变速器同步器工作原理

合集下载

同步器工作原理

同步器工作原理

同步器工作原理同步器是一种用于调节机械设备运行速度和保持运行同步的重要装置。

它广泛应用于各种机械设备和系统中,如发电机组、电动机、传动装置等。

同步器的工作原理是通过一定的机械结构和控制系统,使不同设备之间的运动速度和位置保持同步,从而确保整个系统的正常运行和工作效率。

同步器的工作原理可以简单概括为以下几个方面:1. 传动装置,同步器通常由传动装置和控制系统两部分组成。

传动装置是同步器的核心部分,它通过齿轮、链条、皮带等方式将不同设备的运动连接起来,使它们能够同步运行。

2. 控制系统,控制系统是同步器的智能部分,它通过传感器、执行器和控制器等设备,实时监测和控制设备的运动状态和速度,从而保持设备之间的同步运行。

3. 反馈调节,同步器通过不断的反馈调节,使设备的运动速度和位置保持在一定的范围内,从而确保设备之间的同步性。

例如,当一个设备的运动速度发生变化时,同步器会通过控制系统及时调节其他设备的运动速度,以保持它们的同步运行。

4. 安全保护,同步器在工作过程中还需要具备一定的安全保护功能,当设备出现异常情况时,能够及时停止或调整运动状态,以避免造成设备损坏或安全事故。

同步器的工作原理是一个复杂而精密的系统工程,它需要精准的机械结构和灵活的控制系统相结合,才能确保设备之间的同步运行。

在实际应用中,同步器不仅可以提高设备的工作效率和精度,还能减少能源消耗和设备损耗,具有重要的经济和社会意义。

总的来说,同步器的工作原理是通过传动装置、控制系统、反馈调节和安全保护等方面的协同作用,实现不同设备之间的同步运行,从而保证整个系统的正常工作。

它在工业生产和日常生活中都发挥着重要作用,是现代机械设备不可或缺的重要部分。

变速箱同步器工作原理

变速箱同步器工作原理

变速箱同步器工作原理变速箱同步器由过渡锁环和离合器组成。

它位于变速箱的齿轮之间,通过摩擦系数的调节来实现齿轮的同步。

当换挡时,过渡锁环将要被连接的齿轮和当前齿轮进行力的传递,直到齿轮的速度匹配为止。

然后,通过离合器将过渡锁环连接到要切换的齿轮,从而实现换挡。

同步器的工作过程可以分为以下几个步骤:1.当要进行换挡时,驾驶员将离合器踏板踩到底,并同时将换档杆从当前挡位移入空挡位。

2.换档杆到达空挡位后,驾驶员松开离合器踏板,使得离合器片与变速器输入轴的摩擦力为零。

3.当离合器片与输入轴的摩擦力为零时,过渡锁环将被连接到变速器的输入轴。

过渡锁环主要由弹簧和摩擦片组成,它的作用是通过摩擦力将输入轴和输出轴的速度匹配。

4.当过渡锁环开始连接输入轴和输出轴时,过渡锁环的摩擦片与输出轴上的齿轮进行接触。

通过摩擦力传递力矩,使得输入轴和输出轴的速度逐渐匹配。

5.一旦输入轴和输出轴的速度匹配,变速器齿轮将能够平稳地进行换挡。

此时,过渡锁环可以与要连接的齿轮一起旋转,实现换挡动作。

6.当变速器齿轮完成换挡之后,过渡锁环会与变速器输出轴分离,重新进入空挡位。

换档过程完成。

需要注意的是,变速箱同步器需要根据不同的车速和发动机转速来调整同步速比。

这是因为车辆在不同的工作状态下,对换挡速度和顺滑度的需求也不同。

因此,同步器的设计也需要考虑到这些因素,以实现最佳的换挡体验。

总结起来,变速箱同步器通过通过过渡锁环和离合器的组合,利用摩擦力和力矩传递,实现输入轴和输出轴之间的速度匹配。

这种工作原理使得车辆在换挡时能够实现平稳的力矩传递,提高了驾驶的舒适性和换挡的顺滑度。

同步器在现代汽车变速箱中扮演着重要的角色,对于改善车辆性能和驾驶体验具有重要意义。

变速器同步器工作原理

变速器同步器工作原理

变速器同步器工作原理同步器的工作原理可以简单地概括为三个步骤:接触、锁定和分离。

首先,在变速器中选择正确的齿轮组合,操纵换挡杆使同步器齿轮与输出齿轮轴同轴。

接着,驾驶员将换挡杆从空档移向目标档位,这将使同步器接触环顶住主动齿轮或被动齿轮。

接触环通过同步器齿将转速平顶锁定在主动齿轮上。

同步器的关键部件是同步器齿,它通常是曲面的锥形齿,主动齿轮和被动齿轮之间的曲面形状相互匹配。

当同步器接触环顶住齿轮时,同步器齿将与齿轮的齿间起到一个摩擦接触的作用。

这个摩擦接触可以让同步器齿和齿轮的转速逐渐趋于一致,从而实现同步。

当同步器齿和齿轮的转速平顶时,驾驶员继续推动换挡杆。

此时,同步器锁环会将主动齿轮和被动齿轮的曲面完全锁定在一起。

这种锁定机制可以使二者同时旋转,从而实现平稳的换挡。

最后,当换挡完成后,驾驶员松开换挡杆,同步器锁环会自动将主动齿轮和被动齿轮分离。

通过分离,主动齿轮和被动齿轮就可以独立旋转,完成换挡过程。

同步器工作的基本原理是利用摩擦力和锁定机构实现齿轮的同步。

同步器齿的摩擦接触可以使主动齿轮和被动齿轮的转速逐渐趋于一致,从而确保平稳换挡。

而同步器的锁定机构可以准确地将两个齿轮锁定在一起,以保证换挡的平稳性。

同步器的设计和制造对于汽车的换挡性能至关重要。

一个优秀的同步器应该具备以下特点:具有良好的同步性能,可以快速、平滑地完成换挡动作;具有高强度和耐磨损性,可以在高转速和重负荷的工况下长时间使用;具有良好的耐久性,能够承受长时间、高频率的使用而不发生失效;具有紧凑的结构和轻量化的设计,以减小整体质量和提高燃油经济性。

