以提示选手和观众。
经Proteus仿真软件验证抢答器原理图无误,可实现设计所要求功能。
关键词:四人智力竞赛抢答器、74LS175、脉冲、锁存器目录1 设计任务及要求 (1)2 比较和选定设计的系统方案、画出系统框图 (1)2.1 方案比较 (1)2.2 系统框图 (3)3单元电路设计、参数计算和器件选择 (3)3.1抢答电路设 (3)3.2 定时电路设计 (6)3.3报警电路设计 (9)4完整的电路图及电路的工作原理 (10)4.1完整电路图 (10)4.2 工作原理 (11)5经验体会 (12)参考文献 (12)附录A:系统电路原理图 (13)附录B:元器件清单 (14)四人智力竞赛抢答器1 设计任务及要求(1)设计一个供四人参赛的抢答器,能准确分辨、记录第一个有效按下抢答键者,稍后的其他人按下开关则无效。
抢答器具有显示功能,即选手按动按钮,相应的LED发光二极管发光,同时扬声器发出声音。
15秒数显声响倒计时器
陕西理工学院课程设计报告课程:电子技术综合课程设计题目:数显、声响倒计时电路设计院系:班级:学号:姓名:指导老师:组别:任务书一、制作数显声响倒计时电路二、任务及要求:设计并制作一个数显、声响式倒计时电路。
要求如下:1、电路具有10~99秒可预置定时功能。
2、有两个数码管显示计时时间,用一只LED指示计时开始与结束。
按预置/开始按钮,数码管显示定时时间,LED不亮;再按预置/开始按钮,LED亮,倒计时开始。
3、倒计时结束时,计数器停止计数,LED不亮。
4、电路具有开机预置数功能。
5、电路具有最后三秒报时功能,要求响半秒、停半秒,共三次。
用压控陶瓷蜂鸣器作为电声元件。
6、自制本电路所用的直流电源和一秒信号源。
二、参考资料:1.《数字电子技术实验指导书》实验一,实验三,实验四,实验六以及实验七的相关内容。
2.《模字电子技术基础》课本3.《数字电子技术基础》课本4.上百度网站查阅相关芯片的工作情况,引脚图和功能表。
1.相关设计方案及抉择 (4)1.1方案一 (4)1.2方案二 (5)2.理论设计--单元电路与总电路设计6 2.1 5V电压源电路设计 (6)2.2 1s信号源设计: (7)2.3 计数器电路设计: (9)2.3.174ls190管脚图及功能简介92.3.2 电路连接概述 (10)2.4 显示电路 (11)2.5报警电路 (13)2.6 控制电路 (14)3.仿真调试 (15)3.1 软件介绍 (15)3.2 调试过程 (15)3.2.1 倒计时及停止电路调试.. 15 4.实验中出现的问题及解决方法.. 16 5.小结 (18)6.附录 (19)6.1 总体电路图 (19)6.2 元器件清单 (19)6.3 器件管脚图 (20)1.相关设计方案及抉择1.1方案一如图1.1信号由555定时器产生频率为1HZ ,占空比1/2的信号,由190构成 15进制计数器,由JK 触发器控制190和发光二极管的工作状态,由三态门控制停止电路和声控电路。
74ls190
74LS190 中文资料应用 pdf74LS190封装图管脚说明<P74LS190中文资料应用 pdf74LS190封装图管脚说明十进制同步加/减计数器54190/7419054LS190/74LS190190 为可预置的十进制同步加/ 减计数器,共有54190/74190,54LS190/74LS190 两种线路结构形式。
其主要电特性的典型值如下:型号 fc PD54190/74190 25MHz 325mW54LS190/74LS190 25MHz 100mW190 的预置是异步的。
当置入控制端( LD )为低电平时,不管时钟CP 的状态如何,输出端(Q0~Q3)即可预置成与数据输入端(D0~D3)相一致的状态。
190 的计数是同步的,靠CP 加在4 个触发器上而实现。
当计数控制端(CT )为低电平时,在CP 上升沿作用下Q0~Q3 同时变化,从而消除了异步计数器中出现的计数尖峰。
当计数方式控制(U /D)为低电平时进行加计数,当计数方式控制(U /D)为高电平时进行减计数。
只有在CP 为高电平时CT 和U /D 才可以跳变190 有超前进位功能。
当计数溢出时,进位/错位输出端(CO/BO)输出一个低电平脉冲,其宽度为CP 脉冲周期的高电平脉冲;行波时钟输出端( RC )输出一个宽度等于CP 低电平部分的低电平脉冲。
利用 RC 端,可级联成N 位同步计数器。
当采用并行CP控制时,则将RC 接到后一级CT ;当采用并行CT 控制时,则将RC 接到后一级CP。
