西南大学网络学院2019秋0931]《工程数学》平时作业辅导答案

合集下载

2019年12月西南大学网络教育大作业答案-0004离散数学.doc

2019年12月西南大学网络教育大作业答案-0004离散数学.doc
满足f((a,b))=(x,y),
所以f是满射
所以f是双射
2.设R是集合A上的关系,请给出R的传递闭包t(R)的定义.下图给出的是集合A= {1,2,3,4,5,6}上关系R的关系图,试画出R的传递闭包t(R)的关系图,并用集合表示.
3.请给出谓词逻辑的研究对象,并将“任何整数的平方均非负”使用谓词符号化.
西南大学网络与继续教育学院课程考试试题卷
类别:网教专业:计算机教育2019年12月
课程名称【编号】:离散数学【0004】B卷
大作业满分:100分
一、大作业题目
1.请给出集合A到集合B的映射f的定义.设R是实数集合,f:R×RR×R,f(x,y) = (x+y,x-y).
证明f是双射.
答:A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做集合A到集合B的映射.记做f:A→B.并称y是x的象,x是y的原象.对任意的(x,y))∈R*R,f((x,y))=(x+y,x-yБайду номын сангаас,
答:研究对象:个体词,谓词,量词,命题符号化;, ,
4.利用真值表求命题公式 的主析取范式和主合取范式.
5.求叶赋权分别为2, 3, 5, 7, 8的最优2叉树.
答:
二、大作业要求
大作业共需要完成三道题:
第1题必做,满分30分;
第2-3题选作一题,满分30分;
第4-5题选作一题,满分40分.
假设存在另一(x1,y1,)满足f((x1,y1))=(x1+y1,x1-y1)=(x+y,x-y),
即:x1+y1=x+y,x1-y1=x-y

