高杆灯35米计算书
龙门架计算(35M)
龙门架计算书(35mT 梁龙门架)本龙门架横梁为6排双加强贝雷片组成,门架脚架由两根格构柱组成,门架采用两台电机驱动自行式移动系统。
对本门架进行如下简化计算,横梁拟用简支梁进行计算,脚架按受压格构柱进行计算,斜撑起稳定作用不作受力计算。
一、门架横梁计算 1、荷载计算横梁自重:m kg q /10272424654=÷= 天平及滑轮自重:kg P 9801= 35mT 梁自重(一半):kg P 545602= 23(1l P M ==4111l P M =4122ql M =8123M =∑m kg M ⋅=⨯=5808983872655.1max(2)((V V P V =⎢⎣⎡=⎢⎣⎡=V max =46342840235706cm W =⨯⨯=考虑6排贝雷片荷载不均匀系数为0.922max 1507428409.010580898kw M =⨯⨯==σ剪力较小完全满足要求,计算略。
5、上弦杆受压局部稳定验算一片双加强贝雷上弦受压压力为kg N 76797248.251507=⨯⨯=422067548.2526.3962cm I x =⨯⨯+⨯=296.50248.25cm A =⨯=()296.501.452.16.254I y =⨯++⨯=cm A I r x x 37.696.502067===cm AI r y y 80.596.501712===贝雷片横向每3.0M 设一支撑架,所以取cm lox cmloy 75300==x y y x x r loy r lox λλλ>======7.518.53008.1137.675由794.07.51==ϕλ查表得稳定系数y[]2/2450189896.50794.076797cm kg kg A N =<=⨯==σϕσ 横梁上弦压杆稳定符合要求 龙门架跨度23m 小于20×1.2=24m 6、横梁挠度计算取集中荷载作用于跨中进行计算单片贝雷片惯性矩 4250500cm I =弹性模量 26/101.2cm kg E ⨯=6片双加强贝雷惯性矩 4610006.325050012cm E ⨯=⨯= 按简支梁进行计算:(1)在集中力作用下(P 1+P 2)挠度cm EI Pl f 23.2101.2210503.148230055540486633=⨯⨯⨯⨯⨯⨯== (2)在均匀自重荷载作用下挠度以上挠度合计cm EI ql f 59.010503.1101.2384230027.105384566442=⨯⨯⨯⨯⨯⨯==cm f f f 82.259.023.221=+=+=12V 1=M M M max Ⅰ25自重弯矩略横梁轴力 kg V N 724491.80cos 4585191.80cos 1=︒⨯=︒⋅= 最大剪力 kg Q 30183905526191.80sin 45851=⨯-︒⨯= 3、强度计算 ⑴弯应力222max /2100/16918.8021013582cm kg cm kg W M w <=⨯==σ⑵剪应力22/1250/7558.025230183cm kg cm kg d h Q <=⨯⨯=⋅≈τ⑶正应力2/7551.4827244cm kg A N N =⨯==σ 门架脚架横梁符合要求 ㈡脚架计算门架的脚架所受压力 N=45851kg 1.强度计算22/2100/1303797.8445851cm kg cm kg A N <=⨯==σ 符合要求2.整体稳定验算1'44⨯+I =I =I A x y x .8496.394⨯+⨯=I x 46148cm x =I取cm loy lox 750==79.846148⨯===A I i i xy x 572.13750====x y x i lox λλ 4402=⋅+==λλx A x x oy ox 根据ox λ818.0=ϕ22/2100/159479.84818.045851cm kg f cm kg A N =<=⨯⨯==ϕσ整体稳定符合要求。
升降式高杆灯抗风分析和计算-周正明
高杆灯灯杆的构造:高杆灯的灯杆一般为圆柱型独体结构,由高强度优质钢板 经剪制、折弯、自动焊接成形。一般分为2~4段,上部的截面小,下部的截面大, 上一段的壁厚度较下一段薄。高杆灯灯杆高度一般在20~40m,锥度一般在10~15‰ 左右, 杆壁厚度8mm~16mm; 灯杆的外径一般为杆高的1/50~1/40; 当杆高大于30m时, 灯杆的外径一般为杆高的1/40~1/30。灯杆的外形一般采用圆形或正多边形(一般大 于12边) 。升降式高杆灯灯杆体内安装有电动升降系统由电动马达、卷扬机、热浸 锌钢丝绳及电缆等组成,升降速度为每分钟 3 至 5米。 高杆灯灯盘的构造: 灯盘造型可根据用户要求、 周围环境、 照明需要具体而定, 常见的造型形式有飞碟式,斗笠式,牵牛花式等十几种;内部灯具多由泛光灯和投 光灯组成 , 光源一般采用高压钠灯和金卤灯 , 照明半径达 60 米 高杆灯基础的构造:高杆灯基础采用钢筋混凝土+圆板。埋深一般不少于3m(根据
地质条件,一般为杆高的10%~15%)与灯杆用法兰盘连接。 高杆灯灯杆与混凝土柱墩的连接,一般采用上下两块法兰盘直接接触的方式。下 法兰与地脚螺栓焊接在一起,增加下法兰,可以改善混凝土的浇捣条件,方便灯杆的 安装。 地脚螺栓和坚强筋应为双数, 一般不少于6个。由于施工安装对灯杆的垂直精度要 求高,可将钢筋混凝土基础顶面的法兰盘外露,灯杆安装好后,进行防腐处理后再用 混凝土等材料包封严密。 二、升降式高杆灯抗风分析与计算 风荷载对柔度较大的高杆灯杆体结构起着决定的作用。顺风向的风压由稳定风 压和脉动风压两部分组成,前者长达几分钟,而且周期性地作用在杆体上,是静力; 后者周期仅几秒,风压不规则变化地作用在杆体上,因而产生振动,它的性质是动力 的。 根 据 《 高 耸 结 构 设 计 规 范 》 GB50135-2006 中 的 规 定 , 风 荷 载 标 准 值 Wk= Wo*β z*μ s*μ z, 即:风载荷标准值=基本风压*风振系数*风载体形系数*风压高度变化系数。 式中 Wk—风荷载标准值(kN/m2); 系数; μ s—风荷载体型系数; Wo—基本风压(kN/㎡)β z—高度 z 处的风振 μ z—风压高度变化系数。
高杆灯基础计算书
中杆灯支架基础计算一、设计参数钢筋混凝土容重:γ砼=25 kN/m3,钢容重:γ钢=78.5 kN/m3;地下水位按地面以下0.5m考虑;50年一遇风压:0.60 kN/m2;灯具总重:3.8 吨二、计算简图三、荷载计算1 恒载灯具共设8个投光灯,均布在灯杆顶部圆盘上G1=3.8*10=38 kN2 活载灯杆风荷载灯杆半高处截面外径d=(250+560)/2=405mm风压高度变化系数:地面粗糙类别B 类,灯杆高度H=30m ,μz =1.39 风荷载体形系数:μzw 0d 2=1.39*0.60*0.405*0.405=0.137≥0.015, 且⊿≈0,H/d =30/0.405=74>25,故μs =0.6 H 2/d=30*30/0.405=2222>700 T=0.25+0.99*10-3*H 2/d=2.45s >0.25s根据规范应考虑风压脉动对结构产生顺风向风振的影响。
脉动分风荷载的空间相关系数确定:根据规范,对迎风面宽度较小的高耸结构,水平方向相关系数可取ρx=1 竖直方向的相关系数z ρ==0.8427脉动风荷载的背景分量因子1a z Bz kH x zzφρρμ= 对于迎风面和侧风面的宽度沿高度按直线变化的高耸结构,应乘以修正系数B v θθ、 ()(0)B H B =0.447,v θ=1.928,()(0)B B z B θ=,按下表确定: 表1 修正系数B θ表2脉动风荷载的背景分量因子Bz脉动风荷载的共振分量因子115R x x ==>R=2.876z 高度处的风振系数z β取值见下表:表3 风振系数z β取值灯具风荷载表4 灯具风荷载总水平力F=F1+F2=13.68 KN总弯矩M=M1+M2 =257.73 KN*m总竖向力G=G1 =38 KN“圆钢管柱外露刚接”节点计算书一. 节点基本资料采用设计方法为:常用设计节点类型为:圆钢管柱外露刚接柱截面:PIPE-560*10,材料:Q235柱与底板全截面采用对接焊缝,焊缝等级为:二级,采用引弧板;底板尺寸:L*B= 850 mm×850 mm,厚:T= 40 mm锚栓信息:个数:12采用锚栓:双螺母焊板锚栓库_Q235-M42锚栓垫板尺寸(mm):B*T=90×20底板下混凝土采用C40节点前视图如下:节点下视图如下:二. 验算结果一览验算项数值限值结果最大压应力(MPa) 9.13 最大19.1 满足受拉承载力(kN) 136 最大157 满足混凝土要求底板厚(mm) 24.6 最大40.0 满足锚栓要求底板厚(mm) 17.4 最大40.0 满足底板厚度40.0 最小24.6 满足等强全截面 1 满足板件宽厚比16.1 最大18.0 满足板件剪应力(MPa) 37.1 最大125 满足焊缝剪应力(MPa) 46.4 最大160 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足基底最大剪力(kN) 11.8 最大165 满足三. 混凝土承载力验算控制工况:1.2D+1.4LN=-45.6 kN;M x=0 kN·m;M y=364 kN·m;偏心受压底板计算:这里偏心距e为:e= M/N =364000000/45600=7982.456mm > 119.749mm所以按部分截面混凝土受压,部分锚栓受拉来计算(通过对混凝土应力积分): δmax=9.127N/mm2中性轴的坐标: x = 128.949最大锚栓的拉力:NTa = 136439.829N锚栓总拉力:Ta = 620441.082 N轴力N大小为:N = 45600 N混凝土的总合压力:F = 666041.082N外力对中性轴的弯矩:M外= 358119947.929N.mm 按(fN(e-x)方式求出)锚栓的合弯矩:Ma = 243227678.915N.mm混凝土的合弯矩:Mc = 114892231.881N.mm混凝土抗压强度设计值:f c=19.1N/mm2底板下混凝土最大受压应力:σc=9.127N/mm2≤19.1,满足四. 