2011年山西中考数学试题含答案解析

合集下载

山西中考数学计算真题汇总(历年)

山西中考数学计算真题汇总(历年)

山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。

山西中考数学试题和答案WORD

山西中考数学试题和答案WORD

山西省2011年中考数学试题第Ⅰ卷 选择题 (共24分)一、选择题 (本大题共l2个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.6-的值是( )A .6-B .16-C .16D . 6 2.点(一2.1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列运算正确的是( )A .236(2)8a a -=- B .3362a a a += C .632a a a ÷= D .3332a a a ⋅=4.2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( ) A .947.5610⨯元 B .110.475610⨯元 C .104.75610⨯元 D. 94.75610⨯元5.如图所示,∠AOB 的两边.OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是( ) A .35° B .70° C .110° D .120°6.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是( )7.一个正多边形,它的每一个外角都等于45°,则该正多边形是( ) A .正六边形 B .正七边形 C .正八边形 D .正九边形 8.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( l A .13π2cm B .17π2cm C .66π2cm D .68π2cm9.分式方程1223x x =+的解为( } A .1x =- B .1x = C .2x = D . 3x =10.“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .(130%)80%2080x +⨯= B .30%80%2080x ⋅⋅= C .208030%80%x ⨯⨯= D .30%208080%x ⋅=⨯11.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 ( )A .B .4cmC .D .12.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( ) A ,0ac > B .方程20axbx c ++=的两根是1213x x =-=,C .20a b -=D .当x>0时,y 随x 的增大而减小.第Ⅱ卷 非选择题 (共96分)二、填空题(本大题共6个小题,每小题3分,共l8分.把答案写在题中横线上) 13.1026sin 45--=_________14.如图,四边形ABCD 是平行四边形,添加一个条件_____,可使它成为矩形.15.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。

2011中考数学真题解析19 一元一次方程的应用(含答案)

2011中考数学真题解析19 一元一次方程的应用(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编一元一次方程的应用一、选择题1. (2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )A .54盏B .55盏C .56盏D .57盏考点:一元一次方程的应用。

专题:优选方案问题。

分析:可设需更换的新型节能灯有x 盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.解答:解:设需更换的新型节能灯有x 盏,则70(x+1)=36×(106+1)70x=3782,x≈55则需更换的新型节能灯有55盏.故选B .点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意根据实际问题采取进1的近似数.2. (2011山西,10,2分)“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .()130%80%2080x +⨯=B . 30%80%2080x ⋅⋅=C . 208030%80%x ⨯⨯=D . 30%208080%x ⋅=⨯考点:一元一次方程专题:一元一次方程分析:成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .解答:A点评:找出题中的等量关系,是列一元一次方程的关键.3. (2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( )A 、17人B 、21人C 、25人D 、37人考点:一元一次方程的应用。