国开电大《工程数学(本)》形考任务三答案国家开放大学形考任务试题

国开电大《工程数学(本)》形考任务三答案国家开放大学形考任务试题

国家开放大学《工程数学(本)》形成性考核作业三测验答案一、单项选择题(答案在最后)试题1:同时掷3枚均匀硬币,恰好有2枚正面向上的概率为().a.0.125b.0.5c.0.25d.0.375从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为a.0.5b.0.1c.0.4d.0.3试题2:已知,则()成立.设A,B是两事件,则下列等式中()是不正确的.试题3:对于事件,命题()是正确的.已知,则当事件互不相容时,().a.0. 5b.0.8c.0.7d.0.6试题4:某随机试验每次试验的成功率为,则在3次重复试验中至少失败1次的概率为为两个事件,且,则().试题5:设随机变量,且,则参数n与p分别是().a.8, 0.6b.6, 0.8c.14, 0.2d.12, 0.4设随机变量,且,则参数与分别是().a.0, 4b.2, 0c.0, 2d.4, 0试题6:设为连续型随机变量的密度函数,则对任意的,.在下列函数中可以作为概率密度函数的是().试题7:设连续型随机变量X的密度函数为,分布函数为,则对任意的区间,().设为随机变量,则().试题8:设是随机变量,,设,则().设为随机变量,,当()时,有.试题9:设是来自正态总体(均未知)的样本,则()是统计量.设是来自正态总体(均未知)的样本,则统计量()不是的无偏估计.试题10:对正态总体方差的检验用的是().设是来自正态总体的样本,则检验假设采用统计量U =().二、判断题(答案在最后)试题11:若事件相互独立,且,则.()若事件相互独立,且,则.()试题12:掷两颗均匀的骰子,事件“点数之和为3”的概率是.()盒中装有6个白球4个红球,无放回地每次抽取一个,则第2次取到红球的概率是.()试题13:已知连续型随机变量X的分布函数F(x),且密度函数f(x)连续,则.()设连续型随机变量X的密度函数是f(x),则.()试题14:若,则.()若,则.()试题15:设是来自正态总体的容量为2的样本,其中为未知参数,则是的无偏估计.()设是来自正态总体的容量为2的样本,其中为未知参数,则是的无偏估计.()二、填空题(答案在最后)试题16:设是两个随机事件,且,则称为事件B发生的条件下,事件A发生的.如果两事件A,B中任一事件的发生不影响另一事件的概率,则称事件A与事件B是.试题17:已知,则当A,B事件互不相容时,.已知,则A,B当事件相互独立时,.试题18:若,则D(X) .若,则.试题19:若二维随机变量(X,Y)的相关系数,则称X,Y .称为二维随机变量(X,Y)的.试题20:如果参数的估计量满足,则称为参数的.若都是的无偏估计,而且,则称比更.上面题目答案在最后一页,购买后才能查看参考答案试题中有两个答案的选择一个和试题中相对应的答案试题1答案:0.375 0.4试题2答案:,其中A,B互不相容试题3答案:如果对立,则对立0.8试题4答案:试题5答案:6, 0.8 0, 2试题6答案:试题7答案:试题8答案:试题9答案:试题10答案:X2检验法试题11答案:若事件相互独立,且,则.(错)若事件相互独立,且,则.(对)试题12答案:掷两颗均匀的骰子,事件“点数之和为3”的概率是.(错)盒中装有6个白球4个红球,无放回地每次抽取一个,则第2次取到红球的概率是.(错)试题13答案:已知连续型随机变量X的分布函数F(x),且密度函数f(x)连续,则.(错)设连续型随机变量X的密度函数是f(x),则.(对)试题14答案:若,则.(对)若,则.(错)试题15答案:设是来自正态总体的容量为2的样本,其中为未知参数,则是的无偏估计.(错)设是来自正态总体的容量为2的样本,其中为未知参数,则是的无偏估计.(对)试题16答案:设是两个随机事件,且,则称为事件B发生的条件下,事件A 发生的条件概率.如果两事件A,B中任一事件的发生不影响另一事件的概率,则称事件A与事件B是独立的.试题17答案:已知,则当A,B事件互不相容时,0.15 .已知,则A,B当事件相互独立时,0.3 .试题18答案:若,则D(X) 24.若,则 0.9973 .试题19答案:若二维随机变量(X,Y)的相关系数,则称X,Y 不相关.称为二维随机变量(X,Y)的协方差.试题20答案:如果参数的估计量满足,则称为参数的无偏估计量.若都是的无偏估计,而且,则称比更有效.。

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本)试题2012年1月一、单项选择题(每小题3分,共15分)1.设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A .AB A B +=+ B .AB A B '=C .1AB A B -=D .kA k A =2.设A 是n 阶方阵,当条件()成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为()。

A .0,2B .0,6 (0,1)N ,则随机变量()..对正态总体方差的检验用每小题3分,共[0,2]U ,则θ的无偏估计,且满足231⎢⎥⎣⎦230⎢⎥⎣⎦12.在线性方程组中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13.设随机变量(8,4)X N ,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14.某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4,10.6,10.1,10.4问:该机工作是否正常(0.9750.05, 1.96u α==)?四、证明题(本题6分)15.设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。

参考解答一、单项选择题(每小题3分,共15分)1、B2、A3、B4、D5、C二、填空题(每小题3分,共15分)三、计算题(每小题16分,共64分)试卷代号:1080中央广播电视大学2010~2011学年度第二学期“开放本科”期末考试(半开卷)工程数学(本)试题2011年7月一、单项选择题(每小题3分,共15分)1.设A ,B 都是n 阶方阵,则等式( )成立.A .AB A B +=+B .AB BA =4)α至多是()。

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案

试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立. A . A B A B +=+B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。

A .0,2 B .0,6 C .0,0 D .2,64.若随机变量(0,1)X N ,则随机变量32Y X =- ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA BO ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。