锚栓承载力验算控制工况:1.2D+1.4LN=-45.6 kN;锚栓最大拉力:N ta=136.44 kN(参混凝土承载力验算)锚栓的拉力限值为:N t=156.927kN锚栓承受的最大拉力为:N ta=136.44kN≤156.927,满足五. 底板验算1 构造要求最小底板厚度验算一般要求最小板厚:t n=20 mm柱截面要求最小板厚:t z=10 mm构造要求最小板厚:t min=max(t n,t z)=20 mm≤40,满足2 混凝土反力作用下的最小底板厚度计算非抗震工况底板下最大压应力:σcm=9.127 N/mm2底板厚度验算控制应力:σc=9.127 N/mm2沿圆周布置的加劲肋之间按三边支承板简化计算:折算跨度:a2=3.142×850/12=222.529 mm悬挑长度:b2=0.5×(850-560)=145 mm分布弯矩:M1=0.08119×9.127×222.529×222.529 ×10-3=0.0367 kN·m 得到底板最大弯矩区域的弯矩值为:M max=0.0367 kN·m混凝土反力要求最小板厚:T min=(6*M max/f)0.5=(6×36.698/205×103)0.5=32.773 mm≤40,满足3 锚栓拉力作用下的最小底板厚度计算非抗震工况锚栓最大拉力:T am=136.44 kN底板厚度验算控制拉力:T a=136439.829 kN锚栓中心到柱底截面圆边缘距离:l a1=1202.082-560-50=240 mml a1对应的受力长度:l l1=2×240=480 mm锚栓中心到左侧加劲肋距离:l a2=(0.5×560+240)×0.2588=134.586 mml a2对应的受力长度:l l2=134.586+min(50,134.586+0.5×42)=184.586 mm锚栓中心到右侧加劲肋边距离:l a3=134.586 mml a3对应的受力长度:l l3=l l2=134.586+min(50,134.586+0.5×42)=184.586 mm弯矩分布系数:ζ1=240×134.586×134.586/(240×184.586×184.586+480×134.586×184.586+480×184.586×13 4.586)=0.1357得最大弯矩分布系数为:ζ=0.1357锚栓拉力要求的最小板厚:t min=(6×136.44×0.1357/205×103)0.5=23.278 mm≤40,满足六. 对接焊缝验算柱截面与底板采用全对接焊缝,强度满足要求七. X向加劲肋验算非抗震工况下锚栓最大拉力:T am=136.44 kN加劲肋承担柱底反力区域面积:S r=0.01 cm2非抗震工况下加劲肋承担柱底反力:V rc=σcm*S r=9.127×0.01×100=0.009127 kN板件控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN计算宽度取为上切边到角点距离:b r=167.797 mm板件宽厚比:b r/t r=167.797/16=10.487≤18,满足扣除切角加劲肋高度:h r=250-20=230 mm板件剪应力:τr=V b/h r/t r=136.44×103/(230×16)=37.076 Mpa≤125,满足焊缝控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN角焊缝剪应力:τw=V r/[2*0.7*h f*(h r-2*h f)]=136.44/[2×0.7×10×(230-2×10)]=46.408 MPa≤160,满足八. 柱脚抗剪验算控制工况:1.35D+0.84LN=-51.3 kN;V x=11.76 kN;V y=0 kN;锚栓所承受的拉力为:T a=360.206 kN柱脚底板的摩擦力:V fb=0.4*(-N+T a)=0.4×(51.3+360.206)=164.602 kN柱脚所承受的剪力:V=(V x2+V y2)0.5=(11.762+02)0.5=11.76 kN≤164.602,满足独立桩承台设计(ZCT-4)项目名称构件编号日期设计校对审核执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2001), 本文简称《荷载规范》《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》-----------------------------------------------------------------------1 设计资料1.1 已知条件承台参数(3 桩承台第 1 种)承台底标高: -2.000(m)承台的混凝土强度等级: C25承台钢筋级别: HRB335配筋计算a s: 35(mm)桩参数桩基重要性系数: 1.0桩类型: 泥浆护壁钻(冲)孔桩承载力性状: 摩擦桩桩长: 25.000(m)是否方桩: 否桩直径: 600(mm)桩的混凝土强度等级: C25单桩极限承载力标准值: 558.000(kN)桩端阻力比: 0.400均匀分布侧阻力比: 0.400是否按复合桩基计算: 否桩基沉降计算经验系数: 1.000压缩层深度应力比: 20.00%柱参数柱宽: 1050(mm)柱高: 1050(mm)柱子转角: 0.000(度)柱的混凝土强度等级: C25柱上荷载设计值弯矩M x: 333.000(kN.m)弯矩M y: 0.000(kN.m)轴力N : 45.600(kN)剪力V x: 0.000(kN)剪力V y: -17.000(kN)是否为地震荷载组合: 否基础与覆土的平均容重: 20.000(kN/m3)荷载综合分项系数: 1.20土层信息地面标高: 0.000(m)1.2 计算内容(1) 桩基竖向承载力计算(2) 承台计算(受弯、冲切、剪计算及局部受压计算)(3) 软弱下卧层验算(4) 桩基沉降计算2. 计算过程及计算结果2.1 桩基竖向承载力验算(1) 桩基竖向承载力特征值R计算5.2.2及5.2.3R a——单桩竖向承载力特征值;Q uk——单桩竖向极限承载力标准值;K ——安全系数,取K=2。
高杆灯地基的基础设计计算书
高杆灯地基的基础设计草图见图1。
图1 地基设计的总体草图高杆灯的重力2G=56.36kN,风荷载总弯矩2M4=555.66kNm(1)基础的总重量GJGJ=[(5×5×1-1.22×3.14×2.6)×2.4+(5×5×1-1.22×3.14×2.6)×1.8]×9.8=1240.7kN式中:2.4—钢筋结构后C20砼浇的密度;1.8—掩埋土层的密度;×9.8—重量kg化为kN(2)基础地面处C20砼浇层的抵抗矩WW=(2/12)õB3=(2/12)×4.53=10.74m3式中:B—边长,取4.5m.(3)标准地基的承载值90kN/m的设计值按f=1.1fk计算f=1.1×90=99kN/m2(4)基础的平均压强按P=2G+GJA计算,A—基础底面积∴P=56.36+1022.44.52=53.27kN/m2<90kN/m2(标准承载)(5)基础边缘有可能产生的最大压强PmaxPmax=P+2M4W4(原公式:Pmax=P+Me+2M4W)其中:Me—高杆灯杆体部分重心不在基础中心的偏心弯矩,然此设计中重心皆在同一铅直线上,所以偏心弯矩Me=0,即Pmax=P+2M4W=53.27+555.6610.74=105kN/m2(6)根据GBJ7—89第5.1.1各建筑地基基础设计规范,应按基础平均压强P≤f,Pmax≤1.2f验算。
∵P=53.27kN/m2<f(99kN/m2)又:Pmax=105kN/m2<1.2×99所以上述35m高杆灯的基础设计是完全符合规范的。
高杆灯地基承载力的验算。
30m高杆路灯灯杆强度计算
30m 高杆路灯灯杆强度计算1、已知条件1.1 最大风速 Vm=36m/s1.2 材料 材质符合GB700-88(A3)1.3 许用应力[σ]=235Mpa(《机械设计手册》) 1.4 弹性模量:E=2.06×1011N/M 2(《机械设计手册》)1.5 灯管外形为选用A3钢板卷制焊接,梢径φ1=0.35m,根径m 65.02=φ,分三节制作,壁厚分别为:8、10、12mm. 1.6 灯体自重1500kg,杆重4000kg 2、迎风面积2.1 S 灯体=4m 2 2.2 S 灯杆=15 m 2 3、灯杆的自振周期 I=64π(0.644-0.624)=0.00137m 4A= 4π(0.642-0.622)=0.0275m 2T1=3.63×)236.0(3AH m EI H ρ+=1.95s 4、强度校核4.1 基本风压 ω0= 16002vm =0.81kN/ m 24.2 体型系数 d=221φφ+ =0.5mω0d 2=0.2025>0.015 ∴灯杆体型系数为 μs =0.7灯体按回转结构加框架 μs 取0.9 4.3 脉动增大系数ω0=(T 1)2=0.81×(1.95)2=3.08,按3插入查表得ξ=2.954.4 脉动和风压变化影响系数ε1=0.74(按C 类) 4.5 振型结构影响系数ε2宽度比21φφ =0.5 30m 高度处 ,ε2=0.88 20m 高度处 ,ε2=0.63 15m 高度处 ,ε2=0.44 10m 高度处 ,ε2=0.25 5m 高度处 ,ε2=0.09 4.6 风振系数β 的计算 βz =1+ ⋅ξε1•ε2∴β30=2.92 β20=2.38 β15=1.96 β10=1.56 β5=1.20ω=βz u s u z u τ ω04.8灯杆底端风力的总弯距 M 1=5.67×25=141.75 KN.m M 2=13.28×29=385.12 KN.m M 3=3.07×17.529=53.72 KN.m M 4=2.55×12.5=31.87 KN.m M 5=1.95×7.5=14.62 KN.m M 6=1.31×2.5=3.27 KN.m M 总=630.35 KN.m4.8 灯杆底端(危险截面即筋板上部开孔处的截面)风压弯曲应为Qb. b σ =SM 总S=0.098×34464.062.064.0-∴b σ =MPa mKN 147098.064.062.064.035.63044=⨯-•许用应力[σ]=235Mpa ∴b σ<[σ]4.9 根据风压,灯杆底端的剪切应力1τσ1τσ=AF 总2 ∴1τσ=02775.083.272⨯ =2.01Mpa一般许用应力[τσ]=0.5[σ]=117Mpa ∴ 1τσ< [τσ]结论据以上计算结果,弯曲应力及剪切应力均小于允许应力,是安全的。