2011年山西中考数学试题

2011年山西中考数学试题

语文课程改革实验中显示出哪些比较突出的问题?在学习了《十年语文课程改革之路》的专题后,我深有感触。

小学课程改革已经步入第十年,这十年,是不断探索、实践、反思的十年,十年中,我们虽走过小小的弯路,但同时也验证了课改方向的正确性,也发现了其中存在的问题。

作为一名小学语文老师,谈谈自己对小学语文课改的一些看法。

一、综合实践课流于形式走过场尽管各级教育主管部门再三强调要求学校开全开足课程,要学校想方设法,结合实施地方课程和学校课程,组织学生参加综合实践活动。

要尽可能多的开发课程资源,给学生提供多种选择机会,让学生选择自己感兴趣的领域学习。

严禁利用综合实践活动课的时间给学生补习文化课。

但是好多地方未能开展,或者搞得很少,太过于形式化,有时为了应付检查,没有切切实实地落实在一线的教学活动之中,使得其形同虚设。

、就连综合性学习都存在走过场现象,没有落实到教学实践当中来,需要教师多下工夫钻研、挖掘相关教学资源。

二、学生主体地位体现不够。

在课堂教学中,教师习惯于让学生听自己讲授,并且要求学生“全神贯注”。

所谓学生在学习过程中的主体地位,也就是在课堂教学过程中,学生应该处于核心的地位。

表现在课堂上,他们应是教学过程的参与者和主要的活动者。

通过一系列的学习活动,最终由他们自己完成学习的任务。

所以,教师所进行的教学设计、教学组织及活动,都应围绕学生这个中心,直接为学生的学习提供及时的帮助、有针对性的引导和指导等各种有效的服务。

构建学生在学习过程中的主体地位,绝不是简单的转变他们学习的方式和方法,更重要的是培养他们养成自主学习的意识和习惯。

只有养成自主学习的意识,才能实现学习方式的转变,这是最终实现这一目标的关键所在。

当然,在以后的教学实践中,我会更加努力,真正融会贯通地理解教材内容,提升教学技艺,带给学生更多充满生命活力和生命情怀的学习过程。

多认少写,为孩子独立阅读创造条件阅读可以为小学生提供一个充满无数新奇、可能的幻想世界,从而促进学生思维和对世界多样性、丰富性认识的发展。

【史上最全】2011中考数学真题解析76_等腰三角形的性质和判定(含答案)

【史上最全】2011中考数学真题解析76_等腰三角形的性质和判定(含答案)

2011全国中考真题解析120考点汇编等腰三角形的性质和判定一、选择题1.(2011•铜仁地区7,3分)下列关于等腰三角形的性质叙述错误的是()A、等腰三角形两底角相等B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C、等腰三角形是中心对称图形D、等腰三角形是轴对称图形考点:等腰三角形的性质;轴对称图形;中心对称图形。

分析:根据等腰三角形的性质:等腰三角形两底角相等(等边对等角),等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合(三线合一),等腰三角形是轴对称图形但不是中心对称图形,即可求得答案.解答:解:A、等腰三角形两底角相等,故本选项正确;B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合,故本选项正确;C、等腰三角形不是中心对称图形,故本选项错误;D、等腰三角形是轴对称图形,故本选项正确.故选C.点评:此题考查了等腰三角形的性质.注意等边对等角,三线合一,以及其对称性的应用.2.(2011内蒙古呼和浩特,7,3)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A、9cmB、12cmC、15cm或12cmD、15cm考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.根据三角形三边关系定理列出不等式,确定是否符合题意.解答:解:当6为腰,3为底时,6-3<6<6+3,能构成等腰三角形,周长为5+5+3=13;当3为腰,6为底时,3+3=6,不能构成三角形.故选D.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.(2011辽宁沈阳,7,3)如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A、2个B、4个C、6个D、8个考点:等腰三角形的判定;矩形的性质。

2011中考数学真题解析87 正方形的性质与判定(含答案)

2011中考数学真题解析87 正方形的性质与判定(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编正方形的性质与判定一、选择题1.(2011天津,5,3分)如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A、15°B、30°C、45°D、60°考点:翻折变换(折叠问题);正方形的性质。

专题:计算题。

分析:利用翻折变换的不变量,可以得到∠EBF为直角的一半.解答:解:∵将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,∴∠ABE=∠DBD=∠DBF=∠FBC,∴∠EBF=12∠ABC=45°,故选C.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.2.(2011山东济南,15,3分)如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是()A.S1=S2=S3B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1考点:解直角三角形;三角形的面积。

分析:设直角三角形的三边分别为a、b、c,分别表示出三角形的面积比较即可.解答:解:设三角形的三边长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∴S1=S2=S3=12ab.故选A.点评:本题考查了解直角三角形及三角形的面积的知识,解题的关键是了解三角形的三边与正方形的边长的关系.[来源:学科网]3.(2011泰安,17,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质。

2011中考数学真题解析30 一元二次方程的应用(含答案)

2011中考数学真题解析30 一元二次方程的应用(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编一元二次方程的应用一、选择题1. (2011四川凉山,6,4分)某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的是( )A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x += 考点:由实际问题抽象出一元二次方程. 专题:增长率问题.分析:根据降价后的价格=原价(1-降低的百分率),本题可先用173(1-x %)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程. 解答:解:当商品第一次降价x %时,其售价为173-173x %=173(1-x %);当商品第二次降价x%后,其售价为173(1-x %)-173(1-x %)x %=173(1-x %)2.∴173(1-x %)2=127. 故选C .点评:本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于127即可.2. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、14考点:一元二次方程的应用。

