太阳能电池充电应用电路图集

合集下载

太阳能电池充电电路

太阳能电池充电电路

太阳能电池充电电路主要包括太阳能电池板、充电控制器、蓄电池和充电指示灯等部分。

太阳能电池板是整个充电电路中的能量来源,它能够将太阳能转换成直流电能。

充电控制器是整个电路的控制中心,它负责控制充电过程,包括涓流充电、恒流充电和恒压充电三个阶段。

在涓流充电阶段,控制器控制电池以较小的电流进行充电,以避免对电池造成过大的电流冲击;在恒流充电阶段,控制器控制电池以恒定电流进行充电,以提高充电效率;在恒压充电阶段,控制器控制电池以恒定电压进行充电,以使电池充分吸收电能。

蓄电池是整个充电电路中的储能元件,它负责储存太阳能电池板转换的电能。

在充电过程中,蓄电池通过充电控制器与太阳能电池板连接,接受太阳能电池板转换的电能并将其储存起来。

同时,充电指示灯也会亮起,表示正在进行充电。

总之,太阳能电池充电电路通过太阳能电池板和控制器实现了对蓄电池的自动控制,能够有效地将太阳能转换成电能并储存起来,为负载提供稳定的电能供应。

两模式太阳能灯串芯片功能说明以及电路图

两模式太阳能灯串芯片功能说明以及电路图

ELITECHIP
ELITECHIP
EC2015-8A42太阳能两模式灯串芯片
一.功能说明
供电方式:DC3.7V 18650电池。

三路输入(光控、电源按键自锁开关、轻触开关)控制三路输出:1路太阳能充电指示灯、1路电源开关指示灯、1路负载输出。

上电工作用按键自锁开关控制电源通断,初始上电为常亮模式。

短按轻触开关转换为闪烁模式,再短按返回常亮模式,按键依次循环。

带断电记忆。

三路指示灯说明:1路太阳能指示灯,太阳能给电池充电时指示灯亮,无充电时指示灯不亮。

1路电源开关指示灯,自锁开关导通通电时指示灯亮,断开指示灯灭。

USB 充电功能:充电红灯亮充满绿灯亮。

二.电气参数(VDD=3.0V
TA=25℃)
工作电压:2.4-5V;工作电流:1mA;静态电流:6uA;
驱动电流低电平输出:80mA;驱动电流高电平输出:8mA;过VDD 极限电流:60mA;过GND 极限电流:60mA;工作温度:-10°-+85°;储存温度:-20°-+125°;三.封装脚位图(SOP-8)
2
3
1827364
5
PA3
VDD PA2PA1PA0
PA5PA4GND 管脚号符号
功能描述
1VDD 电源正2PA2悬空3PA1低电压检测4PA3触发开关5PA0光控输入6PA5灯串输出7PA4灯串输出8
GND 电源负
四.电路图参考
ELITECHIP
六.版本说明
版本
日期
描述
EC2015-8A42
2020/11/28
V01初版。

CN3063 CN3065和CN3082利用太阳能对电池充电

CN3063 CN3065和CN3082利用太阳能对电池充电

利用太阳能板对电池充电的应用本文主要讨论太阳能电池的工作原理和电气输出特性,以及利用CN3063、CN3065和CN3082这三款芯片利用太阳能为电池充电的解决方案。

太阳能电池的I-V 特性太阳能电池一般由p-n 结组成,p-n 结中的光能(光子)通过导致电子和空穴的重新组合而产生电流。

由于p-n 结的特性类似于二极管的特性,我们一般以如图1中所示的电路作为太阳能电池特性的一个简化模型。

IPH图1 太阳能电池简化电路模型电流源IPH 产生的电流和太阳能电池上的光量度成正比。

在没有负载连接的时候,几乎所有产生的电流都流过二极管D ,其正向电压决定着太阳能电池的开路电压(V OC )。

该电压会因各种类型太阳能电池的特性不同而有所差异。

但是,对于大多数硅电池而言,这一电压都在0.5V 到0.6V 之间,这也是p-n 结二极管的正常正向电压。

在实际太阳能电池应用中,并联电阻(RP)的泄漏电流很小,而RS 则会产生连接损耗。

图2展示了太阳能电池在输出上的特性。

由于串联电阻(RS)的原因,电压会稍有下降。

然而,有时如果通过内部二极管的电流太小,会导致偏置不够,并且穿过它的电压会随着负载电流的增加而急剧下降。

最后,如果所有电流都只流过负载而不流过二极管,输出电压就会变为零。

这个电流被称为太阳能电池的短路电流(I SC )。

I SC 和V OC 都是定义太阳能工作性能的主要参数之一。

因此,太阳能电池被认为是“电流限制”型电源。

它的输出电压会随着输出电流的增加而降低,并在负载电流达到短路电流时降为零。

由于太阳能电池的输出电流同光照强度的变化而变化,所以一般不能用太阳能电池给用电系统直接供电,一般需要将太阳能电池的能量先存储在蓄电池中,然后通过电池为系统供电。

这就要求充电电路能够适应太阳能电池的电压-电流输出特性。

CN3063、CN3065和CN3082就是根据太阳能电池的电压-电流输出特性而设计的,芯片内部集成有8位模数转换器,它能够根据输入电压源的电流输出能力自动调节充电电流。

