机械振动复习思考题(含答案)

合集下载

机械振动答案

机械振动答案

机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。

机械振动专题练习 (含答案)

机械振动专题练习 (含答案)

1.如图所示为一个水平方向的弹簧振子,小球在MN间做简谐运动,O是平衡位置.关于小球的运动情况,下列描述正确的是(D)A.小球经过O点时速度为零B.小球经过M点与N点时有相同的加速度C.小球从M点向O点运动过程中,加速度增大,速度增大D.小球从O点向N点运动过程中,加速度增大,速度减小2.做简谐运动的物体,振动周期为2 s,下列说法正确的是(C)A.运动经过平衡位置时开始计时,那么当t=1.2 s时,物体正在做加速运动,加速度的值正在增大(1.2s正在由平衡位置向最大位置运动)B.运动经过平衡位置时开始计时,那么当t=1.2 s时,正在做减速运动,加速度的值正在减小C.在1 s时间内,物体运动的路程一定是2AD.在0.5 s内,物体运动的路程一定是A(没有说明是哪1/4周期)3.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图所示,下列结论正确的是(A)A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从B到O的过程中,振动的能量不断增加4.若物体做简谐运动,则下列说法中正确的是(C)A.若位移为负值,则速度一定为正值,加速度也一定为正值B.物体通过平衡位置时,所受合力为零,回复力为零,处于平衡状态C.物体每次通过同一位置时,其速度不一定相同,但加速度一定相同D.物体的位移增大时,动能增加,势能减少5.弹簧振子在做简谐振动时,若某一过程中振子的速率在减小,则此时振子的(C)A.速度与位移方向必定相反B.加速度与速度方向可能相同C.位移的大小一定在增加D.回复力的数值可能在减小6.(多选)做简谐振动的质点在通过平衡位置时,为零值的物理量有(AC)A.加速度B.速度C.位移D.动能7.如图所示为某质点在0~4 s内的振动图象,则(C)A.质点振动的振幅是2 m,质点振动的频率为4 HzB.质点在4 s末的位移为8 mC.质点在4 s内的路程为8 mD.质点在t=1 s到t=3 s的时间内,速度先沿x轴正方向后沿x轴负方向,且速度先增大后减小8.某质点的振动图象如图所示,下列说法正确的是(D)A.1 s和3 s时刻,质点的速度相同B.1 s到2 s时间内,速度与加速度方向相同C.简谐运动的表达式为y=2 sin(0.5πt+1.5π) cmD.简谐运动的表达式为y=2 sin(0.5πt+0.5π) cm9.如图甲所示是一个弹簧振子的示意图,O是它的平衡位置,振子在B、C之间做简谐运动,规定向右为正方向.图乙是它的速度v 随时间t变化的图象.下列说法中正确的是(C)A.t=2 s时刻,它的位置在O点左侧4 cm处B.t=3 s时刻,它的速度方向向左,大小为2 m/sC.t=4 s时刻,它的加速度为方向向右的最大值D.振子在一个周期内通过的路程是16 cm10.如图为一水平弹簧振子的振动图象,由此可知(B)A.在t1时刻,振子的动能最大,所受的弹力最大B.在t2时刻,振子的动能最大,所受的弹力最小C.在t 3时刻,振子的动能最小,所受的弹力最小D.在t4时刻,振子的动能最小,所受的弹力最大11.某质点在0~4 s的振动图象如图所示,则下列说法正确的是(C)A.质点振动的周期是2 sB.在0~1 s内质点做初速度为零的加速运动C.在t=2 s时,质点的速度方向沿x轴的负方向D.质点振动的振幅为20 cm12.(多选)某弹簧振子在水平方向上做简谐运动,其位移x随时间t变化的关系为x=A sinωt,振动图象如图所示,下列说法正确的是(ABD)A.弹簧在第1 s末与第3 s末的长度相同B.第3 s末振子的位移大小为C.从第3 s末到第5 s末,振子的速度方向发生变化D.从第3 s末到第5 s末,振子的加速度方向发生变化13.一单摆做小角度摆动,其振动图象如图所示,以下说法正确的是(D)A.t1时刻摆球速度最大,悬线对它的拉力最小B.t2时刻摆球速度为零,悬线对它的拉力最小C.t3时刻摆球速度为零,悬线对它的拉力最大D.t4时刻摆球速度最大,悬线对它的拉力最大14.已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m,则两单摆摆长la与lb 分别为(B)A.la=2.5 m,lb=0.5 m B.la=0.9 m,lb=2.5 mC.la=2.4 m,lb=4.0 m D.la=4.0 m,lb=2.4 m15.如图所示是一个单摆做受迫振动时的共振曲线,表示振幅A与驱动力的频率f的关系,下列说法正确的是(C)A.摆长约为10 cm B.摆长约为2 mC.若增大摆长,共振曲线的“峰”将向左移动D.若增大摆长,共振曲线的“峰”将向右移动16.如图所示,质量相同的四个摆球悬于同一根横线上,四个摆的摆长分别为L1=2 m、L2=1.5 m、L3=1 m、L4=0.5 m.现以摆3为驱动摆,让摆3振动,使其余三个摆也振动起来,则摆球振动稳定后(D)A.摆1的振幅一定最大B.摆4的周期一定最短C.四个摆的振幅相同D.四个摆的周期相同17.如图所示,在曲轴上悬挂一弹簧振子,转动摇把,曲轴可以带动弹簧振子上下振动.开始时不转动摇把,让振子自由上下振动,测得其频率为2 Hz;然后以60 r/min的转速匀速转动摇把,当振子振动稳定时,它的振动周期为(C)A.0.25 s B.0.5 s C.1 s D.2 s18.如图所示,在一根张紧的绳上挂几个单摆,其中C、E两个摆的摆长相等,先使C摆振动,其余几个摆在C摆的带动下也发生了振动,则(C)A.只有E摆的振动周期与C摆相同B.B摆的频率比A、D、E摆的频率小C.E摆的振幅比A、B、D摆的振幅大D.B摆的振幅比A、D、E摆的振幅大19.一个打磨得很精细的小凹镜,其曲率很小可视为接近平面.将镜面水平放置如图所示.将一个小球从镜边缘释放,小球在镜面上将会往复运动,以下说法中正确的是(C)A.小球质量越大,往复运动的周期越长B.释放点离最低点距离越大,周期越短C.凹镜曲率半径越大,周期越长D.周期应由小球质量、释放点离平衡位置的距离,以及曲率半径共同决定20.(多选)如图所示为同一地点的两单摆甲、乙的振动图象,下列说法中正确的是(ABD) A.甲、乙两单摆的摆长相等B.甲摆的振幅比乙摆大C.甲摆的机械能比乙摆大D.在t=0.5 s时有正向最大加速度的是乙摆21.某个质点的简谐运动图象如图所示.(1)求振动的振幅和周期;(2)写出简谐运动的表达式.21.【答案】(1)10cm8 s(2)x=10sin (t) cm【解析】(1)由题图读出振幅A=10cm简谐运动方程x=A sin代入数据得-10=10sin得T=8 s.(2)x=A sin=10sin (t) cm.。