总之,变速器同步器是确保汽车换挡平稳和可靠的重要部件,其工作原理主要包括接触、锁定和分离三个步骤。

通过摩擦接触和锁定机构,同步器能够保证主动齿轮和被动齿轮的转速同步,并实现平稳、快速的换挡过程。

同步器的设计和制造对于汽车的性能和可靠性具有重要影响。

汽车变速器同步器的结构与原理

汽车变速器同步器的结构与原理

汽车变速器同步器的结构与原理
汽车变速器同步器是汽车变速器的一种重要组成部分,它主要是用来控制档位切换的。

其功能是将变速器输出轴和变速器支轴连接起来,使支轴齿轮在档位切换时转速从高到低,以便实现档位的切换,并有效地减少变速器的冲击。

同步器的结构主要由三部分组成:同步环,同步锥体和销轴。

同步环是同步器的主要结构,它左右两侧均有两个腔室,用来放置离合件。

其外形类似锥形,内壁上有牙缘,牙缘的数量与变速器设计挡位总数相等,另外,同步环还拥有一块由磁性材料制成的磁铁片,这块磁铁片在同步锥体动作时,可以产生磁力,从而控制同步环转动切换档位。

同步锥体是同步器的第二个组成部分,它通过销轴与变速器输出轴连接。

它由两个槽齿形外壁上的螺母组成,分别连接着同步环与变速器支轴,每个螺母上都有一个销轴,两个销轴之间就会形成一组相互交错的齿形丝杆。

最后是销轴,销轴是同步器的重要部件,由多个圆柱形和螺旋状的筒体组成,螺旋状筒体上的金属片有一定的磁性,当同步锥体动作时,金属片会被磁铁片的磁力所吸引而连动,从而控制同步环的转动。

总之,汽车变速器同步器是一种简单而实用的机械装置,它的关键是要控制变速器输出轴和支轴的速度差,从而使档位的切换更加准确和平稳。

- 1 -。

汽车变速器倒挡及倒挡同步器结构原理分析

汽车变速器倒挡及倒挡同步器结构原理分析
拨 叉 带 动 驱 动 销 , 动 销带 动 惰 轮 往 后 移 动 ( 厂 习惯 将 驱 工 变 速 器 离 合 器 壳 体 端 称 为 前 端 , 速 器 壳 体 端 称 为 后 变 端 ) 使 惰轮 与输 出轴 的 齿套 啮 合 , 现 扭 矩 反 方 向 输 出 。 , 实
1 概 述
杠 杆 同 步 器
和 舒 适 性提 出了 更 高 的要 求 , 多 民族 企 业 开 始 对 变 速 器 许 进 行 深 入研 究 , 满 足市 场 需 求 。株 齿 公 司是 变 速 器 民族 以 企业 的 领 跑 者 , 借 2 年 的轿 车 变 速 器研 究 经 验 , 挡 凭 O多 换 手 感 和 低 噪音 在 变 速 器行 业 中有 一定 的 声 誉 。

杠杆效果换挡力 : 一
』 Z 』
式 中 : 同步器齿套传来的换挡力 ; F一
F 一 杠 杆 传 递给 同步 器 齿 环 的 换 挡 力 。 2
3 2 2 应 用 范 围 ..
5 n挡 同步 器 株 齿 公 司 申 请 了 该 技 术 的 专 利 , 利 / 专
图 4 斜 齿 常 啮 合 同步 器
空档位置时没有进行啮合 , 结构 见图 3所示 。挂 倒挡时 , 惰轮先与输入轴倒挡齿啮合 , 再与一二 挡齿套啮 合 , 实现
扭 矩 反 方 向输 出 。
图 1 变 速 器 结 构 总 成 图
1 惰 轮前 衬 垫 ;一 倒 挡 拔 叉 ;一 驱 动 销 ;一 惰 轮 ;一 输 入 轴 倒 一 2 3 4 5 挡 齿 ;一 惰 轮 后 衬 垫 ;- 惰 轮 轴 ;一 锁 止 螺 钉 ;一 输 入 轴 ; o 五 倒 6 7 8 9 1一 挡 同 步 器 总 成 ; 1 输 出轴 ;2 一 二挡 齿 套 ( 挡 从 动 齿 轮 ) 1一 1一 倒

汽车变速箱同步器工作原理

汽车变速箱同步器工作原理

汽车变速箱同步器工作原理
汽车变速箱同步器是一种用于排除变速器换挡时齿轮间的不匹配和间隙的装置。

其主要工作原理如下:
1. 当驾驶员操作换档杆进入下一档位时,变速器输入轴的齿轮会与输出轴齿轮匹配。

2. 在换档过程中,齿轮必须在同一速度下连接并脱离。

同步器的作用是通过使用摩擦材料来平衡两个齿轮的旋转速度。

3. 同步器内部通过摩擦片和锥面来实现平衡。

当驾驶员操作换档杆时,同步器会将一片摩擦片与输入轴上的齿轮接触,并开始与该齿轮同步旋转。

4. 当两个齿轮的旋转速度匹配时,同步器会将齿轮连接到输出轴,并换档完成。

如果旋转速度不匹配,摩擦材料会创造足够的摩擦力来减慢或加速齿轮的旋转,直到两个齿轮同步。

5. 在同步器将齿轮连接到输出轴后,摩擦片会分离,齿轮与输出轴正常连接。

同步器的操作使得换挡过程平稳,并消除了换挡时的冲击和噪音。

总的来说,汽车变速箱同步器的工作原理是通过使用摩擦材料来平衡和同步齿轮的旋转速度,以确保换挡过程的顺畅和无冲击。

同步器设计手册

同步器设计手册

同步器设计手册前言汽车变速器中采用同步器,可以保证换档操作迅速、轻便无冲击,延长齿轮和传动系统的使用寿命,提高汽车在换档和加速起步时的动力性和经济性,改善驾驶舒适性的有效措施。

同步器技术目前被广泛应用于各种车型上。

同步器的应用是机械变速器发展过程中一次质的飞跃,在我国汽车行业标准QC/T29063中明确规定轻型汽车变速器前进档必需装有同步器结构,中型汽车除一档、倒档外,其余各档也必需装有同步器结构。