21.5米高杆灯受力计算书
21.5m升降式高杆灯受力计算书一、设计条件⑴.基本数据:灯盘距地面高度约20m ,方形基础平面尺寸为3m ×3m,基础埋深2.5m ,灯杆截面为正十二边形,计算时简化为圆形,顶部直径D 为200mm ,根部直径D 400mm ,厚度自顶端至底端分两段。
δ=6mm,长10.9m ,δ=6mm,长10.9m 。
材料为上海宝钢生产的低合金钢,Q/BQB303 SS400,屈服强度为f 屈=245N/mm2,设计强度取f=225N/mm2,fV=125N/mm2,灯盘直径为2200mm ,厚度简化为200mm ,高杆灯总重约为Fk=40KN。
⑵.自然条件:当地基本风压Wo=0.75KN/m2,地基土为淤泥质粘性土,地承载力特征值fak=60 KN/m2,地面粗糙度考虑城市郊区为B 类,地下水位埋深大于2.5m ,地基土的容重γm=18 KN/m3。
⑶.设计计算依据:①、《建筑结构荷载规范》 GB50009-2001②、《建筑地基基础设计规范》GB5007-2002③、《钢结构设计规范》 GB50017-2003④、《高耸结构设计规范》 GBJ135-90二、风荷载标准值计算基本公式:WK=βz·μs·μz·ur·Wo式中:Wk —风荷载标准值(KN/m2);βz —高度z 处的风振系数;μs —风荷载体型系数;μz —风压高度变化系数;μr—高耸结构重现期调整系数,对重要的高耸结构取1.2。
⑴.灯盘:高度为0.2m ,μz =1.42,μs =0.5,μr=1.2 βz=1+式中ξ—脉动增大系数;υ—脉动影响系数;φz —振型系数;βz=1+ =1+()=2.04WK=βz·μs·μz·ur·Wo=2.04×0.5×1.42×1.2×0.75=1.30KN/m2⑵.灯杆:简化为均布荷载,高度取10.9m ,μz=1.4, μs=0.59, μr=1.2βz=1+ =1+()=2.16,WK2=βz·μs·μz·ur·Wo=2.16×0.59×1.14×1.2×0.75=1.31KN/m2三、内力计算⑴.底部(δ=6mm)弯矩设计值:M=M灯盘+M灯杆M=γQ×WK1×0.2×2.2×21.5+γQ×WK2×21.5×10.9=1.4×1.3×0.2×2.2×21.5+1.4×1.31×21.5×10.9=447KN·m剪力设计值:V=V灯盘+V灯杆V =γQ×WK1×0.2×2.2+γQ×WK2×21.5=1.4×1.3×0.2×2.2+1.4×1.31×21.5=40KN⑵.δ=6mm与δ=6mm,交接处弯矩设计值:M=γQ×WK1×0.2×2.2×10.9+γQ×WK2×(0.28+ )×10.9×2 =1.4×1.3×0.2×2.2×10.9+1.4×1.31×(0.28+ )×10.9×2 =48.7KN·m剪力设计值:V =γQ×WK1×0.2×2.2+γQ×WK2×(0.28+ )×10.9=1.4×1.3×0.2×2.2+1.4×1.31×(0.28+ )×10.9=20.8KN四、在风荷载作用下的强度复核(未考虑高杆灯自重)⑴.底部(δ=6mm)截面惯性矩I= ×(d -d )= (6504-6344)=8.31×108mm4. 最大拉应力бmax= ·y=426×106×325/(8.31×108)=167N/mm2 最大剪应力τmax=2·V/A=2×27×103/[ ×(6502-6342)]=3.3N/mm2 max⑵.δ=6mm与δ=6mm,交接处截面惯性矩I= ×(d -d )= (4004-3884)=1.44×108mm4. 最大拉应力бmax= ·y=51×106×200/(1.44×108)=70.8N/mm2 最大剪应力τmax=2·V/A=2×9×103/[ ×(4002-3882)]=2.4N/mm2 бmax五、地基承载力验算⑴.基础平面尺寸:b×h=3×3m,基础底面抗弯模量W= bh2=10.67m3,地基承载力特征值fak=60KN/m2,⑵.基础自重和基础上的土重Gk=b×h×H×γ0=3×3×2.5×20=450KN⑶.相应于荷载效应标准组合时,作用于基础底面的弯矩值:Mk=M/γQ+VH/γQ=426/1.4+27×2.5/1.4×2.5=353KN·m⑷.修正后的地基承载力特征值:fa =fak+ηb·γ(b-3)+ ηd·γm(d-0.5)=60+0+1.0×18×(2.5-0.5)=96KN/m2⑸.相应于荷载效应标准组合时,作用于基础底面边缘的最大最小压力值: Pkmax= += =53+33=86KN/m2<1.2fa=115KN/m2能满足要求。
灯杆执行标准 Microsoft Word 文档
高杆灯厂家高杆灯技术要求技术规格书一工作范围综述:主要包括**基**米高杆灯的制造、运输、现场安装和调试(包括所有基础预埋件,如预埋法兰盘、预埋螺栓等)。
二、投标方所提供的高杆灯应符合相应的国家标准(GB)或国际电工委员会标准(IEC)。
投标方应执行国家标准、国际标准、行业标准的最新版本。
《钢结构设计规范》 GBJ9-1987,GBJ17-1988《高耸结构设计规范》 GBJ135-1990《优质素钢技术条件》 GB/T899-1988《钢铁制品热镀层技术要求》 GB/T13912-1992《焊接质量保证熔化焊接头的要求和缺陷分级》 GB/T12469-1990《升降式高杆照明装置技术条件》 JT/T312-1996《建筑地基基础设计规范》 GB17-89三、高杆灯技术参数本次招标的高杆灯为电动/手动升降式。
1 灯杆1)所有金属结构(不锈钢件除外)内外表面需热镀锌处理,现场无焊接现象;2)灯杆不得有影响强度的裂纹、灰渣、焊瘤、弧坑和针状气孔,并且无折破和中断的缺陷;3)灯杆采用多边形拔销杆,插接式结构4)插接长度应大于插接处端直径的1.5倍5)整体安装垂直度不大于千分之三;6)高杆灯应在风速33米/秒时,摄像机传回的监控画面应保证控制室内操作人员正常观看;7)杆体整体使用寿命30年以上;8)灯杆箱门采用暗锁,杆底小门防护等级不低于IP65;9)除本身配备的防雷接地系统外,所有高杆灯小门内设等电位联结箱,箱内设6个等电位联结端子;10)注明杆体材质、杆体的组成情况(节数、壁厚、上下直径)及重量;2 高杆灯的升降系统;1)高杆灯按照安装工业电视系统考虑,均采用单升降系统;2)升降过程中对灯具及摄像机的冲击力量尽量小;3)升降系统采用灯杆内置独立电动卷扬机构,卷扬机设有专门的止动锁定装置。
可通过线控实现5米外的远距离操作;4)电动工具与卷扬机之间应装有可调式独立的扭矩限制器,以防止过载;5)高杆灯采用电动升降机构,电动方式可以点动,断电时要求可以手动操作。
30米(9灯)照明高杆设计计算概述
30米(9灯)照明高杆设计计算概述1、设计说明本照明高杆的设计计算是按照GB50009-2001《建筑结构荷载规范》、CJJ45-91《城市道路照明设计标准》、CJ/T3076-1998《高杆照明设施技术条件》、GBT135-1990《高耸结构设计规范》、GB50017-2003《钢结构设计规范》、JT/T312-1996《升降式高杆照明装置技术条件》及我国电力行业标准DL/T5130-2001《架空送电线路钢管杆设计技术规定》采用概率理论为基础的极限状态设计方法设计,本杆设计满足强度、稳定性、刚度、安全可靠等方面的要求。
本高杆的制造符合电力行业标准DL/646-1998《输电线路钢管杆制造技术条件》。
2、设计条件2.1 气象条件基准高度(10m)风速:40m/s基准高度(10m)风压:1KN/m22.2 外负荷:2.2.1 灯架电动升降式圆周均布9灯灯架。
承风面积 A≤0.29m2s2.2.2 灯具数量:9台重量:<60㎏/个2.2.3 灯具与灯架=(2.9+1.77)×0.6=2.8m2总的承风面积 As3 、杆体结构设计杆体采用三段十二边形棱锥钢管插接连接,材质为宝钢特制低硅低碳ASTM A572 GR65钢杆段尺寸如下:第一段D240/374.34×10550×5 十二边棱锥尖缩率1/78.53 重449.53kg第二段D355.42/489.76×10550×6 十二边棱锥尖缩率1/78.53 插入700mm 重743.69kg第三段D465.66/600×10550×6 十二边棱锥尖缩率1/78.53 插入950mm 重940.49kg法兰盘及地脚螺栓:法兰盘:重量125kg外形:圆形直径尺寸D=950mm中心孔:正十二边形对边尺寸D=600mm地脚螺栓孔中心圆直径:D=800mm地脚螺栓:12-M48地脚螺栓全杆重:G=2710kg连地脚螺栓总计重量为:3100㎏4、高杆的主要技术参数4.1 地面处荷载地面处最大弯距: 712KN〃m地面处最大压力: 39KN地面处最大剪力: 36KN5、强度、稳定性校核本设计按弯、扭联合强度理论对强度进行校核,并对杆体的压弯局部稳定性以及刚度校核均符合有关标准要求,引证本设计可靠。
高杆灯基础计算书