专题:网格型。

分析:可设方格纸的边长是x ,灰色三角形的面积等于方格纸的面积减去周围三个直角三角形的面积,列出方程可求解. 解答:解:方格纸的边长是x ,21 x 2﹣21•x•21x ﹣21•21x•43x ﹣21•x•41x=421 x 2=12.所以方格纸的面积是12, 故选B .点评:本题考查识图能力,关键看到灰色三角形的面积等于正方形方格纸的面积减去周围三个三角形的面积得解.3. (2011甘肃兰州,11,4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 考点:由实际问题抽象出一元二次方程.分析:根据题意得:每人要赠送x -1张相片,有x 个人,然后根据题意可列出方程. 解答:解:根据题意得:每人要赠送x -1张相片,有x 个人,∴全班共送:(x -1)x =2070, 故选:A .点评:此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送x -1张相片,有x 个人是解决问题的关键.4. (2011贵州毕节,10,3分)广州亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,下列所列方程正确的是( ) A .128%)1(1602=+a B .128%)1(1602=-aC .128%)21(160=-aD .128%)1(160=-a 考点:由实际问题抽象出一元二次方程。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年中考考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin 30°的值等于( )A .1 BCD .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a CD .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D . 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众H I N A数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,97.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6 8.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++第(9)题2009年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.P CAO注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2; 列出方程并完成本题解答.图②图①已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围; (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩ ,①②由①得2x >, ························································································································ 2分由②得,52x >-···················································································································· 4分 ∴原不等式组的解集为2x >································································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ································································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ·········································································································· 6分 DCA E 2 31 2 3又 点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ··························································································· 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··················································································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠= °,9060CAP BAC ∴∠=-∠=°°.················································································· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°. ··························································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=··························································································································· 8分 23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ············································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ···················· 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD == ,-,65BD ∴==. ··························································································· 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ················································································ 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ·································································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ············································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去). 则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm. ································································· 8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分 26.本小题满分10分.解(Ⅰ)212120y x y x bx c y y ==++-= ,,,()210x b x c ∴+-+=. ··································································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ····································································· 3分(Ⅱ)由已知,得AB =,设ABM △的高为h ,311212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ······················································································ 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<< ,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ································································································· 10分。

2006-2011年山西省中考数学试题及答案(6套)

2006-2011年山西省中考数学试题及答案(6套)

新世纪教育网精选资料版权全部@新世纪教育网二 00 七年浙江省舟山市初中毕业生学业考试数学试卷一、认真选一选(此题有10 个小题。

每题 4 分。

共 40 分)下边每题给出的四个选项中,只有一个是正确的,请把正确选项前的宇母填在答题卷中相应的格子内。

注意能够用多种不一样的方法来选用正确答案。

1.以下运算的结果中,是正数的是()A .(- 2007)- 12007C.(- 1)×(- 2007)D.(- 2007)÷2007 B.(- 1)2.点 P 在第二象限内, P 到 x 轴的距离是4,到 y 轴的距离是3,那么点 P 的坐标为()A .(- 4, 3)B .(- 3,- 4)C.(- 3, 4)D.( 3,- 4)3.如图,用放大镜将图形放大,应当属于()A .相像变换B .平移变换C.对称变换D.旋转变换4.有一组数据以下:3, 6,5, 2, 3,4, 3, 6.那么,这组数据的中位数是()A.3或 4B.4C.3D. 3.55.因式分解( x- 1)2-9 的结果是()A .( x+8)( x+1)B .( x+2)( x- 4) C.( x- 2)( x+4)D.( x-10)( x+8)6.如图,正三角形ABC 内接于圆0,动点 P 在圆周的劣弧 AB 上,且不与 A , B 重合,则∠BPC 等于()A . 30°B . 60°C. 90°D. 45°7.如图,在高楼前 D 点测得楼顶的仰角为30°,向高楼行进60 米到 C 点,又测得仰角为45°,则该高楼的高度大概为()A .82 米B.163 米C.52 米D.30 米8.假如函数y=ax+b( a<0 ,b<0)和 y=kx( k>0)的图象交于点P,那么点P 应当位于()A .第一象限B .第二象限C.第三象限D.第四象限9.右图背景中的点均为大小相同的小正方形的极点,此中画有两个四边形,以下表达中正确的是()A.这两个四边形面积和周长都不相同B.这两个四边形面积和周长都相同C.这两个四边形有相同的面积,但I 的周长大于Ⅱ的周长D.这两个四边形有相同的面积,但I 的周长小于Ⅱ的周长10.将三粒平均的分别标有1, 2, 3, 4, 5,6 的正六面体骰子同时掷出,出现的数字分别为 a, b, c,则 a, b, c 正好是直角三角形三边长的概率是()1B .111A .C.36D.2167212二、认真填一填(此题有 6 个小题,每题 5 分,共 30 分)要注意认真看清题目的条件和要填写的内容。