三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

电大工程数学(本)4作业答案

电大工程数学(本)4作业答案

3
α
2
= 0.975
查表得:λ = 1.96
] = [108.6,111.4] n n (2)当 σ 2 未知时,用 s 2 替代 σ 2 ,查 t (4, 0.05 ) ,得 λ = 2.776 s s 故所求置信区间为: [ x − λ ,x+λ ] = [108.3,111.7] n n 4.设某产品的性能指标服从正态分布 N ( µ , σ 2 ) ,从历史资料已知 σ = 4 ,抽查 10 个样品,求得均值为 17,取显著性水平 α = 0.05 ,问原假设 H 0 :µ = 20 是否成 立. x − µ0 17 − 20 3 解: | U |=| |=| |= = 0.237 , σ/ n 4 / 10 4 × 3.162
《工程数学( 》作业评讲 工程数学(本) 》作业评讲( 作业评讲(4)
重庆电大远程教育导学中心理工导学部 重庆电大远程教育导学中心理工导学部 姚素芬
第 3 章 统计推断 一、单项选择题 ⒈设 x1 , x 2 , Λ , x n 是来自正态总体 N ( µ , σ 2 ) ( µ , σ 2 均未知)的样本,则(A) 是统计量. x2 A. x1 B. x1 + µ C. 12 D. µ x1
σ
的样本, 则统计量 (D) ⒉设 x1 , x 2 , x 3 是来自正态总体 N ( µ , σ )( µ , σ 2 均未知) 不是 µ 的无偏估计. 1 A. max{x1 , x 2 , x 3 } B. ( x1 + x 2 ) 2 C. 2 x1 − x 2 D. x1 − x 2 − x 3
s2 = 1 10 1 ( xi − x) 2 = × 25.9 = 2.878 ∑ 10 − 1 i密度函数为

西南大学网络学习数学分析选讲网上在线第三次作业答案

西南大学网络学习数学分析选讲网上在线第三次作业答案

西南大学网络学习数学分析选讲网上在线第三次作业答案题目:幂级数的收敛区间必然是闭区间正确错误批阅:选择答案:错误正确答案:错误得分:10题目:任何有限集都有聚点正确错误批阅:选择答案:错误正确答案:错误得分:10题目:不绝对收敛的级数一定条件收敛正确错误批阅:选择答案:错误正确答案:错误得分:10题目:设f在(a,b)内可导,且其导数单调,则其导数在(a,b)内连续正确错误批阅:选择答案:正确正确答案:正确得分:10题目:有限区间上两个一致连续函数的积必一致连续正确错误批阅:选择答案:正确正确答案:正确得分:10题目:处处间断的函数列不可能一致收敛于一个处处连续的函数。

正确错误批阅:选择答案:错误正确答案:错误得分:10题目:条件收敛级数一定含有无穷多个不同符号的项。

正确错误批阅:选择答案:正确正确答案:正确得分:10题目:收敛级数一定绝对收敛正确错误批阅:选择答案:错误正确答案:错误得分:10题目:在级数的前面加上或去掉有限项不影响级数的收敛性正确错误批阅:选择答案:正确正确答案:正确得分:10题目:设f是(a,b)内可导的凸函数,则其导函数在(a,b)内递增正确错误批阅:选择答案:正确正确答案:正确得分:10题目:实数集R上的连续周期函数必有最大值和最小值正确错误批阅:选择答案:正确正确答案:正确得分:10题目:闭区间[a,b]的所有聚点的集合是[a,b] 正确错误批阅:选择答案:正确正确答案:正确得分:10题目:收敛级数任意加括号后仍收敛正确错误批阅:选择答案:正确正确答案:正确得分:10。

2019-2020年电大考试工程数学复习题精选及答案

2019-2020年电大考试工程数学复习题精选及答案

《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生。

本课程的考核形式为形成性考核和期末考试相结合的方式。

考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。

其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。

形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。

工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。

考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。

本考核说明是工程数学(本)课程期末考试命题的依据。

工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平。

因此,考试应具有较高的信度、效度和一定的区分度。

试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。

考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。

期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。

考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。

三个不同层次由低到高在期末试卷中的比例为:2:3:5。

2019-2020年电大考试《工程数学》历年期末考试题汇总

2019-2020年电大考试《工程数学》历年期末考试题汇总

期末考试工程数学(本) 试题一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立. A . A B A B +=+B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。

A .0,2 B .0,6 C .0,0 D .2,64.若随机变量(0,1)X N ,则随机变量32Y X =- ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA BO ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。