二、设计条件⑴.基本数据:灯塔距地面高度30m,方形基础平面尺寸为4m×4m,基础埋深2.5m,灯杆截面为正十二边形,计算时简化为圆形,顶部直径D为280mm,根部直径D为650mm,厚度自顶端至底端分三段。
δ=6mm,长10m,δ=8mm,长10m,δ=8mm,长10m。
材料为上海宝钢生产的低合金钢,Q/BQB303 SS400,屈服强度为f屈=245N2,设计强度取f=225N2,fV=125N2,灯盘直径为3800mm,厚度简化为200mm,高杆灯总重为Fk=40KN。
⑵.自然条件:当地基本风压Wo=0.75KN/m2,地基土为淤泥质粘性土,地承载力特征值fak=60 KN/m2,地面粗糙度考虑城市郊区为B类,地下水位埋深大于2.5m,地基土的容重γm=18KN/m3。
⑶.设计计算依据:①、《建筑结构荷载规范》GB50009-2001 ②、《建筑地基基础设计规范》GB5007-2002 ③、《钢结构设计规范》GB50017-2003 ④、《高耸结构设计规范》GBJ135-90 三、风荷载标准值计算基本公式:WK=βz·μs·μz·ur·Wo式中:Wk—风荷载标准值(KN/m2);βz—高度z处的风振系数;μs—风荷载体型系数;μz—风压高度变化系数;μr—高耸结构重现期调整系数,对重要的高耸结构取1.2。
⑴.灯盘:高度为30m,μz=1.42,μs=0.5,μr=1.2βz=1+式中ξ—脉动增大系数;υ—脉动影响系数;φz—振型系数;βz=1+=1+()=2.04 WK=βz·μs·μz·ur·Wo=2.04×0.5×1. 42×1.2×0.75=1.30KN/m2⑵.灯杆:简化为均布荷载,高度取15m,μz=1.4,μs=0.59,μr=1.2βz=1+=1+()=2.16,WK2=βz·μs·μz·ur·Wo=2.16×0.59×1. 14×1.2×0.75=1.31KN/m2四、内力计算⑴.底部(δ=8mm)弯矩设计值:M=M灯盘+M灯杆M=γQ×WK1×0.2×3.8×30+γQ×WK2××30×15=1 .4×1.30×0.2×3.8×30+1.4×1.31××30×15=426KN·m 剪力设计值:V=V灯盘+V灯杆V =γQ×WK1×0.2×3.8+γQ×WK2××30=1.4×1. 30×0.2×3.8+1.4×1.31××30=27KN ⑵.δ=8mm与δ=6mm,交接处弯矩设计值:M=γQ×WK1×0.2×3.8×10+γQ×WK2×(0.28+ )×10×5=1.4×1.30×0.2×3.8×10+1.4×1.31×(0.28+ )×10×5=51KN·m剪力设计值:V =γQ×WK1×0.2×3.8+γQ×WK2×(0.28+ )×10=1.4×1.30×0.2×3.8+1.4×1.31×(0.28+ )×10=9KN 五、在风荷载作用下的强度复核(未考虑高杆灯自重)⑴.底部(δ=8mm)截面惯性矩I= ×(d -d )= (6504-6344)=8.31×108mm4. 最大拉应力бmax=·y=426×106×325/(8.31×108)=167N 2 最大剪应力τmax=2·V/A=2×27×103/[×(6502-6342)]=3.3N 2 max<f,τmax<fv均能满足要求。
高杆灯基础计算书(DOC)
中杆灯支架基础计算一、设计参数钢筋混凝土容重:γ砼=25 kN/m3,钢容重:γ钢=78.5 kN/m3;地下水位按地面以下0.5m考虑;50年一遇风压:0.60 kN/m2;灯具总重:3.8 吨二、计算简图三、荷载计算1 恒载灯具共设8个投光灯,均布在灯杆顶部圆盘上G1=3.8*10=38 kN2 活载灯杆风荷载灯杆半高处截面外径d=(250+560)/2=405mm风压高度变化系数:地面粗糙类别B 类,灯杆高度H=30m ,μz =1.39 风荷载体形系数:μzw 0d 2=1.39*0.60*0.405*0.405=0.137≥0.015, 且⊿≈0,H/d =30/0.405=74>25,故μs =0.6 H 2/d=30*30/0.405=2222>700 T=0.25+0.99*10-3*H 2/d=2.45s >0.25s根据规应考虑风压脉动对结构产生顺风向风振的影响。
脉动分风荷载的空间相关系数确定:根据规,对迎风面宽度较小的高耸结构,水平方向相关系数可取ρx=1 竖直方向的相关系数z ρ==0.8427脉动风荷载的背景分量因子1a z Bz kH x zzφρρμ= 对于迎风面和侧风面的宽度沿高度按直线变化的高耸结构,应乘以修正系数B v θθ、 ()(0)B H B =0.447,v θ=1.928,()(0)B B z B θ=,按下表确定: 表1 修正系数B θ表2脉动风荷载的背景分量因子Bz脉动风荷载的共振分量因子115R x x ==>R=2.876z 高度处的风振系数z β取值见下表:表3 风振系数z β取值灯具风荷载表4 灯具风荷载总水平力F=F1+F2=13.68 KN总弯矩M=M1+M2 =257.73 KN*m总竖向力G=G1 =38 KN“圆钢管柱外露刚接”节点计算书一. 节点基本资料采用设计方法为:常用设计节点类型为:圆钢管柱外露刚接柱截面:PIPE-560*10,材料:Q235柱与底板全截面采用对接焊缝,焊缝等级为:二级,采用引弧板;底板尺寸:L*B= 850 mm×850 mm,厚:T= 40 mm锚栓信息:个数:12采用锚栓:双螺母焊板锚栓库_Q235-M42锚栓垫板尺寸(mm):B*T=90×20底板下混凝土采用C40节点前视图如下:节点下视图如下:二. 验算结果一览验算项数值限值结果最大压应力(MPa) 9.13 最大19.1 满足受拉承载力(kN) 136 最大157 满足混凝土要求底板厚(mm) 24.6 最大40.0 满足锚栓要求底板厚(mm) 17.4 最大40.0 满足底板厚度40.0 最小24.6 满足等强全截面 1 满足板件宽厚比16.1 最大18.0 满足板件剪应力(MPa) 37.1 最大125 满足焊缝剪应力(MPa) 46.4 最大160 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足基底最大剪力(kN) 11.8 最大165 满足三. 混凝土承载力验算控制工况:1.2D+1.4LN=-45.6 kN;M x=0 kN·m;M y=364 kN·m;偏心受压底板计算:这里偏心距e为:e= M/N =364000000/45600=7982.456mm > 119.749mm所以按部分截面混凝土受压,部分锚栓受拉来计算(通过对混凝土应力积分): δmax=9.127N/mm2中性轴的坐标: x = 128.949最大锚栓的拉力:NTa = 136439.829N锚栓总拉力:Ta = 620441.082 N轴力N大小为:N = 45600 N混凝土的总合压力:F = 666041.082N外力对中性轴的弯矩:M外= 358119947.929N.mm 按(fN(e-x)方式求出)锚栓的合弯矩:Ma = 243227678.915N.mm混凝土的合弯矩:Mc = 114892231.881N.mm混凝土抗压强度设计值:f c=19.1N/mm2底板下混凝土最大受压应力:σc=9.127N/mm2≤19.1,满足四. 锚栓承载力验算控制工况:1.2D+1.4LN=-45.6 kN;锚栓最大拉力:N ta=136.44 kN(参混凝土承载力验算)锚栓的拉力限值为:N t=156.927kN锚栓承受的最大拉力为:N ta=136.44kN≤156.927,满足五. 底板验算1 构造要求最小底板厚度验算一般要求最小板厚:t n=20 mm柱截面要求最小板厚:t z=10 mm构造要求最小板厚:t min=max(t n,t z)=20 mm≤40,满足2 混凝土反力作用下的最小底板厚度计算非抗震工况底板下最大压应力:σcm=9.127 N/mm2底板厚度验算控制应力:σc=9.127 N/mm2沿圆周布置的加劲肋之间按三边支承板简化计算:折算跨度:a2=3.142×850/12=222.529 mm悬挑长度:b2=0.5×(850-560)=145 mm分布弯矩:M1=0.08119×9.127×222.529×222.529 ×10-3=0.0367 kN·m 得到底板最大弯矩区域的弯矩值为:M max=0.0367 kN·m混凝土反力要求最小板厚:T min=(6*M max/f)0.5=(6×36.698/205×103)0.5=32.773 mm≤40,满足3 锚栓拉力作用下的最小底板厚度计算非抗震工况锚栓最大拉力:T am=136.44 kN底板厚度验算控制拉力:T a=136439.829 kN锚栓中心到柱底截面圆边缘距离:l a1=1202.082-560-50=240 mml a1对应的受力长度:l l1=2×240=480 mm锚栓中心到左侧加劲肋距离:l a2=(0.5×560+240)×0.2588=134.586 mml a2对应的受力长度:l l2=134.586+min(50,134.586+0.5×42)=184.586 mm锚栓中心到右侧加劲肋边距离:l a3=134.586 mml a3对应的受力长度:l l3=l l2=134.586+min(50,134.586+0.5×42)=184.586 mm弯矩分布系数:ζ1=240×134.586×134.586/(240×184.586×184.586+480×134.586×184.586+480×184.586×13 4.586)=0.1357得最大弯矩分布系数为:ζ=0.1357锚栓拉力要求的最小板厚:t min=(6×136.44×0.1357/205×103)0.5=23.278 mm≤40,满足六. 