2011中考数学真题解析1 数轴、绝对值、相反数(含答案)

2011中考数学真题解析1 数轴、绝对值、相反数(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编数轴、绝对值、相反数一、选择题1.(2011江苏淮安,1,3分)3 的相反数是()A.-3B.-13C.13D.3考点:相反数。

专题:计算题。

分析:根据相反数的定义即可求出3的相反数.解答:解:3的相反数是﹣3故选A.点评:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(2011 江苏连云港,1,3分)2的相反数是()A.2 B.-2 C D.1 2考点:相反数。

专题:计算题。

分析:根据相反数的意义,相反数是只有符号不同的两个数,改变﹣2前面的符号,即可得﹣2的相反数.解答:解:由相反数的意义得,﹣2的相反数是2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2011•泰州,1,3分)12-的相反数是()A、12-B、12C、2D、﹣2考点:相反数。

专题:计算题。

分析:根据相反数的定义进行解答即可. 解答:解:由相反数的定义可知,12-的相反数是﹣(12-)=12.故选B .点评:本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 4. (2011•江苏徐州,1,2)﹣2的相反数是( ) A 、2B 、﹣2C 、12D 、12-考点:相反数。

专题:计算题。

分析:根据相反数的定义:只有符号不同的两个数就是相反数,进行判断. 解答:解:根据相反数的定义,﹣2的相反数是2. 故选A .点评:本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断. 5. (2011盐城,1,3分)-2的绝对值是( )A.﹣2B.21-C.2D.21考点:绝对值. 专题:计算题.分析:根据负数的绝对值等于它的相反数求解. 解答:解:因为|-2|=2,故选C .点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(2011江苏无锡,1,3分)|﹣3|的值等于( )A .3B .﹣3C .±3D .3考点:绝对值。

2011年中考数学试题含答案

2011年中考数学试题含答案

2011年高中阶段学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是A.r>15 B.15<r<20 C.15<r<25 D.20<r<25 9.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 2324得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.图4图313.若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.18.(本小题满分7分)如图7,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.图5图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回...地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少米?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题: 如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a 2-b 2=(3b )2-b 2=2b 2=b ·c .即a 2-b 2= bc . 于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB为直径作⊙O ′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式; (2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图102011年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分)1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB≌ΔCOD、ΔAOD≌ΔCOB、ΔADB≌ΔCBD、ΔABC≌ΔCDA之一均可;12.3434+(或34+3);13.x1<x2<0或0<x1<x2;14.4;15.10 ;16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x-–21(2)x-]×(2)2x x-······························································ 3分=1(2)x x-×(2)2x x-–21(2)x-×(2)2x x-=12–2(2)xx-·········································································································· 4分=22(2)xx--–2(2)xx-=12x-····················································································································· 5分当x=1时,原式=121-·············································································································· 6分= 1 ··························································································································· 7分图7 说明:以上步骤可合理省略 . 18.(1) 内. ············································································································ 2分 (2) 证法一:连接CD , ························································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,·········································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD , ································································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ··········································································································· 6分 ∴ □DECF 为菱形. ······························································································ 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ·································· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ·············································································································· 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··········································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ·············································································································· 6分 ∴□DECF 为菱形. ······························································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13,·················································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.································································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ········································ 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩·············································································· 5分解得:1.5≤x ≤5 ····································································································· 6分注意到x 为正整数,∴x =2,3,4,5 ···································································· 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车 2 3 4 5 乙种货车7654································································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ································································· 1分 可能出现的所有结果列表如下:1 2 344812大双积 小双5510 15或列树状图如下:·························································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ···································································· 6分∵23≠13,∴大双的设计方案不公平. ··································································· 7分 (2) 小双的设计方案不公平. ················································································ 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ····················································································································· 1分 解得k =2, ·············································································································· 2分∴反比例函数的解析式为y =1x. ··········································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ························································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ······································································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ································ 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ =103, ············································································ 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =tan45°×PQ =10,即:AB =(103+10)(米); ························································· 5分 (2) 过A 作AE ⊥BC 于E ,图8在Rt△ABE中,∠B=30°,AB =103+10,∴AE=sin30°×AB=12(103+10)=53+5, ··············································· 7分∵∠CAD=75°,∠B=30°,∴∠C=45°,····································································································· 8分在Rt△CAE中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米) ·······················································10分23. (1) 由题意,得∠A=90°,c=b,a =2b,∴a2–b2=(2b)2–b2=b2=bc. ······················································3分(2) 小明的猜想是正确的.·······················································4分理由如下:如图3,延长BA至点D,使AD=AC=b,连结CD,···································································································5分则ΔACD为等腰三角形.∴∠BAC=2∠ACD,又∠BAC=2∠B,∴∠B=∠ACD=∠D,∴ΔCBD为等腰三角形,即CD=CB=a, ·······················································6分又∠D=∠D,∴ΔACD∽ΔCBD,···············································7分∴AD CDCD BD=.即b aa b c=+.∴a2=b2+bc.∴a2–b2= bc············8分(3) a=12,b=8,c=10. ························································· 10分24.(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC= ∠COB=90°,∴ΔAOC∽ ΔCOB,·································································································· 1分∴OA OCOC OB=.又∵A(–1,0),B(9,0),∴19OCOC=,解得OC=3(负值舍去).∴C(0,–3), ································································································································ 3分设抛物线解析式为y=a(x+1)(x–9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x–9),即y=13x2–83x–3.································· 4分(2) ∵AB为O′的直径,且A(–1,0),B(9,0),∴OO′=4,O′(4,0),······························································································ 5分∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=12∠BCE=12×90°=45°,连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.图9-3。