太阳能控制器电路图大全(LM393电源PIC12F675单片机控制器)

太阳能控制器电路图大全(LM393电源PIC12F675单片机控制器)

太阳能控制器电路图大全(LM393电源PIC12F675单片机控制器)太阳能控制器电路图(一)一、电路结构电路如图所示。

双电压比较器LM393两个反相输入端②脚和⑥脚连接在一起,并由稳压管ZD1提供6.2V的基准电压做比较电压,两个输出端①脚和⑦脚分别接反馈电阻,将部分输出信号反馈到同相输入端③脚和⑤脚,这样就把双电压比较器变成了双迟滞电压比较器,可使电路在比较电压的临界点附近不会产生振荡。

R1、RP1、C1、A1、Q1、Q2和J1组成过充电压检测比较控制电路;R3、RP2、C2、A2、Q3、Q4和J2组成过放电压检测比较控制电路。

电位器RP1和RP2起调节设定过充、过放电压的作用。

可调三端稳压器LM371提供给LM393稳定的8V工作电压。

被充电电池为12V65Ah全密封免维护铅酸蓄电池;太阳电池用一块40W硅太阳电池组件,在标准光照下输出17V、2.3A左右的直流工作电压和电流;D1是防反充二极管,防止硅太阳电池在太阳光较弱时成为耗电器。

二、工作原理当太阳光照射的时候,硅太阳电池组件产生的直流电流经过J1-1常闭触点和R1,使LED1发光,等待对蓄电池进行充电;K闭合,三端稳压器输出8V电压,电路开始工作,过充电压检测比较控制电路和过放电压检测比较控制电路同时对蓄电池端电压进行检测比较。

当蓄电池端电压小于预先设定的过充电压值时,A1的⑥脚电位高于⑤脚电位,⑦脚输出低电位使Q1截止,Q2导通,LED2发光指示充电,J1动作,其接点J1-1转换位置,硅太阳电池组件通过D1对蓄电池充电。

蓄电池逐渐被充满,当其端电压大于预先设定的过充电压值时,A1的⑥脚电位低于⑤脚电位,⑦脚输出高电位使Q1导通,Q2截止,LED2熄灭,J1释放,J1-1断开充电回路,LED1发光,指示停止充电。

当蓄电池端电压大于预先设定的过放电压值时,A2的③脚电位高于②脚电位,①脚输出高电位使Q3导通,Q4截止,LED3熄灭,J2释放。

太阳能充电电路参考文档

太阳能充电电路参考文档
20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球约有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展,这之中太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。太阳能每秒钟到达地面的能量高达80万千瓦,假如把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量可达5.6×1012千瓦小时,相当于世界上能耗的40倍。正是由于太阳能的这些独特优势,20世纪80年代后,太阳能电池的种类不断增多、应用范围日益广阔、市场规模也逐步扩大。
①光伏电池的短路电流随光照强度增强而变大,两者近似为比例关系;光伏电池的开路电压在各种日照条件下变化不大;
②光伏电池的最大输出功率随光照强度增强而变大,且在同一日照环境下有唯一的最大输出功率点。在最大功率点左侧,输出功率随电池端电压上升呈近似线性上升趋势;到达最大功率点后,输出功率开始快速下降,且下降速度远大于上升速度;
③如图2-1所示:在虚线A的左侧,光伏电池的特性近似为电流源,右侧近似为电压源。虚线A对应最大功率点时光伏电池的工作电流,约为电池短路电流的90%;
④如图2-2所示:结温一定的情况下,光伏电池最大功率点对应的输出电压值基本不变。该值约为开路电压的76%。
(2)电池结温变化,日照不变
图2-3I–V特性曲线图2-4P–V特性曲线
世界光伏组件在1990年——2005年年平均增长率约15%。20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。光伏组件的生产成本降到3美元/瓦以下。

非晶硅太阳能板5v 锂电池充电电路

非晶硅太阳能板5v 锂电池充电电路

非晶硅太阳能板5v 锂电池充电电路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!非晶硅太阳能板5V 锂电池充电电路解析引言随着可再生能源的普及和发展,太阳能作为一种清洁、可再生的能源源源不断地吸引着人们的关注。

太阳能电池基本原理光生伏特原理PN结内建电场等效电路图文稿

太阳能电池基本原理光生伏特原理PN结内建电场等效电路图文稿

太阳能电池基本原理光生伏特原理P N结内建电场等效电路集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)太阳能电池基本原理基本原理——光生伏特效应太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。