三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。

在有解的情况下,求出通解。

13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。

(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。

从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4, 10.6, 10.1, 10.4 问:该机工作是否正常(0.9750.05, 1.96u α==)? 四、证明题(本题6分)15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。

电大[工程数学]形成性考核册答案(1~3)

电大[工程数学]形成性考核册答案(1~3)

工程数学(1~3) 形成性考核册答案电大工程数学作业(一)答案(满分100分)第2章 矩阵(一) 单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若0001000020011a a=,则a =(A ).A.12B. -1C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BA B +=+---111B. ()AB BA--=11C. ()A B AB+=+---111D. ()A B AB---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. A B n A B = C. kA k A = D. -=-kA k A n() ⒍下列结论正确的是( A ). A. 若A 是正交矩阵,则A-1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则A B ≠0 ⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ).A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321 ⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ). A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2 C. ()221111ABC C B A ----= D. ()22A B C C B A '=''' (二)填空题(每小题2分,共20分)⒈210140001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积A C B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2A B 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O O A 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分) ⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()A B C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A ⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12101210321111432102,,,求AC BC +. 解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X . 解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式102014360253311--中元素a a 4142,的代数余子式,并求其值.答案:035263420)1(1441=--=+a 4535631021)1(2442=---=+a ⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 123423121111126---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶ 1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-919292929192929291100010001919292031320323110210201122120323190630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-110110001100011A ⒍求矩阵101101111011001012101211321⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-0001110001110110110110101110111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且A A I '=,试证A =1或-1. 证明: A 是n 阶方阵,且A A I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组. A. αα12, B. ααα123,, C. ααα124,, D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立.A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量 10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1D.B P PA ='(二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 . ⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα.⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组A X b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则A X b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612109039270018871048231901843101850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-310101001001020001314110046150101244200134241441542111r rr r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x 2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(1111111011111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==5710117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,, 解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000073140211450110314731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A AA AA AI∴ξλξ11=-A即λ1是矩阵1-A 的特征值10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型.解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++= 222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰ B.xf x x ab ()d ⎰ C.f x x ab ()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它 9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ).A. F a F b ()()-B. F x x a b ()d ⎰C. f a f b ()()-D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52.2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P A B ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P A B P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 . 9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-pp pp pp pk k 12)1()1()1(321 6.设随机变量X 的概率分布为12345601015020301201003.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P 72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P 7.03.01)3(1)3(=-==-=≠X P X P7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它试求P X P X (),()≤<<12142.解:412)()21(2122121====≤⎰⎰∞-xxdx dx x f X P16152)()241(1412141241====<<⎰⎰xxdx dx x f X P8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),().解:32322)()(1031==⋅==⎰⎰+∞∞-xxdx x dx x xf X E21422)()(1041222==⋅==⎰⎰+∞∞-xxdx x dx x f x XE181)32(21)]([)()(222=-=-=x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X nX i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n ni i X E X E X E nX XX E nX nE X E +⋯⋯++=+⋯⋯++==∑=μμ==n n1 )]()()([1)(1)1()(2122121n n ni i X D X D X D nX XX D nX nD X D +⋯⋯++=+⋯⋯++==∑=22211σσnn n=⋅=以上内容可能会有错误,欢迎指出。

工程数学作业题参考答案

工程数学作业题参考答案

《工程数学》作业题参考答案一、填空题(每小题3分,共18分)1. i =5,k = 4;2. 40;3. 2-n A;4. 2442222136x x x x x x --+;5.2-;6. 充分。

7. 1. 16;8.n 2;9. r = n , r<n ; 10. -17; 11. 11<<-t 。

二、简答题(每小题4分,12分)1. 举出任何反例皆可。

当BA AB =时,等式2222)(B AB A B A ++=+成立。

2. 一定不为零。

若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ,即方程0=x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾。

3. 不相似。

否则有可逆阵C 使C -1AC=B ,即A=B ,矛盾。

4. 分别是A B A k B A B ==-=,,(4分)。

5. 不相似(2分)。

否则,存在可逆阵C 使C-1AC=B ,即A=B ,矛盾(2分)。

6.B A +一定为正定阵因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n有所以为正定阵,从而0)(>+x B A x T ,所以B A +一定为正定阵。