对接焊缝验算柱截面与底板采用全对接焊缝,强度满足要求七. X向加劲肋验算非抗震工况下锚栓最大拉力:T am=136.44 kN加劲肋承担柱底反力区域面积:S r=0.01 cm2非抗震工况下加劲肋承担柱底反力:V rc=σcm*S r=9.127×0.01×100=0.009127 kN板件控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN计算宽度取为上切边到角点距离:b r=167.797 mm板件宽厚比:b r/t r=167.797/16=10.487≤18,满足扣除切角加劲肋高度:h r=250-20=230 mm板件剪应力:τr=V b/h r/t r=136.44×103/(230×16)=37.076 Mpa≤125,满足焊缝控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN角焊缝剪应力:τw=V r/[2*0.7*h f*(h r-2*h f)]=136.44/[2×0.7×10×(230-2×10)]=46.408 MPa≤160,满足八. 柱脚抗剪验算控制工况:1.35D+0.84LN=-51.3 kN;V x=11.76 kN;V y=0 kN;锚栓所承受的拉力为:T a=360.206 kN柱脚底板的摩擦力:V fb=0.4*(-N+T a)=0.4×(51.3+360.206)=164.602 kN柱脚所承受的剪力:V=(V x2+V y2)0.5=(11.762+02)0.5=11.76 kN≤164.602,满足独立桩承台设计(ZCT-4)项目名称构件编号日期设计校对审核执行规:《混凝土结构设计规》(GB 50010-2010), 本文简称《混凝土规》《建筑地基基础设计规》(GB 50007-2002), 本文简称《地基规》《建筑结构荷载规》(GB 50009-2001), 本文简称《荷载规》《建筑桩基技术规》(JGJ 94-2008), 本文简称《桩基规》-----------------------------------------------------------------------1 设计资料1.1 已知条件承台参数(3 桩承台第 1 种)承台底标高: -2.000(m)承台的混凝土强度等级: C25承台钢筋级别: HRB335配筋计算a s: 35(mm)桩参数桩基重要性系数: 1.0桩类型: 泥浆护壁钻(冲)孔桩承载力性状: 摩擦桩桩长: 25.000(m)是否方桩: 否桩直径: 600(mm)桩的混凝土强度等级: C25单桩极限承载力标准值: 558.000(kN)桩端阻力比: 0.400均匀分布侧阻力比: 0.400是否按复合桩基计算: 否桩基沉降计算经验系数: 1.000压缩层深度应力比: 20.00%柱参数柱宽: 1050(mm)柱高: 1050(mm)柱子转角: 0.000(度)柱的混凝土强度等级: C25柱上荷载设计值弯矩M x: 333.000(kN.m)弯矩M y: 0.000(kN.m)轴力N : 45.600(kN)剪力V x: 0.000(kN)剪力V y: -17.000(kN)是否为地震荷载组合: 否基础与覆土的平均容重: 20.000(kN/m3)荷载综合分项系数: 1.20土层信息地面标高: 0.000(m)1.2 计算容(1) 桩基竖向承载力计算(2) 承台计算(受弯、冲切、剪计算及局部受压计算)(3) 软弱下卧层验算(4) 桩基沉降计算2. 计算过程及计算结果2.1 桩基竖向承载力验算(1) 桩基竖向承载力特征值R计算根据《桩基规》5.2.2及5.2.3式中:R a——单桩竖向承载力特征值;Q uk——单桩竖向极限承载力标准值;K ——安全系数,取K=2。
龙门架计算(35M)
龙门架计算书(35mT 梁龙门架)本龙门架横梁为6排双加强贝雷片组成,门架脚架由两根格构柱组成,门架采用两台电机驱动自行式移动系统。
对本门架进行如下简化计算,横梁拟用简支梁进行计算,脚架按受压格构柱进行计算,斜撑起稳定作用不作受力计算。
一、门架横梁计算 1、荷载计算横梁自重:m kg q /10272424654=÷= 天平及滑轮自重:kg P 9801= 35mT 梁自重(一半):kg P 545602= 23(1l P M ==4111l P M =4122ql M =8123M =∑m kg M ⋅=⨯=5808983872655.1max(2)((V V P V =⎢⎣⎡=⎢⎣⎡=V 1max =46342840235706cm W =⨯⨯=考虑6排贝雷片荷载不均匀系数为0.922max 1507428409.010580898kw M =⨯⨯==σ剪力较小完全满足要求,计算略。
5、上弦杆受压局部稳定验算一片双加强贝雷上弦受压压力为kg N 76797248.251507=⨯⨯= 422067548.2526.3962cm I x =⨯⨯+⨯=296.50248.25cm A =⨯=()296.501.452.16.254I y =⨯++⨯=cm A I r x x 37.696.502067===cm AI r y y 80.596.501712===贝雷片横向每3.0M 设一支撑架,所以取cm lox cmloy 75300==x y y x x r loy r lox λλλ>======7.518.53008.1137.675由794.07.51==ϕλ查表得稳定系数y[]2/2450189896.50794.076797cm kg kg A N =<=⨯==σϕσ 横梁上弦压杆稳定符合要求 龙门架跨度23m 小于20×1.2=24m 6、横梁挠度计算取集中荷载作用于跨中进行计算 单片贝雷片惯性矩 4250500cm I = 弹性模量 26/101.2cm kg E ⨯=6片双加强贝雷惯性矩 4610006.325050012cm E ⨯=⨯= 按简支梁进行计算:(1)在集中力作用下(P 1+P 2)挠度cm EI Pl f 23.2101.2210503.148230055540486633=⨯⨯⨯⨯⨯⨯== (2)在均匀自重荷载作用下挠度以上挠度合计cm EI ql f 59.010503.1101.2384230027.105384566442=⨯⨯⨯⨯⨯⨯==cm f f f 82.259.023.221=+=+=12V 1=M M M max Ⅰ25自重弯矩略横梁轴力 kg V N 724491.80cos 4585191.80cos 1=︒⨯=︒⋅= 最大剪力 kg Q 30183905526191.80sin 45851=⨯-︒⨯= 3、强度计算 ⑴弯应力222max /2100/16918.8021013582cm kg cm kg W M w <=⨯==σ⑵剪应力22/1250/7558.025230183cm kg cm kg d h Q <=⨯⨯=⋅≈τ ⑶正应力2/7551.4827244cm kg A N N =⨯==σ门架脚架横梁符合要求 ㈡脚架计算门架的脚架所受压力 N=45851kg 1.强度计算22/2100/1303797.8445851cm kg cm kg A N <=⨯==σ 符合要求2.整体稳定验算1'44⨯+I =I =I A x y x .8496.394⨯+⨯=I x 46148cm x =I取cm loy lox 750==79.846148⨯===A I i i xy x 572.13750====x y x i lox λλ 4402=⋅+==λλx A x x oy ox 根据ox λ818.0=ϕ 22/2100/159479.84818.045851cm kg f cm kg A N =<=⨯⨯==ϕσ 整体稳定符合要求。
35米高杆灯技术说明
高杆灯详细技术说明一、高杆灯符合相应的国家标准(GB)或国际电工委员会标准(IEC)。
并执行国家标准、国际标准、行业标准的最新版本。
《钢结构设计规范》GBJ9-1987,GBJ17-1988《高耸结构设计规范》GBJ135-1990《优质素钢技术条件》GB/T899-1988《钢铁制品热镀层技术要求》GB/T13912-1992《焊接质量保证熔化焊接头的要求和缺陷分级》GB/T12469-1990《升降式高杆照明装置技术条件》JT/T312-1996《建筑地基基础设计规范》GB17-89二、高杆灯技术参数灯杆部分1、灯杆高度15-50米,灯杆采用多边形(通常为8边/12边/16边)拔销杆,插接式结构,(20米以下分两节,壁厚6mm/8mm;25米-30米分三节壁厚6/8/10mm,35米-40米分四节,壁厚6/8/8/10或6/8/10/12)插接长度插接处端直径的1.5倍,灯盘为框架结构;底部法兰为圆形。
2、电器门具备合理的操作空间,门内具有电器安装附件;门与杆之间间隙应不超过1毫米,具备良好的防水性能;有专门紧固系统,具备良好的防盗性能,其固定螺栓采用非通用专制工具开启。
3、材质灯杆材质为优质低硅碳钢Q235A钢材(其中Si≤0.04%、屈服强度>245Mpa),材料符合执行标准:GB699-88。
4、焊接工艺整个杆体应无任何一处开裂、漏焊、连续气孔、咬边等,焊缝光滑平整,无凸凹起伏,无任何焊接缺陷,须提供焊接探伤报告,焊接标准依据:GB/T3323—1989III。
安全标准符合国标GB7000.1-7000.5-1996。
5、热镀锌工艺应采用热浸酸内外表面放腐处理,厚度≥75um符合GB—/T13912-92标准.设计使用寿命应不低于30年,镀锌表面应光滑美观,颜色基本一致,捶击试验后不起皮、不剥落。
提供镀锌检测报告。
6、喷塑工艺喷塑应采用户外纯聚脂塑粉,颜色为白色,塑层质量稳定,不退色,不脱落。
35m烟囱计算
35m高烟囱计算书烟囱形式:直径812mm,高35m,每5m一段,共7段。