引出端符号CO/BO 进位输出/错位输出端CP 时钟输入端(上升沿有效)CT 计数控制端(低电平有效)D0~D3 并行数据输入端LD 异步并行置入控制端(低电平有效)Q0~Q3 输出端RC 行波时钟输出端(低电平有效)U /D 加/减计数方式控制端极限值电源电压 7V输入电压54/74190 5.5V54/74LS190 7V工作环境温度54××× -55~125℃74××× 0~70℃储存温度 -65℃~150℃时序图推荐工作条件:54/74H190 54/74LS190 单位最小额定最大最小额定最大电源电压VCC 54 4.5 5 5.5 4.5 5 5.5 74 4.75 5 5.25 4.75 5 5.25V输入高电平电压ViH 2 2 V输入低电平电压ViL 54 0.8 0.774 0.8 0.8V输出高电平电流IOH -800 -400 uA输出低电平电流IOL 54 16 474 16 8mA时钟频率fcp 0 20 0 20 MHz脉冲宽度TW CP 25 25L__D_35 35ns建立时间 tset 20 20 ns保持时间 tH 0 0 ns计数允许时间tCC__T_40 ns逻辑图静态特性(TA 为工作环境温度范围)‘190 ‘LS190 单位参数测试条件【1】最小最大最小最大Iik=-12mA -1.5VIK输入嵌位电压Vcc=最小,Iik=-18mA -1.5V54 2.4 2.5VOH输出高电平电压Vcc=最小VIH =2V VIL=最大 IOH=最大74 2.4 2.7 V54 0.4 0.4VOL输出低电平电压Vcc=最小,VIH=2V VIL=最大,IOL=最大74 0.4 0.5 VC__T_II最大输入电1 0.3压时输入电流其余输入Vcc=最大VI=5.5V(LS190 为7V) 1 0.1mAC__T_IIH输入高电平120 60电流其余输入Vcc=最大VIH=2.4V(LS190 为2.7V) 40 20μAC__T_IIL输入低电平-4.8 -1.2电流其余输入Vcc=最大VIL=0.4V-1.6 -0.4mA54 -20 -65 -20 -100IOS输出短路电流Vcc=最大74 -18 -65 -20 -100mA54 99 35ICC电源电流Vcc=最大,所有输入接地74 105 35mA[1]: 测试条件中的“最小”和“最大”用推荐工作条件中的相应值。
3~9自动循环计数器
数字电子技术课程设计——自动循环计数器学院:信息科学与技术学院专业:电子信息工程班级:10级(1)班成员:杨骕2010508071段维俊2010508072页脚内容1一、设计任务:1. 用集成计数器实行3~9自动循环计数。
2. 电路能实现3~9加法和3~9减法循环计数。
3. 输出用数码显示。
二、总体设计思想:根据题目要求,系统可以划分为以下几个部分,基本思想如下:1、电源部分,由它向整个系统提供+5V电源。
2、单脉冲产生部分:功能是由它产生单个脉冲,为循环计数部分提供计数脉冲。
3、译码显示电路部分:计数器输出结果的数字显示。
4、加/减控制电路部分:实现加或减循环计数功能由控制部分完成。
5、可逆计数器部分:完成3~9的可逆加或减循环计数。
系统设计方框图如图1所示。
页脚内容2图1 3~9加/减可逆自动循环计数器系统设计方框图三、各个单元逻辑电路及其工作原理3.1、译码显示电路方案论证方案一:采用74LS47 TTL BCD—7段高电平有效译码/驱动器,数码管需选用共阳极数码管。
方案二:采用DCD-HEX——4段数码管,不需要译码器就能直接显示出结果。
确定方案:采用DCD-HEX——4段数码管。
3.2、加/减控制电路1、方案论证方案一:74LS192 TTL 可预置BCD双时钟可逆计数器。
方案二:74LS191 TTL 同步加/减计数器。
确定方案:经过比较,结合系统要求,决定采用方案二。
页脚内容32、控制部分及循环加减计数部分的设计同步十进制可逆计数器CT74LS192,逻辑功能示意图见图2。
图2 逻辑功能示意图3、74LS192功能表:输入输出逻辑功能CLK LD A B C D QA QB QC QD1 ** * * *0 0 0 0置00 0 1 0 1 0 1 0 1 0置数0 1* * * * 1 0 1 0保持页脚内容4表1 74LS192功能表4、74LS192主要逻辑功能:(1)异步置数:CR=0,LD=0, QA QB QC QD= A B C D(2)加计数:CR=0,LD=1, CPu=CP, CPd=1, QA QB QC QD按加法计数(3)减计数:CR=0,LD=1, CPu=1, CPd=CP, QA QB QC QD按减法计数5、经过调试以后,发现用74LS191来实现更为简便,于是又重新设计,采用方案一,具体操作如下:(1)集成十进制同步加/减计数器CT74LS191,逻辑功能示意图见图4。