《机械振动基础》期末复习试题5套含答案.doc

《机械振动基础》期末复习试题5套含答案.doc

中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。

2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析()的振动性质的基础。

5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。

二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。

(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。

(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。

13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。

{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。

(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。

(10 分) 4.简述线性多自由度系统动力响应分析方法。

(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。

大学物理(第四版)课后习题与答案_机械振动

大学物理(第四版)课后习题与答案_机械振动

13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相ϕ=3π/4。

试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。

13-1分析 弹簧振子的振动是简谐运动。

振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。

振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。

解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。

13-2分析 可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。

运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。

解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。

(2)t= 2s 时的位移、速度、加速度分别为m m x 21007.7)25.040cos()10.0(-⨯=+=ππ )25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。

机械振动试题(含答案)

机械振动试题(含答案)
C.乙振动的表达式为x=sin t(cm)
D.t=2s时,甲的速度为零,乙的加速度达到最大值
6.下列叙述中符合物理学史实的是( )
A.伽利略发现了单摆的周期公式
B.奥斯特发现了电流的磁效应
C.库仑通过扭秤实验得出了万有引力定律
D.牛顿通过斜面理想实验得出了维持运动不需要力的结论
7.如图所示,质量为m的物块放置在质量为M的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T,振动过程中m、M之间无相对运动,设弹簧的劲度系数为k、物块和木板之间滑动摩擦因数为μ,
A. B. C. D.
9.如图所示,在一条张紧的绳子上悬挂A、B、C三个单摆,摆长分别为L1、L2、L3,且L1<L2<L3,现将A拉起一较小角度后释放,已知当地重力加速度为g,对释放A之后较短时间内的运动,以下说法正确的是( )
A.C的振幅比B的大B.B和C的振幅相等
C.B的周期为2π D.C的周期为2π
A.物体B从P向O运动的过程中,A、B之间的摩擦力对A做正功
B.物体B处于PO之间某位置时开始计时,经 时间,物体B通过的路程一定为L
C.当物体B的加速度为a时开始计时,每经过T时间,物体B的加速度仍为a
D.当物体B相对平衡位置的位移为x时,A、B间摩擦力的大小等于
13.如图所示是两个理想单摆的振动图象,纵轴表示摆球偏离平衡位置的位移,以向右为正方向.下列法中正确的是___________(填入正确选项前的字母.选对1个给2分,选对2个给4分,选对3个给5分,每选错一个扣3分,得分为0分)
A.6sB.4sC.22sD.8s
16.如图甲为竖直弹簧振子,物体在A、B之间做简谐运动,O点为平衡位置,A点为弹簧的原长位置,从振子经过A点时开始计时,振动图象如图乙所示,下列说法正确的是

机械振动学(参考答案).docx

机械振动学(参考答案).docx

机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。

(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。

(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。

(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。

(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。

(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。

(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。

(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。

(X )9、隔振系统的阻尼愈大,则隔振效果愈好。

(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。

(J)二、计算题:1、一台面以f频率做垂直正弦运动。

如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。

所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。

的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。

试验装置如图1所示,记录其振动周期。

(完整版)大学机械振动课后习题和答案(1~4章总汇)