随着同步器技术不断发展,对于提高变速器传动性能,具有十分重要的经济技术意义。

本手册是在综合同步器理论和实践研究的基础上编写而成。

本书结构新颖,文字简洁,图文并茂,通俗易懂。

内容包括:同步器结构形式,工作原理,设计参数,结构参数,以及影响同步器性能的因素。

本手册可供从事汽车变速器的设计、生产、维修人员参考。

本手册经等人员审阅并提出修改意见,在此表示感谢。

由于作者水平有限,难免有不足之处,请广大员工提出宝贵意见。

作者2007/11/16目录绪论第一章同步器的结构形式及其特点第一节锁销式同步器第二节锁环式同步器第三节锁环式多锥同步器第二章同步器工作原理第三章同步器设计参数及其计算第一节转动惯量及其转换第二节同步力矩 Tc及同步时间第三节拨环力矩T B第四节计算实例第四章结构参数设计第一节结构参数设计第二节结构参数设计对换档性能的影响第三节同步器摩擦材料第五章影响同步器性能的因素第一节润滑油对同步器性能的影响第二节其他对同步器性能的影响第六章同步器试验绪 论汽车变速器是汽车传动系中的一个重要部件,它的功能是在不同的使用条件下,改变由发动机传到驱动轮上的转矩和转速,使得汽车得到不同的牵引力和车速,以适应不同的使用条件。

同时也可以使发动机在最有利的工况范围内工作。

为保证变速器具有良好的工作性能,对变速器提出以下基本要求:1. 应有合适的变速档位数和传动比,保证汽车具有良好的动力性和经济性指标。

2. 较高的传动效率。

手动变速器同步器精讲

手动变速器同步器精讲

即 N×sinα>μs×N×cosα
tgα>μs
11
图十四 图十五
由于摩擦系数μ在设计计算时推荐采用0.10; arctg0.1=5.71°&而μs比μ要大故锥面角α一般可取 6°~7°30′&
2同步环径向厚度w& 径向厚度w和锥面平均半径R一样受结构限制不能取太大&
但w的大小须能承受锥环所受的切向拉应力&在结构和成本允 许范围内尽可能将w取大些&
在两锥面达到同步以后;这时换档力 P 还 在作用着图十四;则:
P = N×sinα+μs×N×cosα 式中:μs — 两锥面间的静摩擦系数
当完成同步换档同步环内锥面应脱离同步锥体外
锥面;此时摩擦力μs×N的方向就反过来了图十五
&它又阻止同步环脱开&只有在保证下列条件时;
才能避免两锥面间发生抱死分不开的现象&
图十
从系统简图中:ωv 不变;同步摩 擦力矩 Mf 需克服输入端零件的惯性力矩 Jc×dωc/dt;从而改变ωc;直到输 入端与输出端同步&根据动量矩 定理可列出下列方程式: Jc×dωc/d t – Mf = 0 1 即:Mf = Jc×dωc / d t 2 设输入端与输出端的角速度差为 Δω;同步时间为t; 则此时的平均角加减速度为Δω/ t; 2式可写成:
2. 锁环式同步器的结构参数、尺寸设计计算:
根据同步器计算基本方程式5 :
P×μ×R锥/Sinα= Jc×Δω/ t
按已知条件:同步器输入端转动惯量 Jc、角速度 Δω均可计
算出; 而同步时间t一般在同步器设计时可取 t = 0.5S &
根据式3 ;即可计算出所需的同步摩擦力矩 Mf值&