1、风荷载体型系数:查表μs=0.62、风振系数标高z (m)z/H φzξνμzβz 2.5 0.07 0.02 1.730.841.001.0297.5 0.21 0.06 1.730.841.001.08712.50.36 0.18 1.73 0.841.07 1.244 17.5 0.5 0.34 1.730.841.201.412 22.5 0.64 0.49 1.730.841.281.55627.5 0.78 0.78 1.73 0.84 1.381.82132.50.93 1 1.73 0.84 1.45 2.0023、各段风荷载的集中力应用《建筑结构荷载规范》中式7.1.1条ωk=βzμsμzω0求风荷载,各分段的集中力Pi=ωk A w,此处A w的为风荷载作用面积,其计算过程见下表:风荷载标值计算标高 z (m) 风荷载作用面积μsω0μzβzωk(kN/m2)集中力P k(kN)2.5 4.060.60.41.001.0290.247 1.00 7.5 4.060.60.41.001.0870.261 1.06 12.5 4.060.60.41.071.2440.319 1.29 17.5 4.060.60.41.201.4130.407 1.65 22.5 4.060.60.41.281.5560.478 1.94 27.5 4.060.60.41.381.8210.515 2.09 32.5 4.060.60.41.452.0020.697 2.83 4、底部产生的弯矩和剪力V k=11.86 kNM k=248.55kN.m5、钢烟囱强度验算考虑到此钢烟囱较轻,所以风荷载应起控制作用不考虑地震。
烟囱所受轴力=1/32xπ(D3-d3)=0.003,近似考虑为烟囱自重,烟囱截面面积为An=0.015m2,Wn自重G=1.2*G1=51.63kN,弯矩设计值 M=1.4M k=1.4*248.55=347.97kN.m钢烟囱的应力为:σ=N/An+M/W n=119.43 kN/m2<215 N/mm2σcrt=0.4(E t/k)*(t/d i)=405.9 N/mm2>σ满足要求6、地脚锚栓计算采用Q345B级M20锚栓,受拉承载力为108 kN,P max=4M/nd0-N/n=102<108kN,满足要求7、底板厚度验算M max=βσcbt a2=3.55x103t=sqr(6 M max /f v )=10mm考虑腐蚀和刚度要求,底板厚度取t=16mm。
路灯工程量计算书
10 11 12 13 14 15 16 17 18 19 20
回填石粉 D50碳素波纹管 破除灰土、水稳结构 层 回填C20砼 D100碳素波纹管 破除灰土、水稳结构 层 回填C20砼 10*7m信号灯 人灯 控制柜 1m圆形检查井
27.82+14.90-6.65 4.4+4+3.7+4.3 0.3*0.5*16.4 2.46-3.14*0.025*0.025*16.4 11.1*2+11+13 46.2*0.3*0.5 6.93-3.14*0.05*0.05*46.2
36.27 16.4 2.46 2.43 46.2 6.93 6.57 2.00 4.00 2.00 3.00
m3 m m3 m3 m m3 m3 座 座 座 座 信号灯
经三路路口信号灯、高杆灯
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 名称 D100镀锌钢管 破除灰土、水稳结构 层 开挖素土 回填C20砼 回填石粉 D100镀锌钢管 破除灰土、水稳结构 层 回填C20砼 D50碳素波纹管 破除灰土、水稳结构 层 回填C20砼 10*7m信号灯 人灯 控制柜 1m圆形检查井 计算公式 (64.4+42.7+58.5+49.5)*2 0.48*0.7*430.2/2 0.48*(1.2-0.825)*430.2/2 430.2/2*0.2*0.483.14*0.05*0.05*430.2 72.27+38.72-17.27 20+14.1+17.2 51.3*0.3*0.5 7.695-3.14*0.025*0.025*51.3
中傲路口信号灯、高杆灯
序号 名称 计算公式 4 D50碳素波纹管 2+0.6 5 D100镀锌钢管 15.5*2+14.7*2+16.7*2+8 6 破除灰土、水稳结构 16.7*0.48*0.7+8*0.3*0.7 层 16.7*0.48*0.375+8*0.3*0.375+15.5*0. 7 开挖素土 48*0.5+14.7*0.48*0.5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 回填C20砼 16.7*0.48*0.2+8*0.3*0.2101.8*3.14*0.05*0.05 7.29+11.15-1.28 数量 2.6 101.8 7.29 11.15 1.28 17.16 1 2 5 1 91.8 3.624 3.39 2.1 136 22.85 12.24 5.46 29.63 1 2 5 1 112.4 11.41 11.19 42.10 5.05 4.97 18.00 2.11 2.07 1 2 1 1 2 88.4 8.11 7.42 28.5 3.096 3.04 18.00 5.508 5.367 1 2 1 1 单位 m m m3 m3 m3 m3 座 座 座 座 m m3 m3 m m m3 m3 m3 m3 座 座 座 座 m m3 m m3 m3 m m3 m3 座 座 座 座 座 m m3 m3 m m3 m3 m m3 m3 座 座 座 座 备注
高杆灯符合相应的国家标准
一、高杆灯符合相应的国家标准(GB)或国际电工委员会标准(IEC)。
并执行国家标准、国际标准、行业标准的最新版本。
《钢结构设计规范》 GBJ9-1987,GBJ17-1988《高耸结构设计规范》 GBJ135-1990《优质素钢技术条件》 GB/T899-1988《钢铁制品热镀层技术要求》 GB/T13912-1992《焊接质量保证熔化焊接头的要求和缺陷分级》 GB/T12469-1990《升降式高杆照明装置技术条件》 JT/T312-1996《建筑地基基础设计规范》 GB17-89二、高杆灯技术参数灯杆部分1、灯杆高度15-50米,灯杆采用多边形(通常为8边/12边/16边)拔销杆,插接式结构,(20米以下分两节,壁厚6mm/8mm;25米-30米分三节壁厚6/8/10mm,35米-40米分四节,壁厚6/8/8/10或6/8/10/12)插接长度插接处端直径的1.5倍,灯盘为框架结构;底部法兰为圆形。
2、电器门具备合理的操作空间,门内具有电器安装附件;门与杆之间间隙应不超过1毫米,具备良好的防水性能;有专门紧固系统,具备良好的防盗性能,其固定螺栓采用非通用专制工具开启。
3、材质灯杆材质为优质低硅碳钢Q235A钢材(其中Si≤0.04%、屈服强度>245Mpa),材料符合执行标准:GB699-88。
4、焊接工艺整个杆体应无任何一处开裂、漏焊、连续气孔、咬边等,焊缝光滑平整,无凸凹起伏,无任何焊接缺陷,须提供焊接探伤报告,焊接标准依据:GB/T3323—1989III。
安全标准符合国标GB7000.1-7000.5-1996。
5、热镀锌工艺应采用热浸酸内外表面放腐处理,厚度≥75um符合GB—/T13912-92标准.设计使用寿命应不低于30年,镀锌表面应光滑美观,颜色基本一致,捶击试验后不起皮、不剥落。
提供镀锌检测报告。
6、喷塑工艺喷塑应采用户外纯聚脂塑粉,颜色为白色,塑层质量稳定,不退色,不脱落。
高杆灯计算析
高杆灯的安全性计算及强度校核针对高杆灯刚度、稳定性及经济性等方面的计算,合理调整有关因素,提高高杆灯的整体强度作一探讨。
关键词高杆灯安全性计算迎风面积强度高杆照明设施照明范围大,功能性强,使用便利,在城市广场、大型立交、体育场、机场和港口码头等处广泛应用的同时,要充分考虑到高杆灯在狂风暴雨等恶劣环境中可靠使用的安全性。
高杆灯的安全性包括刚度、稳定性及经济性等多方面的计算,其中强度校核是保证使用的一项重要内容在此我将分步演算高杆灯安全性计算及强度校核:一、高杆灯的安全性计算1)高杆灯灯盘(包括灯具)的迎风面积:由于灯盘采用不同形状,使灯盘的迎风面积具有不确定性。
现取常见的封闭式飞碟状灯盘为例,以灯盘外形的正投影作为迎风面参考面积S灯盘=(d1+d2)H1/22)高杆灯杆身的迎风面积:高杆灯杆身往往采用(锥度约1000:5)锥形体或圆柱体。
杆身的迎风面积随着杆身长度的增加而逐渐增大。
S杆身=(D1+D2)H2/23)高杆灯的基本风压计算风压是垂直于气流风向的平面受到的风的压力,根据伯努利方程得出标准的风压关系公式。
风的动压为:WP=0.5*r*V2/g=0.5*ro*V2(ro=r/g)WP为风压,单位KN/M2。
ro为空气密度,单位KG/M3。
V为风速,单位是M/S。
r为空气重度,单位KN/M3。
空气重度r和重力加速度g随纬度和海拔高度而变。
一般来说,ro在高原要比在平原地区小,也就是说,同样风速在相同温度下,其产生的风压在取高杆灯所在地区的风速为30M/S,且空气密度取ro=1.255KG/M3。
(密度可在物理手册或有关资料查得)则基本风压WP计算如下:WP=ro*V2/2=1.255*302/2=551.25Pa4)高杆灯的风载荷W0计算风载荷标准值=基本风压*风振系数*风压高度变化系数*风载体形系数A风振系数实际风压是在平均风压上下波动的。
平均风压使建筑物产生一定的侧移,而脉动风压使建筑物在该侧移附近左右振动。
浅析高杆灯的安全性计算及强度校核
浅析高杆灯的安全性计算及强度校核由于高杆照明设施使用的范围和地点的特殊性,因此,高杆灯杆、灯具的安全性要求特别高,本人根据实践经验,针对高杆灯刚度、稳定性及经济性等方面的计算,合理调整有关因素,提高高杆灯的整体强度作一探讨。
高杆照明设施照明范围大,功能性强,使用便利,在城市广场、大型立交、体育场、机场和港口码头等处广泛应用的同时,要充分考虑到高杆灯在狂风暴雨等恶劣环境中可靠使用的安全性。
高杆灯的安全性包括刚度、稳定性及经济性等多方面的计算,其中强度校核是保证使用的一项重要内容。