(完整版)大学机械振动课后习题和答案(1~4章总汇)

1.1 试举出振动设计、系统识别和环境预测的实例。

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。

机械振动基础课后习题答案

机械振动基础课后习题答案

机械振动基础课后习题答案1. 简谐振动的特点是什么?简述简谐振动的基本方程。

答:简谐振动是指振动系统在无外力作用下,自身受到弹性力作用而产生的振动。

其特点有以下几点:振动周期固定、振幅不变、振动轨迹为正弦曲线。

简谐振动的基本方程为x = A*cos(ωt + φ),其中x为振动的位移,A为振幅,ω为角频率,t为时间,φ为初相位。

2. 简述自由振动、受迫振动和阻尼振动的区别。

答:自由振动是指振动系统在无外力作用下,自身受到弹性力作用而产生的振动。

受迫振动是指振动系统在外力作用下,产生与外力频率相同的振动。

阻尼振动是指振动系统在有阻尼力作用下,产生的振动。

三者的区别在于外力的有无和阻尼力的存在与否。

3. 什么是振动的自由度?简述单自由度振动和多自由度振动的特点。

答:振动的自由度是指描述振动系统所需的独立坐标的个数。

单自由度振动是指振动系统所需的独立坐标只有一个,可以用一个坐标来描述整个振动系统。

多自由度振动是指振动系统所需的独立坐标大于一个,需要多个坐标来描述整个振动系统。

单自由度振动的特点是简单、容易分析,而多自由度振动具有更复杂的动力学特性。

4. 简述振动系统的自然频率和强迫频率。

答:振动系统的自然频率是指系统在无外力作用下自由振动时的频率。

自然频率只与系统的质量、刚度和几何形状有关。

强迫频率是指系统在受到外力作用下振动的频率。

强迫频率可以是任意频率,与外力的频率相同或不同。

5. 什么是共振?简述共振现象的发生条件。

答:共振是指振动系统在受到外力作用下,当外力的频率接近系统的自然频率时,振动幅度达到最大的现象。

共振现象发生的条件包括:外力的频率接近系统的自然频率,外力的幅度足够大,系统的阻尼较小。

6. 简述振动系统的阻尼对振动的影响。

答:阻尼对振动有以下几种影响:阻尼可以减小振幅,使振动逐渐衰减;阻尼可以改变振动的频率,使其偏离自然频率;阻尼可以引起相位差,使振动的相位发生变化。

7. 什么是振幅衰减?简述振幅衰减的特点。

机械振动 课后习题和答案 第二章 习题和答案

机械振动 课后习题和答案  第二章 习题和答案

2.1 弹簧下悬挂一物体,弹簧静伸长为δ。

设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。

解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。

设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。

解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14) 所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===-因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。

2.3 重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。

解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= 即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。

大学物理-机械振动习题思考题及答案15页word文档

大学物理-机械振动习题思考题及答案15页word文档

习题7-1. 原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。

(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;ω=== 振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。

所以如果使弹簧的初状态为原长,那么:A=0.1,当t=0时,x=-A ,那么就可以知道物体的初相位为π。

所以:0.1cos x π=+) 即)x =-7-2. 有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过rad 06.0-=θ处,并以角速度rad/s 2.0=•θ向平衡位置运动。

设小球的运动可看作简谐振动,试求:(g 取9.8)(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。

解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。

(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s π=== (2)根据初始条件:A θϕ=0cos可解得:32.2088.0-==ϕ,A所以得到振动方程:0.088cos 3.13 2.32t θ=-()7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。

解:(1)由题知 2A=10cm ,所以A=5cm ;1961058.92=⨯=∆=-x g m K 又ω=14196==m k ,即 (2)物体在初始位置下方cm 0.8处,对应着是x=3cm 的位置,所以:03cos 5x A ϕ== 那么此时的04sin 5v A ϕω=-=± 那么速度的大小为40.565v A ω== 7-4. 一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。

【单元练】2021年高中物理选修1第二章【机械振动】经典复习题(答案解析)

【单元练】2021年高中物理选修1第二章【机械振动】经典复习题(答案解析)

一、选择题1.如图甲所示为以O 点为平衡位置。

在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在0.2s t =时,弹簧振子一定运动到B 位置B .在0.3s t =与0.7s t =两个时刻,弹簧振子的速度相同C .从0到0.2s t =的时间内,弹簧振子的动能持续地减少D .在0.2s t =与0.6s t =两个时刻,弹簧振子的加速度相同C解析:CA .在t =0.2s 时,弹簧振子位移最大,但没有规定正方向,故可能在A 点,也可能在B 点,故A 错误;B .x -t 图象的切线斜率表示速度,在t =0.3s 与t =0.7s 两个时刻,弹簧振子的速度大小相等,方向相反,故B 错误;C .从t =0到t =0.2s 的时间内,位移增加,远离平衡位置,故动能减小,故C 正确;D .在t =0.2s 与t =0.6s 两个时刻,位移相反,根据kx a m=-可知,加速度大小相等,方向相反,故D 错误。