汽车变速器同步器的结构与原理

汽车变速器同步器的结构与原理

探秘汽车变速器同步器的神奇构造汽车的变速器经常被称为车辆的心脏,而变速器同步器则是变速器的核心部件之一。

它在车辆行驶时发挥着重要的作用。

那么,变速器同步器到底是什么?它如何实现同步?以下是详细的解析。

1. 变速器同步器的结构变速器同步器主要由锥面公差同步套、齿轮内齿同步爪、同步齿环及同步弹簧等构成。

其中,锥面公差同步套主要用来连接传动轴和主轴承,而齿轮内齿同步爪和同步齿环则起到同步的作用,同时同步弹簧则控制同步爪的移动。

2. 变速器同步器的原理当车辆在行驶中需要进行变速时,传动轴的齿轮和主轴承的齿轮必须先要在速度上同步,以免造成传动不良。

变速器同步器的作用就是通过同步爪、同步齿环和锥面公差同步套连接传动轴和主轴承,实现将二者的速度同步。

同步爪将主轴承上的同步齿环卡住,然后将传动轴上的齿轮与齿轮缸进行力矩传递,使得齿轮能以同步的速度转动。

当传动轴转速达到主轴承的转速时,同步器就将同步齿环释放,并且松开同步爪。

此时传动轴上的齿轮便能够与主轴承的齿轮实现完美的速度同步,顺畅地转换车速。

3. 使用变速器同步器的好处变速器同步器不仅使车辆在换挡时更为平稳,而且还能够保护车辆的其他部件。

在没有同步器的情况下,车辆在换挡时需要依赖驾驶员的经验和技巧来协调传动轴和主轴承的转速,一不小心就会导致传动失效或成为故障的源头。

而使用同步器则避免了这种问题的发生,让汽车的行驶更加平稳,同时也增强了车辆整体耐用性。

总之,变速器同步器在汽车的运动过程中扮演着重要的角色。

通过巧妙地构造和结构设计,实现了传动轴和主轴承之间的同步,让车辆以流畅的方式实现速度的变化,同时也避免了因为换挡过程中产生的损坏和故障。

同步器

同步器

工作原理:
当任何一根拨叉作轴向移动到空档位或某 档位时,必有一个凹槽正好对准自锁钢球,钢 球在自锁弹簧压力作用下嵌入凹槽内,以防止 拨叉及轴自行移动,起到自锁定位的作用。
B 齿端倒斜面
C 减薄齿
(2)互锁装置
拨叉轴
互锁销
作用:
互锁钢球
是防止变速器换档时同时挂入两个档 位,造成变速器齿轮“卡死”,甚至使 机件严重损坏。
(3)倒挡锁
驾驶员在换倒挡 时要克服倒挡锁 弹簧弹力,加大 的换挡阻力,可 提醒驾驶员。
变速杆 倒挡锁弹簧
作用: 是防止驾驶员误挂 倒挡,以免发生变 速器齿轮冲击和交 通安全事故。
倒挡锁销 倒挡拨块
倒挡拨叉轴
弹簧锁销式倒档锁
2、变速器远距离外操纵机构 • 在后置后驱或前置前驱的汽车上,通常汽车变速 器距离驾驶员座位较远,变速杆和变速器之间通 常需要用连杆机构联接,进行远距离操纵。
(4)重新接合离合器, 同时加空油,使V4>V3 (5)再分离离合器,等到 V4=V3时,挂入四挡。
(二)同步器的功用
使结合套与待啮合齿圈迅速同步,缩短 换挡时间,同时防止啮合时齿间冲击。
(三)同步器的分类
锁环式惯性同步器 锁销式惯性同步器
1、锁环式惯性同步器
(1)组成:
锁环 接合套 花键毂 锁环
5、变速器发热 1)现象:汽车行驶一段路程后,用手触 摸变速器时,有烫手的感觉。 2)原因: (1)轴承装配过紧; (2)齿轮啮合间隙过小; (3)齿轮油缺少或不符。 3)诊断:先检查齿轮油平面和齿轮油质 量;再结合发热部位,逐项检查排除。
6、变速器漏油 1)现象:齿轮油从轴承盖或结合部位渗漏, 齿轮油消耗量大。 2)原因:密封不良或油封损坏、壳破、油 过多、通气孔堵塞。 3)诊断:根据油迹部位来诊断漏油原因。

变速器和同步器图解

变速器和同步器图解

两轴五当变速器传动简图此变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮、操纵机构等几部分组成。

1-输入轴 2-轴承 3-接合齿圈 4-同步环5-输出轴 6-中间轴 7-接合套 8-中间轴常啮合齿轮三轴五挡变速器传动简图两轴五当变速器传动与传统的三轴变速器相比,由于省去了中间轴,所以一般档位传动效率要高一些;但是任何一档的传动效率又都不如三轴变速器直接档的传动效率高。

1-输入轴 2-接合套 3-里程表齿轮 4-同步环 5-半轴 6-主减速器被动齿轮 7-差速器壳8-半轴齿轮 9-行星齿轮 10、11-输出轴 12-主减速器主动齿轮 13-花键毂两轴五当变速器传动简图关于换挡动作的控制形式上图为推杆连接的换挡方式的4速手动挡变速箱模型一般的手动变速箱,都是通过推杆连接或者是拉线来控制换挡的。

推杆连接的换挡控制方式,更为直接但是传递的振动会很大;而拉线式的虽然没有振动,但是挡位显得不是很清晰,可谓是各有优劣。

除了这两种纯机械式的换挡控制,此外,还有使用电控装置换挡的手动变速箱,它可以很好的结合推杆和拉线换挡之间的优点。

这种变速箱在换挡的时候,挡拨动变速杆到相应的挡位,在变速器里就会有电机驱动相应的拨叉控制套筒与齿轮咬合,因此不存在挡位不清晰的问题,而且换挡的行程也可以控制在很理想的范围。

同步器有常压式,惯性式和自行增力式等种类。

这里仅介绍目前广泛采用的惯性式同步器。

惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。

惯性同步器按结构又分为锁环式和锁销式两种。

其工作原理可以北京BJ212型汽车三档变速器中的二、三档同步器为例说明。

花键毂7与第二轴用花键连接,并用垫片和卡环作轴向定位。

在花键毂两端与齿轮1和4之间,各有一个青铜制成的锁环(也称同步环)9和5。

锁环上有短花键齿圈,花键齿的断面轮廓尺寸与齿轮1,4及花键毂 7上的外花键齿均相同。

变速器工作原理图解

变速器工作原理图解

变速器工作原理图解让我们先通过一个两档变速器的原理图(图四)了解一下变速器的原理:绿色的叫做变速箱输入轴,通过离合器传递动力给变速箱的,红色的部分叫中间轴,它们一起旋转。

只要绿色的轴在转,中间轴就会一起转动传输动力。

黄色的轴,连接差速器和传动轴传递动力给轮胎。

需要注意的是:黄色轴和紫色的套筒是通过花键相连的,也就是说,紫色的套筒和黄色的轴总是一起转动。

我们看到了右上有排挡杆,拉动排挡杆换档拨叉就会左右移动。

下面就来看看挂一档的情况:向左推动排挡杆,换档叉向右运动,套筒和蓝色大齿轮啮合。

右边是①档,套筒和黄色轴是一起转动的,所以动力被传递到黄色轴,继而传递给传动轴、轮子,车子就跑起来了。

我们可以看到这个齿轮非常大,下面红色齿轮非常小,这里就有一个传动比。

①档的传动比总是最大的(倒档亦一样),这样的好处就是,发动机曲轴转若干圈①档齿轮才转一圈。

我们骑过变速自行车的都明白,小轮带动大轮可以让车很轻松就跑起来,很省力但是跑不快。

为了跑的更快,我们需要让轮子转的更快而发动机不要转那么快,这样我们就需要小一些的传动比。

相应的挂上②档,换档叉就被推向另一边和②档齿轮啮合。

②档的传动比小一些,车子可以跑的快一些。

[ 本帖最后由 大侠无忌 于 2008-08-22 08:48 编辑 ]车主营勋章:混动时代的春天到来了么永恒创新 驾驭未来返回本版 回复本帖 举报大侠无忌发表于 2008-08-22 08:49 | 来自 汽车之家网页 1楼加好友| 发短信威望:51 (精华:6)帖子:364帖| 14152回注册:2006年09月30日来自:山东济南爱车:明锐?? 原理其实就是这么简单,下面我们来看看正常的变速器。

下图(图五)是个5MT的变速器原理图。

?? 有了前面的讲解,这张图我们就很好理解了。

齿轮比从①—⑤档逐渐变小,⑤档是最终比,这个比值一般是1:1,也就是说发动机曲轴转一圈,⑤档齿轮就转一圈(爱丽舍是是1:0.915)。

变速器和同步器图解 (1)

变速器和同步器图解 (1)

变速器和同步器图解三轴五当变速器传动简图1-输入轴 2-轴承 3-接合齿圈 4-同步环 5-输出轴 6-中间轴 7-接合套 8-中间轴常啮合齿轮此变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮、操纵机构等几部分组成。