2011中考数学真题解析120 压轴题4(含答案)

2011中考数学真题解析120 压轴题4(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编压轴题4127.(2011山东淄博24,分)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x 交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且,若M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由.考点:二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;平行四边形的性质。

专题:计算题。

分析:(1)把C的坐标代入求出c的值,把A、B的坐标代入抛物线的解析式得到方程组,求出方程组的解即可求出抛物线的解析式;(2)以点P,M,Q,N为顶点的四边形能为平行四边形,当M在OA上,N在OB 上时,以点P,M,Q,N为顶点的四边形为平行四边形,求出N的横坐标,求出ND、MD,根据勾股定理求出m即可.解答:(1)解:∵抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),代入得:c=﹣2,∴y=ax2+bx﹣2,把A(﹣2,﹣2),B(2,2)代入得:24222422a ba b-=--⎧⎨=+-⎩错误!未找到引用源。

,解得:121ab⎧=⎪⎨⎪=⎩错误!未找到引用源。

,∴y=12错误!未找到引用源。

x2+x﹣2,答:抛物线的解析式是y=12错误!未找到引用源。

x2+x﹣2.(2)解:以点P,M,Q,N为顶点的四边形能为平行四边形.理由如下:∵M、N在直线y=x上,∴OP=PM,OQ=QN,只有M在OA上,N在OB上时,ON=OM时,以点P,M,Q,N为顶点的四边形为平行四边形,过M作MC⊥y轴于C,交NQ的延长线于D,∵M点的横坐标为m,∴N的横坐标是﹣m,MD=ND=|2m|,由勾股定理得:(2m)2+(2m)22=,∵m<0,m=12 -.答:以点P,M,Q,N为顶点的四边形能为平行四边形,m的值是12 .点评:本题主要考查对一次函数的性质,用待定系数法求二次函数的解析式,解二元一次方程组,平行四边形的性质,勾股定理等知识点的理解和掌握,能用待定系数法求二次函数的解析式和得到MD=ND=|2m|是解此题的关键.128.(2011•山西)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t >0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为错误!未找到引用源。

2011年中考数学考试试题答案

2011年中考数学考试试题答案

1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。

2006-2011年山西省中考数学试题及答案(6套)

2006-2011年山西省中考数学试题及答案(6套)

二00七年浙江省舟山市初中毕业生学业考试数学试卷一、仔细选一选(本题有10个小题。

每小题4分。

共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的宇母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.下列运算的结果中,是正数的是()A.(-2007)-1 B.(-1)2007C.(-1)×(-2007)D.(-2007)÷20072.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.如图,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换4.有一组数据如下:3,6,5,2,3,4,3,6.那么,这组数据的中位数是()A.3或4 B.4 C.3 D.3.55.因式分解(x-1)2-9的结果是()A.(x+8)(x+1)B.(x+2)(x-4)C.(x-2)(x+4)D.(x-10)(x+8)6.如图,正三角形ABC内接于圆0,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°7.如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为()A.82米B.163米C.52米D.30米8.如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A.第一象限B.第二象限C.第三象限D.第四象限9.右图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是()A.这两个四边形面积和周长都不相同B.这两个四边形面积和周长都相同C.这两个四边形有相同的面积,但I的周长大于Ⅱ的周长D.这两个四边形有相同的面积,但I的周长小于Ⅱ的周长10.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.112二、认真填一填(本题有6个小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容。