故选C 。

2.如图所示,水平方向的弹簧振子振动过程中,振子先后经过a 、b 两点时的速度相同,且从a 到b 历时0.2s ,从b 再回到a 的最短时间为0.4s ,aO bO =,c 、d 为振子最大位移处,则该振子的振动频率为( )A .1HzB .1.25HzC .2HzD .2.5Hz B解析:B由题可知,a 、b 两点关于平衡位置对称,从a 到b 历时 10.2s t =从b 再回到a 的最短时间为0.4s ,即从b 到c 所用时间为20.40.2s 0.1s 2t -==所以弹簧振子振动的周期为12240.8s T t t =+=则振动频率为 1 1.25Hz f T== 故B 正确,ACD 错误。

故选B 。

3.如图所示,一块涂有炭黑的玻璃板在拉力F 的作用下,竖直向上运动.一个装有水平振针的固定电动音叉在玻璃板上画出了图示曲线,下列判断正确的是A .音叉的振动周期在增大B .音叉的振动周期不变C .玻璃板在向上做减速运动D .玻璃板在向上做匀速直线运动B解析:B AB.固定电动音叉的周期不变,故A 错误,B 正确;CD.从固定电动音叉在玻璃上画出的曲线看出OA 、AB 、BC 、间对应的时间均为半个周期,且距离越来越大,说明玻璃杯运动的速度越来越大,即玻璃板在向上做加速运动,故CD 错误。

《机械振动基础(第2版)》课后习题答案 - 李晓雷等编著 北京理工大学出版社_02清晰打印版

《机械振动基础(第2版)》课后习题答案 - 李晓雷等编著 北京理工大学出版社_02清晰打印版

秦时明月经典语录整理by NeXT_V oyager | NeXT_Voyager 《机械振动基础》秦时明月经典语录整理作者:NeXT_Voyager 来源:网络时间:2017-07-11 20:30 —————————————————————————1、痛苦,是保持清醒的最好方式。

2、你既然已经做出了选择,又何必去问为什么选择。

3、要想成为强者,就不要回避心里的恐惧,恐惧并不是弱点。

强者,是要让你的敌人比你更恐惧。

——盖聂4、有些梦想虽然遥不可及,但不是不可能实现。

只要我足够的强。

——少年盖聂5、我是一只雁,你是南方云烟。

但愿山河宽,相隔只一瞬间。

6、如果提出的问题本身就有问题,那么答案又有什么用呢?——盖聂7、他在走一个圆圈,弧线是他的决心,没有终点。

——荆轲8、若今生执罔虚幻,已成落花。

便许你来世雪扫眉发,执手天涯。

你可愿青丝绾正,笑靥如花,借我一世年华。

——卫庄9、若今生碎如烟花,不为他嫁。

来世,你可愿等飞雪染白头发,娶我回家。

许我一世年华。

——雪女10、失败的人只有一种。

就是在抵达成功之前放弃的人——盖聂11、若今生逆旅天涯,四海为家。

便许你来世雪舞霓裳,步步莲华。

你可愿化身为枷,度我年华,细数山室茶花。

——高渐离12、若今生轻放年华,化身流沙,只为追寻你浪迹的天涯。

来世,你可愿为我折枝白梅花,看一场雪落下。

——赤炼13、你什么也不肯放弃,又得到了什么?——盖聂-1 -秦时明月经典语录整理by NeXT_Voyager | NeXT_Voyager14、奇怪的人往往做一些奇怪的事,这一点也不奇怪。

——墨家巨子(燕太子丹)15、这个世上,胜者生,而败者亡,在世事的胜负面前,生与死不过是必然的因果。

——鬼谷子16、很多人都是被时代改变的,只有极少数的人是可以改变时代的。

17、勇敢,不是靠别人为他担心而证明的,强者,要能够使亲人和朋友感觉到安全和放心。

——盖聂18、从来没有想过这个背影我会用一辈子去眺望——赤练19、天下皆白,唯我独黑;非攻墨门,兼爱平生——墨家巨子20、无论命运把我带到何方,我的心都是自由的。

高考物理太原力学知识点之机械振动与机械波知识点总复习含答案

高考物理太原力学知识点之机械振动与机械波知识点总复习含答案

高考物理太原力学知识点之机械振动与机械波知识点总复习含答案一、选择题1.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g2.如图为一弹簧振子做简谐运动的位移﹣时间图象,在如图所示的时间范围内,下列判断正确的是( )A .0.2s 时的位移与0.4s 时的位移相同B .0.4s 时的速度与0.6s 时的速度相同C .弹簧振子的振动周期为0.9s ,振幅为4cmD .0.2s 时的回复力与0.6s 时的回复力方向相反3.已知在单摆a 完成10次全振动的时间内,单摆b 完成6次全振动,两摆长之差为1.6 m .则两单摆摆长l a 与l b 分别为( ) A .l a =2.5 m ,l b =0.9 m B .l a =0.9 m ,l b =2.5 m C .l a =2.4 m ,l b =4.0 m D .l a =4.0 m ,l b =2.4 m4.下列说法正确的是( )A .物体做受迫振动时,驱动力频率越高,受迫振动的物体振幅越大B .医生利用超声波探测病人血管中血液的流速应用了多普勒效应C .两列波发生干涉,振动加强区质点的位移总比振动减弱区质点的位移大D .遥控器发出的红外线波长比医院“CT”中的X 射线波长短5.如图所示,一列简谐横波向右传播,P 、Q 两质点平衡位置相距0.15 m 。