两轴五当变速器传动简图1-输入轴 2-接合套 3-里程表齿轮 4-同步环5-半轴 6-主减速器被动齿轮 7-差速器壳 8-半轴齿轮 9-行星齿轮 10、11-输出轴 12-主减速器主动齿轮 13-花键毂与传统的三轴变速器相比,由于省去了中间轴,所以一般档位传动效率要高一些;但是任何一档的传动效率又都不如三轴变速器直接档的传动效率高。

同步器有常压式,惯性式和自行增力式等种类。

这里仅介绍目前广泛采用的惯性式同步器。

惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。

惯性同步器按结构又分为锁环式和锁销式两种。

其工作原理可以北京BJ212型汽车三档变速器中的二、三档同步器为例说明。

花键毂7与第二轴用花键连接,并用垫片和卡环作轴向定位。

在花键毂两端与齿轮1和4之间,各有一个青铜制成的锁环(也称同步环)9和5。

锁环上有短花键齿圈,花键齿的断面轮廓尺寸与齿轮 1,4及花键毂 7上的外花键齿均相同。

在两个锁环上,花键齿对着接合套8的一端都有倒角(称锁止角),且与接合套齿端的倒角相同。

锁环具有与齿轮1和4上的摩擦面锥度相同的内锥面,内锥面上制出细牙的螺旋槽,以便两锥面接触后破坏油膜,增加锥面间的摩擦。

三个滑块2分别嵌合在花键毂的三个轴向槽11内,并可沿槽轴向滑动。

在两个弹簧圈6的作用下,滑块压向接合套,使滑块中部的凸起部分正好嵌在接合套中部的凹槽10中,起到空档定位作用。

滑块2的两端伸入锁环9和5的三个缺口12中。

只有当滑块位于缺口12的中央时,接合套与锁环的齿方可能接合。

同步器的工作原理及分类

同步器的工作原理及分类

同步器的工作原理及分类1、无同步器时变速器的换档过程:一般采用移动齿轮或接合套换档,为使换档平顺,应使待啮合的轮齿的圆周速度必须相等(同步)。

·下面以无同步器的五档变速器中四、五档的互换过程为例加以说明:图中:1—第一轴;2—第一轴常啮齿轮;3—接合套;4—第二轴五档齿轮5——第二轴;6——中间轴五档齿轮(1)从低速变高速—四档变五档1)四档时,V3= V2;欲挂五档,离合器分离接合套3右移,先进入空挡。

2)3与2脱离瞬间,V3= V2而V4 > V2,V4 > V3,会产生冲击,应停留。

3)因汽车传动系惯性质量大V3下降较慢,而V4下降较快,必有V3= V2时,此时挂档应平顺(2)从高速变低速—五档变四档1)五档时,V3= V4;欲挂五档,离合器分离,接合套3左移,先进入空挡。

2)3与2脱离瞬间,V3= V4而V4 > V2,V3 > V2,会产生冲击,应停留。

3)因V2 比V 3下降快,必无V3= V2时,此时应使离合器接合,并踩一下加速踏板使V2 > V3,而后再分离离合器待V3= V2时平顺挂档2、同步器的功用及类型(1)同步器的作用:是使接合套与待啮合的齿圈迅速同步,缩短换档时间;防止在同步前啮合而产生接合齿之间的冲击(2)类型:分为常压式、惯性式和自增力式;目前广泛采用摩擦惯性同步装置(锁环、锁销式)惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。

1)锁环式:结构紧凑、便于合理布置,多用于轿车和轻型货车上2)锁销式:结构形式合理,力矩较大,多适用于中型和大型货车上3)同步器的一般结构:由同步装置(包括推动件、摩擦件)、锁止装置和接合装置三部分组成3、锁环式惯性同步器的构造及工作原理轿车和轻、中型货车的变速器广泛采用锁环式惯性同步器,其细部结构多种多样, 但工作原理是一样的(1)锁环式惯性同步器的构造1)花键毂:花键毂轴向固定;并与齿圈、锁环具有相同花键齿2)接合套:用来连动花键毂、同步环、啮合齿圈,并与齿圈、锁环具有相同花键齿3)同步环(锁环):锁环的倒角与接合套倒角相同,锁环具有内锥面,其上有螺旋槽,以便两锥面接触后,破坏油膜,增加锥面间的摩擦。