2011年山西省中考数学试卷及答案(扫描版)

2011年山西省中考数学试卷及答案(扫描版)

2011年汕头市金平区初中毕业生学业考试英语模拟试卷学校__________班级___________姓名___________座号__________评分_________说明:1、全卷共10页,考试用时为100分钟(其中听力考试时间约15分钟),满分150分;2、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、准考证号、试室号和座位号填写在答题卡相应位置上;3、选择题用2B铅笔将答题卡上对应题目所选的选项涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。

作答在试卷上的答案无效;4、非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不准使用铅笔或涂改液,否则答案无效;5、考试结束时,将试题、答题卡一并交回。

第一卷语言与知识技能(100分)一、听力理解:(本大题分为A、B、C、D四部分,共25小题,30分)A.听句子(本题共5小题,每小题1分,共5分)根据所听句子的内容和所提的问题,选择符合题意的图画回答问题,并将答题卡上对应题目所选的选项涂黑。

每小题听一遍。

( ) 1. What does the woman do every day?( ) 2. What does the speaker prefer?( ) 3. What happened to Tom?( ) 4. What will the weather be like tomorrow?( ) 5. What festival do they plan to celebrate?B. 听对话(本题共10小题,每小题1分,共10分)根据所听对话内容回答每段对话后面的问题,在所给的三个选项中选出一个最佳答案,并将答题卡上对应题目所选的选项涂黑。