当P 运动到上方最大位移处时,Q 刚好运动到下方最大位移处,则这列波的波长可能是( )A .0.60 mC .0.15 mD .0.10 m6.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 7.一列简谐横波在某时刻的波形图如图所示,已知图中的质点b 比质点a 晚0. 5s 起振,质点b 和质点c 平衡位置之间的距离为5m ,则该波的波速为A .1m/sB .3m/sC .5m/sD .8m/s8.如图所示为一列沿x 轴负方向传播的简谐横波在t 1=0时的波形图。

机械振动-张义民课后习题答案

机械振动-张义民课后习题答案

单自由度系统的自由振动2.1求习题图2-l(a),(b),(c)所示系统的固有频率。

图Q)所示的系统悬怦梁的质量可以忽略不计,其等效弹赞刚度分别为码和居。

图(b)所示的系统为一质最m连接在刚性杆上,杆的质量忽略不计。

图(C)所示的系统中悬挂质帚为加,梁的质帚忽略不计,梁的挠度5由式5 = PL3ZASEJ 给出,梁的刚度为H °习题图2-1机械根动习題鮮答解:(a〉系统简化过程如习题图2-l(a)所示。

4和息串联MZ=H⅛;也和b并联:Z= ^eql + &3^«)2 和上4 串联:Hl =即■r _ (焦层+以3 +心3低)加S = d层十(怡1十层)(爲=G所以固有频率为(B)习题图2-1 (B)所示系统可能有下面两种运动帖况:①在机垂i⅛振动的整个过稈中•杆被约束保持水平位置(见图(b)■①);②在悬挂的铅垂面内,杆可以自由转动(见图(b"②)。

①在杆保持水平的情况下,弹簧d和屜并联,有怎q =血+缸所以固有频率为②当杆可以自由转动时•杆和质虽m的运动会出现非水平的一般状态。

设A点的位移为点的位移为H2,加的位移为工,则静力方程利静力矩方程为ZIlXl + k2X3 = Aa l HQJrILl = k2x z L2几何关系又LI 十L2 = L 由以匕方程解得=kλk z∖}eq ki L↑±k z Ll所以固有频率为ω,17 m第2幸单自由度糸统的自由振动(C)系统简化过程如习题图2-1(C)所示。

等效弹簧刚度为其中所以固有频率为2.2如习题图2・2所示的系统中均质刚杆AB的质帚为加,A端弹簧的刚度为仁求()点铃链支座放在何处时系统的固有频率最高。

解:设&坐标如习题图2-2所示。

系统的动能为=-ym(nZ)2^l — + + 右片=-I-^eq(WZ^)2 (I)等效质量加“可以表示为山于固有频率与质量的平方根成反比,即3严厲、欲得最高的固有频率,必须使〃G为最小,即d叫 _ 3”_2 _ dn 3n3得2n = T代入二阶导数•得d'/Meq _ 2(1 —”)、∩~ln r _ ~^√>是极小值•故饺链应放在距A端彳L处。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。

图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。

已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gL π-B .212()2x x gL π-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。

上海交通大学版大学物理学习题答案之机械振动习题思考题

上海交通大学版大学物理学习题答案之机械振动习题思考题

习题77-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。

(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;ω===振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。

所以如果使弹簧的初状态为原长,那么:A=0.1,当t=0时,x=-A,那么就可以知道物体的初相位为π。

所以:0.1cos x π=+)即)x =−7-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过rad 06.0−=θ处,并以角速度rad/s 2.0=•θ向平衡位置运动。

设小球的运动可看作简谐振动,试求:(g 取9.8)(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。

解:振动方程:cos()x A t ωϕ=+我们只要按照题意找到对应的各项就行了。

(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν===,周期:22T s ===(2)根据初始条件:Aθϕ=0cos 象限)象限)4,3(02,1(0{sin 0<>−=ωθϕA ̇可解得:32.2088.0−==ϕ,A 所以得到振动方程:0.088cos 3.13 2.32t θ=−()7-3.一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。

解:(1)由题知2A=10cm,所以A=5cm;1961058.92=×=∆=−x g m K 又ω=14196==mk,即ππν721==m k (2)物体在初始位置下方cm 0.8处,对应着是x=3cm 的位置,所以:03cos 5x A ϕ==那么此时的04sin 5v A ϕω=−=±那么速度的大小为40.565vA ω==7-4.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。

机械振动习题及答案

机械振动习题及答案

机械振动习题及答案⼀、选择题1、⼀质点作简谐振动,其运动速度与时间的曲线如图所⽰,若质点的振动按余弦函数描述,则其初相为 [ D ] (A )6π (B) 56π (C) 56π- (D) 6π- (E) 23π-2、已知⼀质点沿y 轴作简谐振动,如图所⽰。