汽车变速器同步器的结构与原理

汽车变速器同步器的结构与原理

汽车变速器同步器的结构与原理汽车变速器同步器是一种重要的机械结构,它的主要作用是在车辆换挡时,将不同转速的齿轮同步,使换挡更加平稳顺畅。

本文将介绍汽车变速器同步器的结构和原理,以帮助读者更好地了解和掌握这一机械结构。

一、汽车变速器同步器的结构汽车变速器同步器主要由同步器骨架、同步器锥环、同步器摩擦片、同步器弹簧等部分组成。

其中,同步器骨架是同步器的主体架构,由钢铁材料制成,具有较高的强度和耐久性。

同步器锥环是同步器的关键部分,它的作用是将不同转速的齿轮同步,使换挡更加平稳。

同步器摩擦片是同步器的摩擦部分,由摩擦材料制成,用于摩擦同步器锥环和齿轮之间的差速,从而实现同步换挡。

同步器弹簧则是同步器的弹性部分,它的作用是保证同步器摩擦片和同步器锥环之间的紧密贴合,从而保证换挡的顺畅性。

二、汽车变速器同步器的原理汽车变速器同步器的原理是基于摩擦学的原理,利用同步器摩擦片和同步器锥环之间的摩擦力,将不同转速的齿轮同步。

具体来说,当车辆需要进行换挡时,同步器骨架会将同步器锥环和齿轮进行连接,此时同步器摩擦片和同步器锥环之间会产生一定的摩擦力,从而实现同步换挡的目的。

在实际应用中,汽车变速器同步器的原理和结构是相当复杂的,需要各个部分之间的协调配合才能发挥其最大的效果。

例如,同步器锥环的设计要考虑到不同转速齿轮的同步性和耐磨性,同步器摩擦片的选择要考虑到摩擦系数和磨损程度等因素。

此外,同步器弹簧的弹性设计也是关键因素之一,它的弹性必须要与同步器摩擦片和同步器锥环之间的摩擦力相适应,才能保证同步换挡的顺畅性。

汽车变速器同步器是一种复杂的机械结构,其结构和原理需要仔细考虑和设计,才能发挥其最大的效果。

对于车辆驾驶员来说,掌握汽车变速器同步器的结构和原理,可以更好地理解和掌握车辆的换挡过程,从而提高驾驶的安全性和舒适性。

变速器基本知识介绍

变速器基本知识介绍

变速器的类型
按传动比变化方式,汽车变速器可分为有级式、无级式 和综合式三种;
按操纵方式不同,汽车变速器又可分为三种:强制操纵 式变速器、 半自动操纵式变速器、自动操纵式变速器;
大齿公司目前中型变速器均为有级式变速器、操纵方式 为强制操纵,下面对有级式变速器与强制操纵式变速器两 个概念做如下阐述。
有级式变速器:该种变速器应用最广泛。它采用齿轮传 动,具有若干个定值传动比。按所用齿轮形式的不同,有 轴线固定式变速器(普通变速器)和轴线旋转式变速器 (行星齿轮变速器)。所谓的变速器档位数即指其前进档 位数。
变速器知识介绍
目录
变速器的功用和类型; 常见手动变速器介绍; 变速器各挡速比的形成; 同步器介绍; 变速器操纵机构互锁、自锁原理介绍; 变速器主副箱互锁机构原理介绍; 变速器与整车匹配的基本要求; 变速器故障诊断及原因分析;
第一章 变速器的功用和类型
变速器的功用
发动机是汽车心脏,发动机产生动力必须经过传动系统 才能驱动车轮转动。传动系统的心脏是变速器。汽车上广泛 活塞式内燃机,其转矩和转速变化范围较小,而复杂使用条 件则要求汽车的牵引力和车速能在相当大的范围内变化。为 解决这一矛盾,在传动系统中设置了变速器。变速器的功用 是: ①改变汽车的传动比,扩大驱动轮转矩和转速的变化范围, 使车辆适应各种变化的行驶工况,同时使发动机在理想的工 况(功率大而耗油率较低)下工作; ②在发动机旋转方向不变的前提下,使整车能倒退行驶; ③实现空挡,中断发动机传递给车轮的动力,使发动机能够 起动怠速。
1200Nm; HW12707T(DC7J120T),中心距:165,速比有以下两种: •速比(D):10.307~1,最大输入扭矩:1000Nm; •速比(C):9.204~0.829,最大输入扭矩:1200Nm;

变速器同步器工作原理

变速器同步器工作原理

变速器同步器工作原理一、同步器的结构二、同步器的工作原理当车辆处于行驶状态需要换挡时,驾驶员首先踩下离合器踏板,将发动机与变速器断开连接。

接着,通过操纵换挡杆,选择需要换入的挡位。

在此过程中,同步器起到了关键的作用。

同步器的工作可以分为两个阶段:减速阶段和加速阶段。

1.减速阶段:当驾驶员将换挡杆拨入目标挡位时,同步器套和齐齿轮始终保持接触状态。

此时,由于齐齿轮与齿轮之间的传动比不同,转速不同,因此同步器套会受到齐齿轮的牵引力,开始旋转。

随着齐齿轮的旋转,同步器套会通过摩擦效应将齐齿轮的转速逐渐降低。

2.加速阶段:当同步器套和齐齿轮的转速基本匹配时,同步器套会通过弹簧的作用将齐齿轮牢固地与齿轮轴连接起来。

此时,由于同步器套的实时转速已与齐齿轮相匹配,所以齿轮能够平稳地插入齿轮轴的齿槽中,实现换挡过程。

可以看出,同步器通过将齐齿轮的转速逐渐降低,实现了齐齿轮与换入齿轮之间的顺利插入。

由于换挡前同步器套与齐齿轮之间的摩擦作用,可以在齐齿轮与齿轮轴之间建立起一个临时的传力路径,使得转速逐渐匹配。

同时,同步器套中的弹簧会将齐齿轮和齿轮轴紧密连接起来,防止插入时出现异响和顶挂。

三、同步器的优点和缺点1.优点:同步器可以实现换挡过程的平稳进行,减少换挡时的冲击和噪音。

同时,同步器的结构简单,可靠性高,使用寿命较长。

2.缺点:同步器在实际使用中会产生一定的磨损,需要定期检查和更换。

此外,在高转速或不正确的操作下,同步器容易受损或损坏。

综上所述,变速器同步器是一种重要的变速器部件,通过减速阶段和加速阶段的工作原理,实现了换挡过程的平稳进行。

同步器在实际使用中具有一定的优点和缺点,因此需要合理操作和定期检修。

汽车变速器同步器

汽车变速器同步器

同步环等回转一个角度
进入接合齿,完成换档
每天进步一点点
第14页
3.具体的工作过程
1)换档杆通过拨叉拨动同步器齿套,同步器齿套通过滑 块槽带动由弹簧压紧的滑块一起推动同步环压向齿轮的同 步锥面。
每天进步一点点
2)由于换档力P的作用和转速差Δω的存在,两同步 锥面一经接触即会产生摩擦力矩Mf,并使同步环相对 同步器齿套转动一个角度。
每天进步一点点
二、变速器换档性能与同步器尺寸的关系
1、同步的基本概念:
同步器知 识培训
I1 (t 1 ) t I ( 2 ) 2 2 t T I 2 t 1 T I1
I1、I2表示系统1、系统2的当量惯量 ω1、ω2表示系统1、系统2的角速度 ωf表示同步时的角速度 T表示同步所需的扭矩 t表示同步所需的时间 ㎏· ㎡ Rad/ s
同步器知 识培训
2、变速器换档用转动惯量计算 转动惯量计算举例
零件序 号 1 零件名称 离合器从动盘 转动惯量(㎏· ㎡) 0.009
档位 1st 2nd 3rd 4th 5th
传动比 12/41 20/39
2
3 4
输入轴
一档齿轮 二档齿轮
0.000552
0.003413 0.001581
5
6
三四档同步器齿毂
其中 Ts Fa μs ds β
同步器知 识培训