在此我将分步演算高杆灯安全性计算及强度校核:一、高杆灯的安全性计算1)高杆灯灯盘(包括灯具)的迎风面积:由于灯盘采用不同形状,使灯盘的迎风面积具有不确定性。
现取常见的封闭式飞碟状灯盘为例,以灯盘外形的正投影作为迎风面参考面积S灯盘=(d1+d2)H1/22)高杆灯杆身的迎风面积:高杆灯杆身往往采用(锥度约1000:5)锥形体或圆柱体。
杆身的迎风面积随着杆身长度的增加而逐渐增大。
S杆身=(D1+D2)H2/23)高杆灯的基本风压计算风压是垂直于气流风向的平面受到的风的压力,根据伯努利方程得出标准的风压关系公式。
风的动压为:WP=0.5*r*V2/g=0.5*ro*V2(ro=r/g)WP为风压,单位KN/M2。
ro为空气密度,单位KG/M3。
V为风速,单位是M/S。
r为空气重度,单位KN/M3。
空气重度r和重力加速度g随纬度和海拔高度而变。
一般来说,ro在高原要比在平原地区小,也就是说,同样风速在相同温度下,其产生的风压在高原比在平原地区小。
通常的10级大风相当于24.5M/S—28.4M/S。
为了使高杆灯有广泛的应用地区,暂取高杆灯所在地区的风速为30M/S,且空气密度ro=1.255KG/M3(密度可在物理手册或有关资料查得)则基本风压WP计算如下:WP=ro*V2/2=1.255*302/2=551.25Pa4)高杆灯的风载荷W0计算风载荷标准值=基本风压*风振系数*风压高度变化系数*风载体形系数A风振系数实际风压是在平均风压上下波动的。
高杆灯基础计算书
高杆照明灯杆基础计算书一、设计参数钢筋混凝土容重:γ砼=25 kN/m3,钢容重:γ钢=78.5 kN/m3;地下水位按地面以下0.5m考虑;50年一遇风压:0.60 kN/m2;灯具总重:1.8 吨二、计算简图三、荷载计算1 、恒载力灯具共设10个投光灯,均布在灯杆顶部圆盘上G1=1.8*10=18 kN2 、活载力灯杆风荷载灯杆半高处截面外径d=(200+400)/2=300mm风压高度变化系数:地面粗糙类别B 类,灯杆高度H=21.5m ,μz =1.02 风荷载体形系数:μzw 0d 2=1.02*0.60*0.405*0.405=0.1≥0.015, 且⊿≈0,H/d =21.5/0.405=53>25,故μs =0.6 H 2/d=21.5*21.5/0.405=1141.35>700 T=0.25+0.99*10-3*H 2/d=2.45s >0.25s根据规范应考虑风压脉动对结构产生顺风向风振的影响。
脉动分风荷载的空间相关系数确定:根据规范,对迎风面宽度较小的高耸结构,水平方向相关系数可取ρx=1 竖直方向的相关系数z ρ==0.8427脉动风荷载的背景分量因子1a z Bz kH x zzφρρμ= 对于迎风面和侧风面的宽度沿高度按直线变化的高耸结构,应乘以修正系数B v θθ、 ()(0)B H B =0.447,v θ=1.928,()(0)B B z B θ=,按下表确定: 表1 修正系数B θ表2脉动风荷载的背景分量因子Bz脉动风荷载的共振分量因子115R x x ==>R=2.876z 高度处的风振系数z β取值见下表:表3 风振系数z β取值灯具风荷载表4 灯具风荷载总水平力F=F1+F2=13.68 KN 总弯矩M=M1+M2 =257.73 KN*m 总竖向力G=G1 =18 KN“钢柱外露连接”节点计算书一. 节点基本资料采用设计方法为:常用设计节点类型为:钢管柱外露连接柱截面:PIPE-400*10,材料:Q235B柱与底板全截面采用对接焊缝,焊缝等级为:二级,采用引弧板;底板尺寸:L*B= 800 mm×800 mm,厚:T= 6 mm锚栓信息:个数:12采用锚栓:双螺母焊板锚栓库_Q235-M42锚栓垫板尺寸(mm):B*T=90×20底板下混凝土采用C40节点前视图如下:节点下视图如下:二. 验算结果一览验算项数值限值结果最大压应力(MPa) 9.13 最大19.1 满足受拉承载力(kN) 136 最大157 满足混凝土要求底板厚(mm) 24.6 最大40.0 满足锚栓要求底板厚(mm) 17.4 最大40.0 满足底板厚度 40.0 最小24.6 满足等强全截面 1 满足板件宽厚比 16.1 最大18.0 满足板件剪应力(MPa) 37.1 最大125 满足焊缝剪应力(MPa) 46.4 最大160 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足板件厚度(mm) 16.0 最小16.0 满足焊脚高度(mm) 10.0 最小9.49 满足焊脚高度(mm) 10.0 最大19.2 满足基底最大剪力(kN) 11.8 最大165 满足三. 混凝土承载力验算控制工况:1.2D+1.4LN=-45.6 kN;M x=0 kN·m;M y=364 kN·m;偏心受压底板计算:这里偏心距e为:e= M/N =364000000/45600=7982.456mm > 119.749mm所以按部分截面混凝土受压,部分锚栓受拉来计算(通过对混凝土应力积分): δmax=9.127N/mm2中性轴的坐标: x = 128.949最大锚栓的拉力: NTa = 136439.829N锚栓总拉力: Ta = 620441.082 N轴力N大小为: N = 45600 N混凝土的总合压力: F = 666041.082N外力对中性轴的弯矩: M外= 358119947.929N.mm 按(fN(e-x)方式求出)锚栓的合弯矩: Ma = 243227678.915N.mm混凝土的合弯矩: Mc = 114892231.881N.mm混凝土抗压强度设计值:f c=19.1N/mm2底板下混凝土最大受压应力:σc=9.127N/mm2≤19.1,满足四. 锚栓承载力验算控制工况:1.2D+1.4LN=-45.6 kN;锚栓最大拉力:N ta=136.44 kN(参混凝土承载力验算)锚栓的拉力限值为:N t=156.927kN锚栓承受的最大拉力为:N ta=136.44kN≤156.927,满足五. 底板验算1 构造要求最小底板厚度验算一般要求最小板厚:t n=6mm柱截面要求最小板厚:t z=5mm构造要求最小板厚:t min=max(t n,t z)=20 mm≤40,满足2 混凝土反力作用下的最小底板厚度计算非抗震工况底板下最大压应力:σcm=9.127 N/mm2底板厚度验算控制应力:σc=9.127 N/mm2沿圆周布置的加劲肋之间按三边支承板简化计算:折算跨度:a2=3.142×850/12=222.529 mm悬挑长度:b2=0.5×(850-560)=145 mm分布弯矩:M1=0.08119×9.127×222.529×222.529 ×10-3=0.0367 kN·m 得到底板最大弯矩区域的弯矩值为:M max=0.0367 kN·m混凝土反力要求最小板厚:T min=(6*M max/f)0.5=(6×36.698/205×103)0.5=32.773 mm≤40,满足3 锚栓拉力作用下的最小底板厚度计算非抗震工况锚栓最大拉力:T am=136.44 kN底板厚度验算控制拉力:T a=136439.829 kN锚栓中心到柱底截面圆边缘距离:l a1=1202.082-560-50=240 mml a1对应的受力长度:l l1=2×240=480 mm锚栓中心到左侧加劲肋距离:l a2=(0.5×560+240)×0.2588=134.586 mml a2对应的受力长度:l l2=134.586+min(50,134.586+0.5×42)=184.586 mm锚栓中心到右侧加劲肋边距离:l a3=134.586 mml a3对应的受力长度:l l3=l l2=134.586+min(50,134.586+0.5×42)=184.586 mm弯矩分布系数:ζ1=240×134.586×134.586/(240×184.586×184.586+480×134.586×184.586+480×184.586×134.586)=0.1357得最大弯矩分布系数为:ζ=0.1357锚栓拉力要求的最小板厚:t min=(6×136.44×0.1357/205×103)0.5=23.278 mm≤40,满足六. 对接焊缝验算柱截面与底板采用全对接焊缝,强度满足要求七. X向加劲肋验算非抗震工况下锚栓最大拉力:T am=136.44 kN加劲肋承担柱底反力区域面积:S r=0.01 cm2非抗震工况下加劲肋承担柱底反力:V rc=σcm*S r=9.127×0.01×100=0.009127 kN板件控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN计算宽度取为上切边到角点距离:b r=167.797 mm板件宽厚比:b r/t r=167.797/16=10.487≤18,满足扣除切角加劲肋高度:h r=250-20=230 mm板件剪应力:τr=V b/h r/t r=136.44×103/(230×16)=37.076 Mpa≤125,满足焊缝控制剪力:1.2D+1.4L下锚栓拉力,V r=136.44 kN角焊缝剪应力:τw=V r/[2*0.7*h f*(h r-2*h f)]=136.44/[2×0.7×10×(230-2×10)]=46.408 MPa≤160,满足八. 