其振动⽅程为3cos()4y A t πω=+,与之对应的振动曲线为 [ B ]3、⼀质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最⼤振幅2A处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8T (D) .12T4、如图所⽰,在⼀竖直悬挂的弹簧下系⼀质量为m 的物体,再⽤此弹簧改系⼀质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体,此三个系统振动周期之⽐为 (A);21:2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .41:2:15、⼀质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。

若0=t 时刻质点第⼀次通过cm x 2-=处,且向x 轴负⽅向运动,则质点第⼆次通过cm x 2-=处的时刻为 (A);1s (B);32s (C) ;34s (D) .2s [ B ] 6、⼀长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分,且21nl l =,则相应的劲度系数1k ,2k 为 [ C ](A );)1(,121k n k k n n k +=+=(B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .11,121k n k k n n k +=+=7、对⼀个作简谐振动的物体,下⾯哪种说法是正确的? [ C ] (A )物体处在运动正⽅向的端点时,速度和加速度都达到最⼤值;(B )物体位于平衡位置且向负⽅向运动时,速度和加速度都为零;(C )物体位于平衡位置且向正⽅向运动时,速度最⼤,加速度为零;(D )物体处于负⽅向的端点时,速度最⼤,加速度为零。

机械振动试题(含答案)(1)

机械振动试题(含答案)(1)
D.第2秒末甲的速度最大,乙的加速度最大
18.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受到一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长为12.6m,列车固有振动周期为0.315s.下列说法正确的是( )
(3)他以摆长(L)为横坐标、周期的二次方(T2)为纵坐标作出了T2-L图线,由图象测得的图线的斜率为k,则测得的重力加速度g=_________.(用题目中给定的字母表示)
(4)小俊根据实验数据作出的图象如图所示,造成图象不过坐标原点的原因可能是_________.
24.将一单摆装置竖直悬挂于某一深度为h(未知)且开口向下的小筒中(单摆的下部分露于筒外),如图(甲)所示,将悬线拉离平衡位置一个小角度后由静止释放,设单摆振动过程中悬线不会碰到筒壁,如果本实验的长度测量工具只能测量出筒的下端口到摆球球心间的距离 ,,并通过改变 而测出对应的摆动周期T,再以T2为纵轴、 为横轴做出函数关系图象,就可以通过此图象得出小筒的深度h和当地重力加速度g.
机械振动试题(含答案)(1)
一、机械振动选择题
1.如图所示,物块M与m叠放在一起,以O为平衡位置,在 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x随时间t的变化图像如图,则下列说法正确的是( )
A.在 时间内,物块m的速度和所受摩擦力都沿负方向,且都在增大
B.从 时刻开始计时,接下来 内,两物块通过的路程为A
A.t0时刻弹簧弹性势能最大B.2t0站时刻弹簧弹性势能最大
C. 时刻弹簧弹力的功率为0D. 时刻物体处于超重状态
13.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是

15机械振动习题解答

15机械振动习题解答

第十五章机械振动一选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的?( )A. 物体在运动正方向的端点时,速度和加速度都达到最大值;B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零;C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D. 物体处负方向的端点时,速度最大,加速度为零。

解:根据简谐振动的速度和加速度公式分析。

答案选C。

2.下列四种运动(忽略阻力)中哪一种不是简谐振动?()A. 小球在地面上作完全弹性的上下跳动;B. 竖直悬挂的弹簧振子的运动;C. 放在光滑斜面上弹簧振子的运动;D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。

解:A 中小球没有受到回复力的作用。

答案选A 。

3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。

则此系统作简谐振动时振动的角频率为( )A. lg B.lg C. gl D.gl解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为lg m k ==ω。

故本题答案为B 。

4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相ϕ为( )A. 2π- B. 0 C. 2π D. π解 由 ) cos(ϕω+=t A x 可得振动速度为 ) sin(d d ϕωω+-==t A tx v 。

速度正最大时有0) cos(=+ϕωt ,1) sin(-=+ϕωt ,若t =0,则 2π-=ϕ。

故本题答案为A 。

5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( ) A. mk k 21π2=ν B. m k k 21π2+=ν C. 2121π21.k mk k k +=ν D. )k m(k .k k 2121π21+=ν解:设当m 离开平衡位置的位移为x ,时,劲度系数为k 1和k 2的两个轻弹簧的伸长量分别为x 1和x 2,显然有关系x x x =+21此时两个弹簧之间、第二个弹簧与和物体之间的作用力相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械振动复习思考题1心O 距离为l ϑϑsin 0mgl J -= ϑϑ≈sin 00=+ϑϑmgl J T J mgl n n 02,==ω2204n T mgl J=20ml J J c -=2 半径为r 、质量为的固有频率。

解:ϕϑr r R v c =-=)(ϑϕr r R -= 222121ϕ J mv T c c +=cos 1)((r R h --=(21R mg mgh V ==22ref 2max )(43,)(21m m r R m T r R mg V ϑϑ-=-=)(32refmax r R g T V n -==ω3 举例说明振动现象、振动的危害以及如何有效的利用振动。