三、计算题(一)(每小题8分,共32分) 1. 值为120(答案错误可适当给步骤分)。

2. 解:由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。

3.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡601424527121103121301,,,,54321TT T T T ααααα∽⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000110001011021301, 故421,,ααα 或431,,ααα为一个最大线性无关组(或其他正确答案)。

4. 解:利用分块矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=113232101,8231,2121A A O AA OA ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--31702431161,1238211211A A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣⎡=---000211000234216167000313200216110011121O A A OA5.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n nS 212dim 6. (1) 121||||2+=e f ;(2)))(41()(2是任意实数b e x b x g +-=。

西南交《工程数学I》在线作业二

西南交《工程数学I》在线作业二

西南交《工程数学I》在线作业二
设A,B均为实对称矩阵,则下列说法正确的是( )
A:A+B必为对称阵
B:AB必为对称阵
C:A-B不一定为对称阵
D:若A+B的平方为零矩阵,不能肯定A+B=0
答案:A
若矩阵A,B满足 AB=O,则有().
A:A=O或B=O
B:A+B=O
C:A=O且B=O
D:|A|=O或|B|=O
答案:D
设A3*2,B2*3,C3*3,则下列( )运算有意义
A:AC
B:BC
C:A+B
D:AB-BC
答案:B
设A,B是同阶正交矩阵,则下列命题错误的是()A:A逆也是正交矩阵
B:A伴随矩阵也是正交矩阵
C:A+B也是正交矩阵
D:A*B也是正交矩阵
答案:C
设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为
A:1
B:-1
C:-2
D:4
答案:C
A为m*n矩阵,若任意的n维列向量都是Ax=0的解,那么
A:A=0
B:0&lt;r(A)&lt;n
C:r(A)=n
D:r(A)=m
答案:A
设A,B均为n阶非零方阵,下列选项正确的是( ).
A:(A+B)(A-B) = A^2-B^2
B:(AB)^-1 = B^-1A^-1
C:若AB= O, 则A=O或B=O
D:|AB| = |A| |B|
答案:D
设A为m*n矩阵,则有()。

A:若m&lt;n,则有Ax=b无穷多解;
B:若m&lt;n,则有Ax=0非零解,且基础解系含有n-m个线性无关解向量;C:若A有n阶子式不为零,则Ax=b有唯一解;。

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
c. 方程个数大于未知量个数的线性方程组一定有无穷多解
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
c.
d.
正确答案是:
试题 7
7-1.二阶矩阵
(B).
a.
b.
c.
d.
正确答案是:
7-2.二阶矩阵
a.
b.
c.
d.
(B).
正确答案是:
试题 8
8-1.向量组
的秩是(D).
a. 1
b. 2
c. 4
d. 3
正确答案是:3
8-2.向量组
的秩为(C).
a. 2
b. 4
c. 3
d. 5
正确答案是:3
试题 9
9-1.设向量组为
1-1.同时掷 3 枚均匀硬币,恰好有 2 枚正面向上的概率为(B).
a. 0.125
b. 0.375
c. 0.25
d. 0.5
1-2.从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是
偶数的概率为(A).
a. 0.4
b. 0.1
c. 0.5
d. 0.3
2-1.设 A,B 是两事件,则下列等式中( A)是不正确的.
正确答案是: 5×4
试题 3
,则 BA-1(B).
3-1.设
a.
b.

《工程数学》(总)解答

《工程数学》(总)解答

工程数学作业册解答华南理工大学网络教育学院作业一:线性代数一.问答题1.叙述三阶行列式的定义。

答:定义1:用23个数组成的记号111213212223313233a a a a a a a a a 表示数值: 222321232122111213323331333132a a a a a a a a a a a a a a a -+称为三阶行列式,即:111213212223313233a a a a a a a a a =222321232122111213323331333132a a a a a a a a a a a a a a a -+定义2:用2n 个数组成的记号D =1111n n nn a a a a ⎛⎫⎪⎪ ⎪⎝⎭表示数值: 2223232333111123(1)n n n n nn a a a a a a a a a a +- +2123231333121213(1)n n n n nna a a a a a a a a a +-++21222,131323,11112,1(1)n n nnn n n n a a a a a a a a a a --+--称为n 阶行列式。