拨环力矩(Nm) 接合齿处的轴向力 接合齿间的摩擦系数 接合齿的平均直径 (m) 摩擦锥锥角(°)
每天进步一点点
二、变速器换档性能与同步器尺寸的关系
9、同步器的摩擦力矩与拨环力矩之间的关系
为避免打齿(不同步啮合),必须保证: Tc ≥ Ts
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变速器一、变速器概述变速器功用:(1)改变传动比,满足不同行驶条件对牵引力的需要,使发动机尽量工作在有利的工况下,满足可能的行驶速度要求。

(2)实现倒车行驶,用来满足汽车倒退行驶的需要。

(3)中断动力传递,在发动机起动,怠速运转,汽车换档或需要停车进行动力输出时,中断向驱动轮的动力传递。

变速器分类:(1)按传动比的变化方式划分,变速器可分为有级式、无级式和综合式三种。

(a)有级式变速器:有几个可选择的固定传动比,采用齿轮传动。

又可分为:齿轮轴线固定的普通齿轮变速器和部分齿轮(行星齿轮)轴线旋转的行星齿轮变速器两种。

(b)无级式变速器:传动比可在一定范围内连续变化,常见的有液力式,机械式和电力式等。

(c)综合式变速器:由有级式变速器和无级式变速器共同组成的,其传动比可以在最大值与最小值之间几个分段的范围内作无级变化。

(2)按操纵方式划分,变速器可以分为强制操纵式,自动操纵式和半自动操纵式三种。

(a)强制操纵式变速器:靠驾驶员直接操纵变速杆换档。

(b)自动操纵式变速器:传动比的选择和换档是自动进行的。

驾驶员只需操纵加速踏板,变速器就可以根据发动机的负荷信号和车速信号来控制执行元件,实现档位的变换。

(c)半自动操纵式变速器:可分为两类,一类是部分档位自动换档,部分档位手动(强制)换档;另一类是预先用按钮选定档位,在采下离合器踏板或松开加速踏板时,由执行机构自行换档。

二、普通齿轮变速器普通齿轮变速器主要分为三轴变速器和两轴变速器两种。

它们的特点将在下面的变速器传动机构中介绍。

变速器传动机构:(1)三轴变速器这类变速器的前进档主要由输入(第一)轴、中间轴和输出(第二)轴组成。

(2)两轴变速器这类变速器的前进档主要由输入和输出两根轴组成。

三轴五档变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮、操纵机构等几部分组成。

第一轴和第一轴常啮合齿轮为一个整体,是变速器的动力输入轴。

第一轴前部花键插于离合器从动盘毂中。

在中间轴上制有(或固装)有六个齿轮,作为一个整体而转动。

最前面的齿轮与一轴常啮合齿轮相啮合,称为中间轴常啮合齿轮,从离合器输入一轴的动力经这一对常啮合齿轮传到中间轴各齿轮上。

向后依次称各齿轮为中间轴三档、二档、倒档、一档和五档齿轮。

在第二轴上,通过花键固装有三个花键毂,通过轴承安装有二轴各档齿轮。

其中从前向后,在第一和第二花键毂之间装有三档和二档齿轮,在第二和第三花键毂之间装有一档和五档齿轮,它们分别与中间轴上各相应档齿轮相啮合。

在三个花键毂上分别套有带有内花键的接合套,并设有同步机构。

通过接合套的前后移动,可以使花键毂与相邻齿轮上的接合齿圈连接在一起,将齿轮上的动力传给二轴。

其中在第二个接合套上还制有倒档齿轮。

第二轴前端插入一轴齿轮的中心孔内,两者之间设有滚针轴承。

第二轴后端通过凸缘与万向传动装置相连。

当变速器第一轴被离合器从动片驱动时,第一轴常啮合齿轮通过中间轴常啮合齿轮带动中间轴转动,中间轴上各档齿轮又带动二轴上相应各档齿轮转动。

在各接合套都位于花键毂中央,未挂档时,二轴上各档齿轮都在二轴上空转,二轴不输出动力,变速器处于空档状态;当变速器操纵机构将二轴上某一档齿轮的接合齿圈与其邻近的花键毂通过接合套挂通时,已传到中间轴齿轮的动力经过中间轴和二轴上的这一对齿轮、接合套及花键毂又传到二轴上,变速器处于该档工作状态。

当第一花键毂通过接合套与前面第一轴常啮合齿轮的接合齿圈挂通时,来自输入轴的动力直接传到输出轴上,这时变速器的传动效率最高,这一档位称为直接档。

为了能够在发动机曲轴转动方向不变的情况下倒车行驶,在变速器中设置了倒档轴。

倒档齿轮通过轴承活套在倒档轴上(图中未画出)。

当第二接合套位于中间位置时,其上边齿轮正好与中间轴倒档齿轮相对。

用换档拨叉把倒档齿轮拨到与这两个齿轮相啮合位置,中间轴上的动力就会经倒档齿轮、第二接合套上的齿轮和第二花键毂传到二轴上。

倒档齿轮起到了改变转动方向的作用。

变速器处在某一档位时,输入轴与输出轴的转速之比称为变速器该档的传动比。

对于三轴变速器,其传动比的计算可以用下式进行:传动比 i = 输入轴转速/输出轴的转速=(中间轴常啮合齿轮齿数N2/第一轴常啮合齿轮齿数N1)×(第二轴某档齿轮齿数N4/中间轴某档齿轮齿数N3)例如:解放CA1091型汽车六档变速器的第三档:传动比 i 3 =(中间轴常啮合齿轮齿数N2/第一轴常啮合齿轮齿数N1)×(第二轴三档齿轮齿数N4/中间轴三档齿轮齿数N3)=(43/22)×(38/26)=2.857为了防止脱档,可以在接合齿上采取各种措施。

在该变速器上,各轴上倒档齿轮均为直齿圆柱齿轮,采用移动齿轮换档方式。

其余各齿轮全部为斜齿圆柱齿轮,具有传动平稳的特点。

在有些变速器上,二轴上齿轮及相应中间轴上各齿轮均为直齿圆柱齿轮。

二轴上齿轮通过花键安装在二轴上,可以沿轴向相对于二轴滑动。

采用移动二轴上齿轮的换档方式,使二轴上的各档齿轮与中间轴各档齿轮有选择地挂通,从而实现不同档位的变换。

也有的变速器只采用接合套换档,而没有同步装置。

这样的变速器在换档时,都存在不能避免齿轮冲击的缺点,随着制造技术的发展,目前变速器普遍采用了同步器换档方式。

在五档变速器中,往往将第五档设计为超速档。

变速器处于超速档工况时传动比小于1,输出轴比输入轴转得要快。

在路况良好,汽车不需要频繁加减速的情况下,使用超速档能让发动机工作在接近最经济状态的满负荷情况;又因为行驶同样的路程,使用超速档时曲轴转的圈数要少于使用直接档时曲轴转的圈数,这样就减少了由于活塞上下运动所造成的摩擦损失,减少了单位行驶里程的油耗。