答:1)振动现象:心脏的搏动、耳膜和声带的振动等;汽车、火车、飞机及机械设备的振动;家用电器、钟表的振动;地震以及声、电、磁、光的波动等等。

2)振动的危害轻则影响乘坐的舒适性;降低机器及仪表的精度,重则危害人体健康,引起机械设备及土木结构的破坏。

3)振动的利用琴弦振动;振动沉桩、振动拔桩以及振动捣固等;振动检测;振动压路机、振动给料机和振动成型机等。

4何为机械振动及研究目的?答:机械振动:机械或结构在平衡位置附近的往复运动。

研究目的:利用振动为人类造福;减少振动的危害。

5 何为振动系统的自由度?请举例说明。

答:自由度就是确定系统在振动过程中任何瞬时几何位置所需独立坐标的数目。

刚体在空间有6个自由度:三个方向的移动和绕三个方向的转动,如飞机、轮船;质点在空间有3个自由度:三个方向的移动,如高尔夫球;质点在平面有2个自由度:两个方向的移动,加上约束则成为单自由度。

6 如何对机械振动进行分类?答:1)按振动系统的自由度数分类单自由度系统振动——确定系统在振动过程中任何瞬时几何位置只需要一个独立坐标的振动;多自由度系统振动——确定系统在振动过程中任何瞬时几何位置需要多个独立坐标的振动;连续系统振动——确定系统在振动过程中任何瞬时几何位置需要无穷多个独立坐标的振动。

2)按振动系统所受的激励类型分类自由振动——系统受初始干扰或原有的外激励取消后产生的振动;强迫振动——系统在外激励力作用下产生的振动;自激振动——系统在输入和输出之间具有反馈特性并有能源补充而产生的振动。

3)按系统的响应(振动规律)分类简谐振动——能用一项时间的正弦或余弦函数表示系统响应的振动;周期振动——能用时间的周期函数表示系统响应的振动;瞬态振动——只能用时间的非周期衰减函数表示系统响应的振动;随机振动——不能用简单函数或函数的组合表达运动规律,而只能用统计方法表示系统响应的振动。

4)按描述系统的微分方程分类线性振动——能用常系数线性微分方程描述的振动;非线性振动——只能用非线性微分方程描述的振动。

7 简述构成机械振动系统的基本元素答:构成机械振动系统的基本元素有惯性、恢复性和阻尼。

惯性就是能使物体当前运动持续下去的性质。

恢复性就是能使物体位置恢复到平衡状态的性质。

阻尼就是阻碍物体运动的性质。

从能量的角度看,惯性是保持动能的元素,恢复性是贮存势能的元素,阻尼是使能量散逸的元素。

所以,质量、弹簧和阻尼器是构成机械振动系统物理模型的三个基本元件。

9 阐明下列概念。

(a) 振动; (b) 周期振动和周期; (c) 简谐振动;(d )振幅、频率和相位角。

10 如图3所示,已知m =15t, v 0=20 m/min ,k =5.78MN/m 。

求:钢丝绳的最大拉力。

解:以弹簧在静载作用下变形后的平衡位置为原点建立O x 坐标系 ∑=iixFxmkmg mg x k xm =++st st ,)(δδ=-mk x xn ==220,0ωω+ kmg mg x k xm =++st st ,)(δδ=-mk x xnn==22,0ωω+0n 0,;0,0,)sin(v xt x t t A x ====+= ϕω t mk km v x v A nsin;0,0===ϕωkN 2.245)(0max max =+=+=mk v mg x k F st δ10 已知⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡00212221121121222112112122211211x x k k k k x xc c c c x xm m m m ,用状态空间法求系统的响应。

解:[][][][][][][][][]⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=-=---01220111I K MC M B A N ,{}⎭⎬⎫⎩⎨⎧=520z {}[]{}{}0=-z N z,{}[]{}z N z = ,[][][][]A P P N =。

特征值问题为[][]0=-I N λ,即00122=----λλ,展开有δs0222=++λλ解之得i 1i 121--=+-=λλ,[]⎥⎦⎤⎢⎣⎡=-+Λt t t)i 1(-)i 1(-e 0e e,[]⎥⎦⎤⎢⎣⎡=+---2i 12i111P ,[]⎥⎦⎤⎢⎣⎡=-+-i -i 2i12i11P [][][][]⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==-++----++--+-++----Λt tt tt t ttN P P )i 1(-2i 1)i 1(-2i 1)i 1(-4i)1()i 1(-4i)1(2i 12i1)i 1(-)i 1(-2i 12i11e eeeXX i -i e 00e 11e e22[]⎥⎦⎤⎢⎣⎡=-+Λt tt)i 1(-)i 1(-e 0e e{}[]{}0ez x x z tN =⎭⎬⎫⎩⎨⎧= [][])sin 7cos 5(e eeee5ee2)(-)i 1(-27i 5)i 1(-27i 5)i 1(-2i 1)i 1(-2i 1)i 1(-4i)1()i 1(-4i)1(22t t t x ttttttt+=+=+++=-++--++----++-10 A foot pedal for a musical instrument is modeled by the sketch in Figure P2.30. With k = 2000 kg, c = 25 kg/s, m = 25 kg and F (t ) = 50 cos 2πt N, compute the steady state response assuming the system starts from rest. Also use the small angle approximation.Solution: Free body diagram of pedal follows:Summing the moments with respect to the point, O:11 A very common example of base motion is the single-degree-of-freedom model of an automobile driving over a rough road. The road is modeled as providing a base motion displacement of y (t ) = (0.01)sin (5.818t ) m. The suspension provides an equivale nt stiffness of k = 4 x 105N/m, a damping coefficient of c = 40 x 103kg/s and a mass of 1007 kg. Determine the amplitude of the absolute displacement of the automobile mass.Solution:From the problem statement we haveωb =5.818, k = 4×105N/m , c =40×103 kg/s ,Y = 0.01 m, m = 1007 kg12用刚度系数法建立如下三自由度系统的振动微分方程解:1)设x 1=1,x 2=x 3=0,则在m 1上施加的力F 1=1×(k 1+k 2),即k 11= k 1+k 2 ;在m 2上施加的力F 2=-k 2 × 1 =-k 2 ,即k 21=-k 2 ;在m 3上施加的力为零,即F 3=0或 k 31=0。