典型太阳电池是一个 p-n 结半导体二极管。

光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。

当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。

光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。

光能就以产生电子-空穴对的形式转变为电能。

内建电场当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N型一边扩散。

与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。

由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。

(1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。

(2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。

(3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。

(4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。

(5)电荷收集:电荷的收集效率也是影响光伏器件功率转换效率的关键因素,金属与半导体接触时会产生一个阻挡层,阻碍电荷顺利地到达金属电极。

太阳能给锂电池充电技巧图

太阳能给锂电池充电技巧图

太阳能给锂电池充电技巧图太阳能电池为锂电池充电器技巧电路图太阳能是为便携式设备供电的有吸引力的能源。

一段时间以来,它一直被广泛地用于诸如计算器和航天飞机这样的应用。

最近,人们正考虑把太阳能用于包括移动电话充电器这样的范围更宽广的消费电子应用。

然而,太阳能电池板所提供的功率高度依赖于工作环境。

这包括诸如光密度、时间和位置之类的因素。

因此,电池通常被用作能量存储单元。

当来自太阳能板的电能有余的时候,就可以对电池充电;当太阳能板提供的电能不足时,电池就可以为系统供电。

如何设计锂离子电池充电器以便从太阳能电池中获取最多的功率并有效地对锂电池充电呢?本文将讨论太阳能电池的工作原理和电气输出特性,接着讨论电池充电系统要求以及匹配太阳能电池特性的系统解决方案,以便从太阳能电池获取最大的功率。

太阳能I-V特性一般地说,太阳能电池由p-n结构成,其中的光能(光子)引起电子和空穴的重新组合,产生电流。

因为p-n结的特性类似于二极管的特性,如图1所示的电路通常被用于简化太阳能电池的特性。

图1:简化的太阳能电池的电路模型。

电流源IPH产生的电流正比于落在太阳能电池上的光量。

在没有负载连接的时候,几乎所有产生的电流都流过二极管D,其正向电压决定太阳能电池的开路电压(VOC)。

该电压的变化严格地取决于每一种类型的太阳能电池。

但是,对于大多数硅电池,其0.5V到0.8V之间的电压范围恰好就是p-n结二极管的正向电压。

并联电阻(RP)代表实际太阳能电池中出现的微小泄漏电流,Rs代表连接损耗。

随着负载电流增加,由太阳能电池所产生的大部分电流被分流到二极管并进入负载。

对于大多负载电流的数值,这只对输出电压有很小的影响。

图2所示为太阳能电池的输出特性,由于二极管的I-V特性存在微小的变化,串联电阻(Rs)上的电压降也存在微小的变化,但是,输出电压保持很大的恒定。

然而,在一些点通过内部二极管的电流是如此之小,以至于它变得偏置不够,并且,随着负载电流的增加,跨越它的电压快速减少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池充电器电路图
太阳能电池充电器电路
太阳能稳压电源电路图
太阳能稳压电源电路图
太阳能充电器电路图
太阳能充电器电路
太阳能电池快速充电器电路图
太阳能电池快速充电器电路图
太阳能电池并联充电器电路图
太阳能电池并联充电器电路图
太阳能控制电路
如图所示,双运放LM358与R1、R2构成两个电压比较器,参考电压为VDD(+12V)的1/2。

光敏电阻RT1、RT2与电位器RP1和光敏电阻RT3、RT4与电位器RP2分别构成光敏传感电路,该电路的特殊之处在于能根据环境光线的强弱进行自动补偿。

如下图所示,将RT1和RT3安装在垂直遮阳板的一侧,RT4和RT2安装在另一侧。

当RT1、RT2、RT3和RT4同时受环境自然光线作用时,RP1和RP2的中心点电压不变。

如果只有RT1、RT3受太阳光照射,RT1的内阻减小,LM358的3脚电位升高,1脚输出高电平,三极管VT1饱和导通,继电器K1导通,其转换触点3与触点1闭合,同时RT3内阻减小,LM358的5脚电位下降,K2不动作,其转换触点3与静触点2闭合,电机M正转;同理,如果只有RT2、RT4受太阳光照射,继电器K2导通,K1断开,电机M反转。

当转到垂直遮阳板两侧面的光照度相同时,继电器K1、K2都导通,电机M才停转。

在太阳不停地偏移过程中,垂直遮阳板两侧光照度的强弱不断地交替变化,电机M转-停、转-停,使太阳能接收装置始终面朝太阳。

4只光敏电阻这样交叉安排的优点是:LM358的3脚电位升高时,5脚电位则降低,LM358的5脚电位升高时,3脚电位则降低,可使电机的正反转工作既干脆又可靠。

可直接用安装电路板的外壳兼作垂直遮阳板,避免将光敏电阻RT2、RT3引至蔽阴处的麻烦。

使用该装置,不必担心第二天早晨它能否自动返回。

早晨太阳升起时,垂直遮阳板两侧的光照度不可能正好相等,这样,上述控制电路就会控制电机,从而驱动接收装置向东旋转,直至太阳能接收装置对准太阳为。

相关文档
最新文档