每段对话听两遍。

听第一段对话,回答第6题。

( )6. What did Amy use to be like?A. Shy.B. Outgoing.C. Easy-going.听第二段对话,回答第7题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省2011年中考数学试题第Ⅰ卷 选择题 (共24分)一、选择题 (本大题共l2个小题,每小题2分,共24分)1. 6-的相反数是(D) A .6- B .16- C .16D . 6 考点:七年级上册 第一章 有理数 相反数.分析:相反数就是只有符号不同的两个数.解答:解:根据概念,与-6只有符号不同的数是6.即-6的相反数是6.故选D .例题:-2+5的相反数是( )A .3B .-3C .-7D .72.点(一2.1)所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限考点:七年级下册 第六章 平面直角坐标系 点的坐标.分析:根据点在第二象限内的坐标特点解答即可.解答:解:∵A (-2,1)的横坐标小于0,纵坐标大于0,∴点在第二象限,故选B .例题:如图,在平面直角坐标系中,点P 的坐标是( )A .(1,2)B .(2,1)C .(-1,2)D .(2,-1)3.下列运算正确的是( A )A .236(2)8a a -=- B .3362a a a += C .632a a a ÷= D .3332a a a ⋅= 考点:七年级上册 第一章 有理数 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 解答:解:A 项幂的乘方和积的乘方,本选项正确,B 项为合并同类项,系数相加字母和字母的指数不变,故本选项错误,C 项为同底数幂的除法,底数不变指数相减,故本选型错误,D 项为同底数幂的乘法,底数不变指数相加,故本选项错误.故选择A .例题: 下列合并同类项正确的有( )A .2x+4x=8x 2B .3x+2y=5xyC .7x 2-3x 2=4D .9a 2b-9ba 2=04.2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( C )A .947.5610⨯元B .110.475610⨯元C .104.75610⨯元 D. 94.75610⨯元考点:七年级上册 第一章 有理数 科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:将475.6亿元用科学记数法表示为4.756×1010.故选C .例题:2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为1 339 000 000人,将1 339 000 000用科学记数法表示为( )A .1.339×108B .13.39×108C .1.339×109D .1.339×10105.如图所示,∠AOB 的两边.OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是(B )A .35°B .70°C .110°D .120°考点:七年级下册第五章相交线与平行线平行线的性质.分析:过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,∴∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数是70°.解答:解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.例题:把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°6.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是(A )考点:八年级上册 第十二章 轴对称 剪纸问题.分析:按照题意要求,动手操作一下,可得到正确的答案.解答:解:严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论. 故选A .例题: 在如图所示的四个剪纸图案中,形如轴对称图形的图案是( )A .B .C .D . 7.一个正多边形,它的每一个外角都等于45°,则该正多边形是( C ) A .正六边形 B .正七边形 C .正八边形 D .正九边形考点:七年级下册 第七章 三角形 多边形内角与外角.分析:多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.解答:解:360÷45=8,所以这个正多边形是正八边形.故选C .例题:一个多边形的内角和是720°,这个多边形的边数是( )A .4B .5C .6D .78.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( B lA .13π2cmB .17π2cmC .66π2cmD .68π2cm考点:九年级下册 第二十九章 投影与视图 圆柱的计算;由三视图判断几何体.分析:根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和.解答:解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm 和4cm ,高分别是4cm 和1cm ,∴体积为:4π×22+π=17πcm3.故选B .例题: 一个几何体的三视图如图所示,该几何体的内接圆柱侧面积的最大值为.9.分式方程1223x x =+的解为( B } A .1x =- B .1x = C .2x = D . 3x =考点:八年级下册 第十六章 分式 解分式方程.分析:观察可得最简公分母是2x (x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘2x (x+3),得x+3=4x ,解得x=1.检验:把x=1代入2x (x+3)=8≠0.∴原方程的解为:x=1. 故选B . 例题:A .-1B .0C .1D .10.“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( A )A .(130%)80%2080x +⨯=B .30%80%2080x ⋅⋅=C .208030%80%x ⨯⨯=D .30%208080%x ⋅=⨯考点:七年级上册 第三章 一元一次方程 由实际问题抽象出一元一次方程.分析:设该电器的成本价为x 元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程.解答:解:设该电器的成本价为x 元,x (1+30%)×80%=2080.故选A .例题:小芬买15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x 元,则依题意可列出下列哪一个一元一次方程式( )A .15(2x+20)=900B .15x+20×2=900C .15(x+20×2)=900D .15×x ×2+20=90011.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 (D)A .33cmB .4cmC .23cmD .25cm考点:七年级下册 第七章 三角形 三角形中位线定理;八年级上册 第十二章 轴对称 等腰三角形的性质;八年级下册 第十八章 勾股定理 勾股定理;八年级下册 第十九章 四边形 正方形的性质.分析:根据三角形的中位线定理可得出BC=4,由AB=AC ,可证明BG=CF=1,由勾股定理求出CE ,即可得出AC 的长.解答:解:∵点D 、E 分别是边AB 、AC 的中点,∴DE=BC ,∵DE=2cm ,∴BC=4cm ,∵AB=AC ,四边形DEFG 是正方形.∴△BDG ≌△CEF ,∴BG=CF=1,∴EC=,∴AC=2cm .故选D .例题:、如图,在正方形网格上,与△ABC 相似的三角形是( )A .△NBDB .△MBDC .△EBD D .△FBD12.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( B )A ,0ac >B .方程20ax bx c ++=的两根是1213x x =-=,C .20a b -=D .当x>0时,y 随x 的增大而减小.考点:九年级下册 第二十六章 二次函数 二次函数图象与系数的关系;抛物线与x 轴的交点.分析:根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断.解答:解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为x=-=1,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .例题:下列二次函数中,( )的图象与x 轴没有交点.A .y=3x2B .y=2x2-4C .y=3x2-3x+5D .y=8x2+5x-3第Ⅱ卷 非选择题 (共96分)二、填空题(本大题共6个小题,每小题3分,共l8分.)13. 计算:101826sin 45-+-=_________(12) 考点:七年级上册 第一章 有理数 负整数指数幂;八年级上册 第十三章 实数 实数的运算; 九年级下册 第二十八章 锐角三角函数 特殊角的三角函数值.分析:根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+0.5-6×=,故答案为.例题:14.如图,四边形ABCD是平行四边形,添加一个条件__________________,可使它成为矩形.(∠ABC=90°或AC=BD)考点:八年级下册第十九章四边形矩形的判定;平行四边形的性质.分析:根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.解答:解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD.例题:能判定平行四边形是矩形的条件是()A.对角线互相平分B.对角线互相垂直C.对角线互相垂直平分D.对角线相等15.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。

相关文档
最新文档