2)设x 2=1,x 1=x 3=0,则在m 2上施加的力F’2=1× (k 2+k 3),即k 22= k 2+k 3 ;在m 3上施加的力F’3=-k 3 即k 32=-k 3 ;由刚度矩阵的对称性得 k 12 =k 21= -k 2。

3)设x 3=1,x 1=x 2=0,则在m 3上施加的力F’’3=1× k 3,即k 33= k 3 ;由刚度矩阵的对称性得 k 13 =k 31 = 0 , k 23 =k 32= -k 3。

得系统振动微分方程⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000000321333322221321321x x x k k k k k k k k k x x x m m m13 写出图示系统的振动微分方程 解:建立广义坐标如图 方程[]{}[]{}[]{}{}0=++x K x C xM {}[]T4321,,,x x x x x =,{}[]T4321,,,x x x x x =,{}[]T4321,,,x x x x x =。

其中,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=432100000000000m m m m M ,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+----+=0000000646226262c c c c c c c c c C []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+++---+---++=5556543363322626210000k k k k k k k k k k k k k k k k k k K 。

Interpretation of Vibration DataThe key to using vibration signature analysis for predictive maintenance, diagnostic, and other applications is the ability to differentiate between normal and abnormal vibration profiles. Manyvibrations are normal for a piece of rotating or moving machinery. Examples of these are normal rotations of shafts and other rotors, contact with bearings, gear-mesh, etc. However, specific problems with machinery generate abnormal, yet identifiable, vibrations. Examples of these are loose bolts, misaligned shafts, worn bearings, leaks, and incipient metal fatigue.Predictive maintenance utilizing vibration signature analysis is based on the following facts, which form the basis for the methods used to identify and quantify the root causes of failure:1. All common machinery problems and failure modes have distinct vibration frequency components that can be isolated and identified.2. A frequency-domain vibration signature is generally used for the analysis because it is comprised of discrete peaks, each representing a specific vibration source.3. There is a cause, referred to as a forcing function, for every frequency component in a machine-train’s vibration signature.4. When the signature of a machine is compared over time, it will repeat until some event changes the vibration pattern (i.e., the amplitude of each distinct vibration component will remain constant until there is a change in the operating dynamics of the machine-train).While an increase or a decrease in amplitude may indicate degradation of the machine-train, this is not always the case. Variations in load, operating practices, and a variety of other normal changes also generate a change in the amplitude of one or more frequency components within the vibration signature. In addition, it is important to note that a lower amplitude does not necessarily indicate an improvement in the mechanical condition of the machine-train. Therefore, it is important that the source of all amplitude variations be clearly understood.Sources of VibrationLike rotating machinery, the vibration profile generated by reciprocating and/or linear-motion machines is the result of mechanical movement and forces generated by the components that are part of the machine. Vibration profiles generated by most reciprocating and/or linear-motion machines reflect a combination of rotating and/or linear-motion forces.However, the intervals or frequencies generated by these machines are not always associated with one complete revolution of a shaft. In a two-cycle reciprocating engine, the pistons complete one cycle each time the crankshaft completes one 360degree revolution. In a four-cycle engine, the crank must complete two complete revolutions, or 720 degrees, in order to complete a cycle of all pistons.Because of the unique motion of reciprocating and linear-motion machines, the level of unbalanced forces generated by these machines is substantially higher than those generated by rotating machines. As an example, a reciprocating compressor drives each of its pistons from bottom-center to top-center and returns to bottom-center in each complete operation of the cylinder. The mechanical forces generated by the reversal of direction at both top-center and bottom-center result in a sharp increase in the vibration energy of the machine. An instantaneous spike in the vibration profile repeats each time the piston reverses direction.Linear-motion machines generate vibration profiles similar to those of reciprocating machines. The major difference is the impact that occurs at the change of direction with reciprocating machines. Typically, linear-motion-only machines do not reverse direction during each cycle of operation and, as a result, do not generate the spike of energy associated with direction reversal.14 填图,补充完整下列振动分类图。

相关文档
最新文档