变速器传动比的减小造成了对发动机输出转矩要求的增加,但由于汽车驱动能力不需为加速留出很大的余地,发动机输出转矩的能力是完全可以胜任的。

三、同步器(1)为什么要采用同步器?以下图所示两轴变速器三、四档间换档过程为例(并假设在换档机构中只有接合套而无同步环)从结构图中可以看出,输出轴三挡齿轮6与输入轴三档齿轮2的齿数之比(z6/z2)大于输出轴四挡齿轮5与输入轴四挡齿轮4 的齿数之比(z5/z4)。

由相互啮合传动齿轮的转速与齿数关系(n2/n6=z6/z2,n4/n5=z5/z4),可以得出齿轮2与齿轮6转速之比(n2/n6)大于输入轴四挡齿轮4与输出轴四挡齿轮5 转速之比(n4/n5)的结论。

而输出轴三挡齿轮6与齿轮5的转速又是一样的(n6=n5),所以在传动过程中,齿轮2转速永远比齿轮4转速高,即n2>n4。

当变速器从低速档(三档)换人高速档(四档)时,首先要踩离合器踏板,使离合器分离,接着通过变速杆等将接合套3右移,进入空档位置。

在接合套3与齿轮2刚分离这一时刻,两者转速还是相等的,即n3=n2。

而n2>n4,由此可以得出n3>n4,即接合套3的转速大于齿轮4转速的结论。

这时如果立即把接合套3推向齿轮4上接合齿圈,就会发生打齿现象。

此时,由于变速器处于空档,接合套和齿轮之间没有联系,离合器从动盘又与发动机脱离,所以接合套与齿轮的转速都在分别逐渐降低。

因为齿轮与齿轮、输出轴、万向传动装置、驱动桥、行驶系以及整个汽车联系在一起,惯性很大,所以n4下降较慢;而接合套只与输入轴和离合器从动盘相联系,惯性很小,故n3下降较快。

因为n3原先大于n4,n3下降得又比n4快,所以过一会儿后,必然会有n3=n4(同步)的情况出现。

最好能在n3=n4的时刻使接合套右移而挂入四档。

与接合套联系的一系列零件的惯性越小,则n3下降得越快,达到同步所需时间越少,并且在同样速度差的情况下,齿间的冲击力也小,因此离合器从动部分转动惯量应尽可能小一些。

当变速器从高速档(四档)换人低速档(三档)时,刚从四档推到空档的接合套与齿轮的转速相同,即n3=n4,同时又有n2>n4,所以n2>n3。

进入空档后,由于n3下降得比n2快,所以在接合套停下来之前,随着时间的推移,两者(n2与n3)差值将越来越大。

为了使接合套3与齿轮2的转速达到相同,驾驶员应在此时重新接合离合器,同时踩一下加速踏板,使变速器输入轴及接合套3的转速高于齿轮2转速(动画子步骤(6)),即n3>n2,然后再分离离合器,等待片刻,到n3=n2时,即可让接合套3与齿轮2上接合齿圈相接合,从而挂入三档。

上述相邻档位相互转换时,应该采取不同操作步骤的道理同样适用于移动齿轮换档的情况,只是前者的待接合齿圈与接合套的转动角速度要求一致,而后者的待接合齿轮啮合点的线速度要求一致,但所依据的速度分析原理是一样的。

以上变速器的换档操作,尤其是从高档向低档的换档操作比较复杂,而且很容易产生轮齿或花键齿间的冲击。

为了简化操作,并避免齿间冲击,可以在换档装置中设置同步器。

同步器有常压式,惯性式和自行增力式等种类。

这里仅介绍目前广泛采用的惯性式同步器。

惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。

惯性同步器按结构又分为锁环式和锁销式两种。

轿车和轻、中型货车的变速器广泛采用锁环式惯性同步器,其细部结构多种多样, 但工作原理是一样的。

其工作原理可以北京BJ212型汽车三档变速器中的二、三档同步器(见图3-33)为例说明。

花键毂7与第二轴用花键连接,并用垫片和卡环作轴向定位。

在花键毂两端与齿轮1和4之间,各有一个青铜制成的锁环(也称同步环)9和5。

锁环上有短花键齿圈,花键齿的断面轮廓尺寸与齿轮1,4及花键毂7上的外花键齿均相同。

在两个锁环上,花键齿对着接合套8的一端都有倒角(称锁止角),且与接合套齿端的倒角相同。

锁环具有与齿轮1和4上的摩擦面锥度相同的内锥面,内锥面上制出细牙的螺旋槽,以便两锥面接触后破坏油膜,增加锥面间的摩擦。

三个滑块2分别嵌合在花键毂的三个轴向槽11内,并可沿槽轴向滑动。

在两个弹簧圈6的作用下,滑块压向接合套,使滑块中部的凸起部分正好嵌在接合套中部的凹槽10中,起到空档定位作用。

滑块2的两端伸入锁环9和5的三个缺口12中。

只有当滑块位于缺口12的中央时,接合套与锁环的齿方可能接合。

在挂三档时,用拨叉3拨动接合套8并带动滑块2一起向左移动。

当滑块左端面与锁环9的缺口12的端面接触时,便推动锁环9压向齿轮1,使锁环9的内锥面压向齿轮1的外锥面。

由于两锥面具有转速差(n1>n9),所以一接触便产生摩擦作用。

齿轮1即通过摩擦作用带动锁环相对于接合套超前转过一个角度,直到锁环9的缺口12与滑块的另一侧面,接触时,锁环便与接合套同步转动。

此时,接合套的齿与锁环的齿错开了约半个齿厚,从而使接合套的齿端倒角面与锁环相应的齿端倒角面正好互相抵触而不能进入啮合。

相关文档
最新文档