2.叙述n 阶行列式的余子式和代数余子式的定义,并写出二者之间的关系。

答:定义:在n 阶行列式D 中划去ij a 所在的第i 行和第j 列的元素后,剩下的元素按原来相对位置所组成的(n -1)阶行列式,称为ij a 的余子式,记为ij M ,即ijM=111,11,111,11,11,11,1,11,11,11,1,1,1j j n i i j i j i n i i j i j i nn n j n j nna a a a a a a a a a a a a a a a -+----+-++-+++-+(1)i jij M +-⨯称为ij a 的代数余子式,记为ij A ,即ij A =(1)i jij M +-⨯3.叙述矩阵的秩的定义。

西南大学网络学院19秋0044]《线性代数》

西南大学网络学院19秋0044]《线性代数》
(c)求解如下矩阵方程:
2、(a)什么是向量组线性相关?
(b)判断向量组 是否线性相关。
(c)请用上述向量组表示向量
三、从下列两题中任选一题作答(30分)
1、(a)请阐述特征值与特征向量的定义。
(b)求解矩阵 的特征值及其对应的特征向量
2、(a)已知A为对称阵, ,且 求矩阵A。
(b)已知矩阵 , ,且 变,试用 表示 。
一、必答题(40பைடு நூலகம்)
1、什么是矩阵的初等行变换?
2、用矩阵乘积形式表示如下线性方程组。
3、求解如下线性方程组
二、从下列两题中任选一题作答(30分)
1、(a)什么是初等矩阵?
答:初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。初等矩阵的模样可以写一个3阶或者4阶的单位矩阵。
(b)阐述初等矩阵在矩阵乘积中的作用。
b已知矩阵111263111p26311063???????????????????????123?txxx且p??变试用123xxx表示2222422?????xyzxyxzyz
西南大学网络与继续教育学院课程考试试题卷
类别:网教2019年12月
课程名称【编号】:线性代数【0044】B卷
大作业满分:100分

2019最新电大工程数学形成性考核册作业【1-4】答案参考必考重点

2019最新电大工程数学形成性考核册作业【1-4】答案参考必考重点

2019最新电大工程数学形成性考核册作业【1-4】答案参考必考重点D )? A. A + B = A + B B. AB = n A BB ).AB 也是对称矩阵AB 也是非零矩阵A. 1B. 7C. 10D. 8 4?设A, B 均为n 阶可逆矩阵,则下列运算关系正确的是(C. .kA =k AD. kA = (-k)n A 6?下列结论正确的是( A).A. 若A 是正交矩阵,则 A 4也是正交矩阵B. 若A, B 均为n 阶对称矩阵,则C. 若A, B 均为n 阶非零矩阵,则D.若A, B 均为n 阶非零矩阵,贝U AB 式01 37?矩阵| 的伴随矩阵为(C).a 1 a 2 a 3a 1 a 2 a 3 l ?设b 1 b 2 b 3 =2 , 则 2a 1-3d 2a 2-3b 2 2a 3 - 3b 3C 1 C 2 C 3C 1 C 2 C 3 A. 4 B. —4C. 6D. —6 0 0 0 1 00 a 0 2?若 =1 , 则 a = (A ) 0 2 0 0 1 0 0 a第2章矩阵(一)单项选择题(每小题 2分,共20分)(D ). 1 A.- 2 B.— 1 1 C. 2 D. 1 3?乘积矩阵 -1 -1 4 一5中兀素c 23= ( C )? A. A + B A. =A -A B B. (AB)」 =BA-AA -j -AC. (A 十 B)二 :A + BD. (AB) =A B 5?设A, B 均为n 阶方阵, k 0且k =1,则下列等式正确的是(:2 5 一1 -3 -1 3A. IB. I[-2 5 一[2 -5一5 -3 -5 3C. ID.[-2 1」^2 -18.方阵A可逆的充分必要条件是(B ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档