柱脚抗剪验算控制工况:1.35D+0.84LN=-51.3 kN;V x=11.76 kN;V y=0 kN;锚栓所承受的拉力为:T a=360.206 kN柱脚底板的摩擦力:V fb=0.4*(-N+T a)=0.4×(51.3+360.206)=164.602 kN柱脚所承受的剪力:V=(V x2+V y2)0.5=(11.762+02)0.5=11.76 kN≤164.602,满足独立桩承台设计(ZCT-4)项目名称构件编号日期设计校对审核执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2001), 本文简称《荷载规范》《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》-----------------------------------------------------------------------1 设计资料1.1 已知条件承台参数(3 桩承台第 1 种)承台底标高: -2.000(m)承台的混凝土强度等级: C25承台钢筋级别: HRB335配筋计算a s: 35(mm)桩参数桩基重要性系数: 1.0桩类型: 泥浆护壁钻(冲)孔桩承载力性状: 摩擦桩桩长: 25.000(m)是否方桩: 否桩直径: 600(mm)桩的混凝土强度等级: C25单桩极限承载力标准值: 558.000(kN)桩端阻力比: 0.400均匀分布侧阻力比: 0.400是否按复合桩基计算: 否桩基沉降计算经验系数: 1.000压缩层深度应力比: 20.00%柱参数柱宽: 1050(mm)柱高: 1050(mm)柱子转角: 0.000(度)柱的混凝土强度等级: C25柱上荷载设计值弯矩M x: 333.000(kN.m)弯矩M y: 0.000(kN.m)轴力N : 45.600(kN)剪力V x: 0.000(kN)剪力V y: -17.000(kN)是否为地震荷载组合: 否基础与覆土的平均容重: 20.000(kN/m3)荷载综合分项系数: 1.20土层信息地面标高: 0.000(m)地下水标高: -0.500(m)(m)(kN/m3)(kN/m3)(MPa)征值(kPa)程度(kPa)1.2 计算内容(1) 桩基竖向承载力计算(2) 承台计算(受弯、冲切、剪计算及局部受压计算)(3) 软弱下卧层验算(4) 桩基沉降计算2. 计算过程及计算结果2.1 桩基竖向承载力验算(1) 桩基竖向承载力特征值R计算5.2.2及5.2.3R a——单桩竖向承载力特征值;Q uk——单桩竖向极限承载力标准值;K ——安全系数,取K=2。
35.5高支模计算书
35.5m高支模计算:板计算:一、参数信息1.模板支架参数横向间距或排距(m):1.00;纵距(m):1.20;步距(m):1.50;立杆上端伸出至模板支撑点长度(m):0.15;模板支架搭设高度(m):35.50;采用的钢管(mm):Φ48×3.0 ;板底支撑连接方式:方木支撑;立杆承重连接方式:双扣件,考虑扣件的保养情况,扣件抗滑承载力系数:0.80;2.荷载参数模板与木板自重(kN/m2):0.500;混凝土与钢筋自重(kN/m3):25.500;施工均布荷载标准值(kN/m2):1.000;3.材料参数面板采用胶合面板,厚度为15mm;板底支撑采用方木;面板弹性模量E(N/mm2):9500;面板抗弯强度设计值(N/mm2):13;木方抗剪强度设计值(N/mm2):1.400;木方的间隔距离(mm):250.000;木方弹性模量E(N/mm2):9000.000;木方抗弯强度设计值(N/mm2):13.000;木方的截面宽度(mm):50.00;木方的截面高度(mm):100.00;4.楼板参数楼板的计算厚度(mm):200.00;图2 楼板支撑架荷载计算单元二、模板面板计算模板面板为受弯构件,按三跨连续梁对面板进行验算其抗弯强度和刚度模板面板的截面惯性矩I和截面抵抗矩W分别为:W = 120×1.52/6 = 45 cm3;I = 120×1.53/12 = 33.75 cm4;模板面板的按照三跨连续梁计算。
面板计算简图1、荷载计算(1)静荷载为钢筋混凝土楼板和模板面板的自重(kN/m):q1 = 25.5×0.2×1.2+0.5×1.2 = 6.72 kN/m;(2)活荷载为施工人员及设备荷载(kN/m):q2 = 1×1.2= 1.2 kN/m;2、强度计算计算公式如下:M=0.1ql2其中:q=1.2×6.72+1.4×1.2= 9.744kN/m最大弯矩M=0.1×9.744×2502= 60900 N·m;面板最大应力计算值σ =M/W= 60900/45000 = 1.353 N/mm2;面板的抗弯强度设计值[f]=13 N/mm2;面板的最大应力计算值为 1.353 N/mm2小于面板的抗弯强度设计值13 N/mm2,满足要求!3、挠度计算挠度计算公式为ν=0.677ql4/(100EI)≤[ν]=l/250其中q =q1=6.72kN/m面板最大挠度计算值ν = 0.677×6.72×2504/(100×9500×33.75×104)=0.055 mm;面板最大允许挠度[ν]=250/ 250=1 mm;面板的最大挠度计算值0.055 mm 小于面板的最大允许挠度 1 mm,满足要求!三、模板支撑方木的计算方木按照三跨连续梁计算,截面惯性矩I和截面抵抗矩W分别为:W=b×h2/6=5×10×10/6 = 83.33 cm3;I=b×h3/12=5×10×10×10/12 = 416.67 cm4;方木楞计算简图1.荷载的计算(1)静荷载为钢筋混凝土楼板和模板面板的自重(kN/m):q1= 25.5×0.25×0.2+0.5×0.25 = 1.4 kN/m ;(2)活荷载为施工人员及设备荷载(kN/m):q2 = 1×0.25 = 0.25 kN/m;2.强度验算计算公式如下:M=0.1ql2均布荷载q = 1.2 × q1 + 1.4 ×q2 = 1.2×1.4+1.4×0.25 = 2.03 kN/m;最大弯矩M = 0.1ql2 = 0.1×2.03×1.22 = 0.292 kN·m;方木最大应力计算值σ= M /W = 0.292×106/83333.33 = 3.508 N/mm2;方木的抗弯强度设计值[f]=13.000 N/mm2;方木的最大应力计算值为 3.508 N/mm2小于方木的抗弯强度设计值13 N/mm2,满足要求!3.抗剪验算截面抗剪强度必须满足:τ = 3V/2bh n< [τ]其中最大剪力: V = 0.6×2.03×1.2 = 1.462 kN;方木受剪应力计算值τ = 3 ×1.462×103/(2 ×50×100) = 0.438 N/mm2;方木抗剪强度设计值[τ] = 1.4 N/mm2;方木的受剪应力计算值0.438 N/mm2小于方木的抗剪强度设计值1.4 N/mm2,满足要求!4.挠度验算计算公式如下:ν=0.677ql4/(100EI)≤[ν]=l/250均布荷载q = q1 = 1.4 kN/m;最大挠度计算值ν= 0.677×1.4×10004 /(100×9000×4166666.667)= 0.253 mm;最大允许挠度[ν]=1200/ 250=4.8 mm;方木的最大挠度计算值0.253 mm 小于方木的最大允许挠度 4.8 mm,满足要求!四、木方支撑钢管计算支撑钢管按照集中荷载作用下的三跨连续梁计算;集中荷载P取纵向板底支撑传递力,P=2.03kN;支撑钢管计算简图支撑钢管计算弯矩图(kN·m)支撑钢管计算变形图(mm)支撑钢管计算剪力图(kN)最大弯矩M max = 0.761 kN·m ;最大变形V max = 2.417 mm ;最大支座力Q max = 8.881 kN ;最大应力σ= 761371.788/4490 = 169.571 N/mm2;支撑钢管的抗压强度设计值[f]=205 N/mm2;支撑钢管的最大应力计算值169.571 N/mm2小于支撑钢管的抗压强度设计值205 N/mm2,满足要求!支撑钢管的最大挠度为 2.417mm 小于1200/150与10 mm,满足要求!五、扣件抗滑移的计算按照《建筑施工扣件式钢管脚手架安全技术规范培训讲座》刘群主编,P96页,双扣件承载力设计值取16.00kN,按照扣件抗滑承载力系数0.80,该工程实际的旋转双扣件承载力取值为12.80kN 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 风力影响: fmax=FHX3/3EI
F=P1*S灯杆+P1*S灯具*H/Hx+P1*S叉杆*h/Hx=
fmax= 248.2988419 (mm)
灯杆顶处的挠度为:
f"max= fmax*H/Hx=
558.67 (mm)
3、 挠度比:
Байду номын сангаас
△= f"max /H= 1.60% <5%
故挠度是安全的。
W=π*(D4-d4)/32D
=
2、 危险截面应力:
б =M/W=
73073687.99 (Pa)
3、 安全系数:
K= [б]/б =
3.22 >1.5
故强度是安全的。
0.002687814 (m3)
六、 挠度计算
1、 惯性矩:
De= (D+d)/2=
450 mm
I=
π(De4-de4)/64
=
334519900 (mm4)
13637.30 (N)
35米高杆灯受力计算书
一、 已知条件
1、 设计最大风速度:
U=
35 m/S
2、 材
料:
Q235
3、 许用应力:
[σ] =
235 MPa
4、 弹性模量:
E=
206000 N/m2
5、 挠度计算,圆锥杆等效为:De=(d+D)/2的等径管
6、 H= 35000 mm,
d= 300 mm
D=
600 mm 平均厚度 10 mm
二、 风压 P=U2/16 =
750 (N/m2)
三、 迎风面积 S灯杆= S叉杆= S灯具=
(D+d)*H/2 = 0.85 (m2)
15.75 (m2) 0.228 (m2)
四、 根部所受最大力矩
主杆根部的力矩,可以等效为集中风力作用在主杆重心处对主杆根部的力矩:
1、 重心高度
Hx=
(2d+D)*H/3(D+d)=
15.56 (m)
2、 风力影响
M灯杆= M灯具= M叉杆=
P1*S灯杆*Hx=
183827
P1*S灯具*Hx=
9920.8
P1*S叉杆*Hx=
2661.1
M总=M灯杆+M灯具+M叉杆= 196408
(N·m) (N·m) (N·m) (N·m)
五、 强度校核
1、 灯杆的危险截面处于根部,根部的抗弯截面系数: