常用金属焊接性之高温合金的钎焊复习过程

合集下载

钎焊复习知识点总结

钎焊复习知识点总结

钎焊复习知识点总结一、钎焊的基本原理钎焊是一种通过使用熔点低于母材的金属作为钎料,将钎料加热至熔化状态,然后利用液态钎料润湿母材并填充接头间隙,从而实现金属连接的焊接方法。

钎焊的强度和气密性均能满足要求,且对母材的稀释率较低。

二、钎焊的种类1、硬钎焊:适用于硬质合金、硬磁合金、结构钢和高速钢等的钎焊。

其特点是钎料熔点较高,接头强度高,但需要进行复杂的加热过程。

2、软钎焊:适用于有色金属、不锈钢、耐热合金和低熔点金属等的钎焊。

其特点是钎料熔点较低,接头强度较低,但加热过程相对简单。

三、钎焊的工艺要素1、钎料:选择合适的钎料是钎焊的关键,需要考虑母材的化学成分、接头形式和工作环境等因素。

2、钎剂:用于清除母材和钎料表面的氧化物和其他杂质,提高钎料的润湿性和流动性。

3、加热方法:选择合适的加热方法可以保证钎焊的质量和效率,包括火焰加热、电阻加热和激光加热等。

4、冷却:钎焊完成后需要进行冷却,以防止母材和钎料的过度冷却导致接头开裂。

四、钎焊的质量控制1、母材和钎料的清洁:确保母材和钎料的表面无杂质和氧化物,以保证焊接质量。

2、加热过程的控制:控制加热温度和时间,以保证钎料充分熔化和润湿母材。

3、冷却过程的控制:控制冷却速度,以防止母材和钎料的过度冷却导致接头开裂。

4、焊接后的检验:对焊接接头进行外观检查和无损检测,以确保其质量和可靠性。

五、钎焊的应用范围1、航空航天:用于飞机、火箭和卫星等的高强度结构件的钎焊。

2、汽车制造:用于汽车发动机、变速器和底盘等的高强度结构件的钎焊。

3、电子封装:用于芯片、集成电路和微电子器件等的高精度连接的软钎焊。

4、医疗器械:用于医疗器械的高精度连接的软钎焊。

操作系统复习知识点总结一、操作系统的定义操作系统是一种计算机系统,它负责管理和控制计算机的硬件和软件资源,为用户和应用程序提供便利的操作界面。

二、操作系统的功能1、资源管理:操作系统负责分配和管理计算机的各种资源,包括CPU、内存、硬盘、网络等。

钎焊工艺详解

钎焊工艺详解

钎焊工艺详解钎焊是一种将两个或多个金属零件连接在一起的焊接方法。

它使用与连接零件相似或与其不同的金属填充材料,通过加热至融化状态,将填充材料与母材结合形成坚固的连接。

本文将详细解释钎焊的工艺步骤、材料选择、设备要求以及一些常见问题和注意事项。

一、工艺步骤1. 准备工作:确认要连接的零件的材料和尺寸,并进行准备工作。

包括清洁焊接表面、切割和形状加工等。

2. 材料选择:根据连接零件的材料,选择合适的填充材料。

填充材料应与母材相容,并具有良好的流动性和可湿润性。

3. 预热:对于某些材料,如铜和镍合金,预热是必需的。

预热可以帮助提高钎焊的质量和连接强度。

4. 焊接操作:将填充材料放置在连接零件之间,并加热至填充材料融化。

填充材料通过液态形态自由流动,填充连接零件之间的间隙。

5. 冷却和清洁:完成钎焊后,待连接部分冷却。

冷却后,清洁焊缝以去除可能存在的残留物和氧化层。

二、材料选择1. 填充材料:填充材料的选择取决于连接零件的材料。

常用的填充材料包括铜、银、镍和钢等。

填充材料的选择应满足连接零件的强度和耐腐蚀性要求。

2. 手工工具:钎焊过程中使用的手工工具通常包括火焰喷枪、钎焊炬、钳子等。

这些工具用于加热和操作填充材料。

3. 保护剂:钎焊过程中,应使用适当的保护剂来防止填充材料和焊缝氧化,提高钎焊质量。

一些常用的保护剂包括流动剂和防氧剂。

三、设备要求1. 焊接设备:钎焊过程通常需要使用焊接设备,如火焰炬焊机、气体焊接机、电子焊接机等。

具体的设备选择取决于连接零件的材料和尺寸。

2. 安全设备:钎焊过程中,应佩戴适当的防护服、保护眼镜和手套等个人防护设备,以确保焊接操作的安全。

四、常见问题与注意事项1. 清洁与预处理:在进行钎焊之前,应确保连接零件的表面清洁,并进行必要的预处理。

不良的预处理可能导致焊接质量下降。

2. 控制焊接温度:钎焊过程中,应严格控制焊接温度,避免过高或过低的温度。

过高的温度可能导致填充材料和母材熔化,过低的温度可能无法实现良好的连接。

钎焊工艺流程

钎焊工艺流程

钎焊工艺流程钎焊工艺是一种热加工连接方法,适用于各种金属材料的连接和修复。

钎焊工艺流程是指在实施钎焊过程中所要进行的各种操作步骤,下面将详细介绍一下钎焊工艺流程。

首先,在进行钎焊之前,需要对待钎焊的材料进行清洗和预处理。

清洗的目的是去除杂质和油脂,并保持材料表面的干净。

预处理包括切割、切角和加热等操作。

在切割时,应根据焊接部位的要求进行切口或切割,以便于焊接接头的形成。

切角是为了增加焊接接头的接触面积,提高焊接强度。

加热是为了保证焊接时材料的熔化,常见的加热方法有火焰加热和电阻加热。

接下来是焊接材料的选择和配备。

钎焊材料通常由钎料和钎剂组成。

钎料是焊接填料,通常是由低熔点金属或合金制成。

钎剂是生成并保持钎料与母材之间的接触和反应的物质。

选择钎料应根据实际情况,如要连接的材料类型、工件形状和所需焊接强度等进行选择。

钎剂的选择应考虑钎焊工艺的特点和材料的特性。

然后是钎焊接头的组织设计和装配。

接头的设计应符合力学强度和工艺要求,一般包括搭接接头、角接头和对角接头等形式。

装配前应对焊接接头进行拟合和预先固定,以确保焊接过程中的位置和间隙的一致性。

接下来是进行钎焊操作。

在焊接前应进行预热,预热的目的是减小残余应力和提高焊接质量,常见的方法包括火焰预热和感应预热。

当预热温度达到要求后,开始进行焊接操作。

焊接操作过程中要控制焊接温度、加热时间和氛围等参数。

焊接温度应使钎料熔化并与母材完全融合,一般在钎料的熔点附近进行。

加热时间应根据焊接部位的大小和材料的导热性等因素来确定。

氛围是指焊接过程中的气氛,通常是惰性气体或还原气体,以防止氧化和脱气。

最后是焊后处理。

焊后处理的目的是消除焊接接头的应力和缺陷,并提高焊接强度和表面质量。

常用的焊后处理方法有热处理、退火和喷砂等。

热处理可以进一步调整焊接接头的组织和性能,提高焊接强度。

退火是指将焊接接头加热至一定温度,然后缓慢冷却,以消除应力和提高韧性。

喷砂是指将焊接接头的表面喷砂,以去除氧化皮和毛刺,使焊接表面更加光滑。

焊工工艺学 第五章 金属熔焊过程

焊工工艺学 第五章 金属熔焊过程

层状偏析气孔的分布 a) 焊缝横断面 b) 焊缝纵断面
三、焊缝金属的二次结晶
四、焊缝中的夹杂物
由焊接冶金反应产生的,焊后残留在焊缝金属中 的微观非金属杂质,称为夹杂物,焊缝中的夹杂物 主要有硫化物和氧化物两种。
§5-4 熔合区及焊接热影响区
一、熔合区的组织和性能
熔合区是指在焊接接头中,焊缝向热影响区过渡的 区域。 该区金属处于部分熔化状态(半熔化区), 晶粒非
三、焊接热影响区的组织和性能
不易淬火钢焊接热影响区 1—熔合区 2—过热区 3—正火区 4—不完全重结晶区 5—再结晶区 6—母材
§5-5 控制和改善焊接接头性能的方法
一、材料的匹配
材料的匹配主要是指焊接材料的选用。
对于低碳钢、低合金高强度结构钢、低温钢,一 般不要求焊缝金属与母材成分一样,而是要求力学性 能与母材相同。 对于耐热钢和不锈钢,为保证焊缝具有与母材相
2)脱磷的措施,焊接过程中脱磷的措施分为两步: ①将P氧化成P2O5,其反应式如下: 2Fe3P + 5FeO = P2O5 + 11Fe 2Fe2P + 5FeO = P2O5 + 9Fe
②利用碱性氧化物与P2O5 形成稳定的磷酸盐进入熔渣。
3CaO + P2O5 = Ca3P2O8
4CaO + P2O5 = Ca4P2O9
熔滴的重力和熔滴的表面张力示意图 F1 —熔滴的重力 F2—熔滴的表面张力
(3)电磁压缩力
通有相同方向电流的两根导线 的相互作用力
电磁力在熔滴上的压缩作用 P—电磁压缩力
(4)斑点压力
(5)气体的吹力
斑点压力阻碍熔滴过渡
焊条药皮形成套筒
四、母材的熔化
母材上由熔化的焊条、焊丝金属与母材金属所组成

金属材料焊接工艺流程

金属材料焊接工艺流程

金属材料焊接工艺流程金属材料焊接工艺流程一、焊接前的准备工作1. 准备好所需的焊接材料,包括焊条、焊丝、辅助焊剂等。

2. 对待焊件进行清理,将焊接表面的油脂、氧化物、杂质等物质清除干净,以保证焊接质量。

3. 根据焊接材料的类型和焊接要求,选取适当的焊接设备和工具,进行调试和准备工作。

二、焊接工艺的选择1. 根据焊接材料的类型和要求,选择合适的焊接工艺,常用的有电弧焊、气焊、激光焊等。

2. 根据焊接材料的厚度和形状,选择合适的焊接方法,如焊接角度、焊接位置等。

3. 根据焊接材料的性能和要求,确定焊接参数,如焊接电流、焊接电压、焊接速度等。

三、焊接过程的操作步骤1. 将焊接材料固定在焊接台或夹具上,以保证焊接位置准确和稳定。

2. 根据焊接材料的要求,选择合适的焊接方法和设备,进行预热或预处理工作。

3. 点火并调节焊接电流、电压等参数,使焊接电弧稳定和均匀。

4. 根据焊接材料的型号和要求,选择合适的焊接材料,进行熔化和填充。

5. 控制焊接速度和焊接量,保证焊接质量和效果。

6. 在焊接过程中,根据焊接情况和材料要求,进行适当的调整和处理,以保证焊接质量和效果。

7. 完成焊接后,关闭焊接设备,进行冷却和清理工作,以保证焊接品质。

四、焊接后的处理和检验1. 对焊缝进行处理,如打磨、抛光等,使焊缝平整和光滑。

2. 对焊缝进行检验,如目视检查、磁粉探伤、超声波检测等,以判断焊接质量和可靠性。

3. 对焊接件进行非破坏性和破坏性试验,如拉伸试验、冲击试验等,以确保焊接件的力学性能和可靠性。

4. 对焊接面进行防护和防腐处理,以提高焊接件的耐腐蚀性和使用寿命。

五、焊接工艺的改进和优化1. 根据焊接过程中的问题和需求,进行焊接工艺的改进和优化,如提高焊接质量、提高生产效率等。

2. 对焊接工艺进行持续改进和研究,引入新的技术和设备,以推动焊接技术的发展和进步。

通过以上几个步骤的执行,能够确保金属材料的焊接工艺流程顺利进行。

钎焊方法及工艺

钎焊方法及工艺

3、各种材料的钎焊
• (1)材料的钎焊性
• 是指材料对钎焊加工的适应性,即材料在一定 的钎焊条件下获得优质接头的难易程度。
• 1)钎焊性的好坏首先与材料表面形成的氧化 物成分及其去除的难易程度有关。
• 例如铜和铁表面氧化物的稳定性低容易去除, 故钎焊性好;铬的氧化物稳定性高,不易去除, 含铬的金属必须采用活性大的钎剂或纯度高的 还原性气体才能将其除去。铝的氧化物更难去 除,相对来说,铝的钎焊性就差。
• 德国标准DIN53735对此做了规定。在DIN 16776中给出了MFI的分类组别。德国焊接 学会规程2201TI给出了HDPE熔化指数在 005—010时可以焊接,每一种塑料都相对 应一熔化指数(表1)。
2、热塑性塑料的焊接原理
• 每种钎料应具有与母材相关的两个特性:
1)钎料的熔点应低于母材的熔点,
2)钎料在母材上必须浸润,也就是说,钎料 和母材之问的分界面间隙通过扩散实现合 金化。
• 工作温度是指在钎焊位置钎料浸润时的条 件下最低的表面温度。
<450℃
>450℃
>900℃
软钎焊
硬钎焊
高温钎焊
• 焊接与硬钎焊温度分布的比较:
开的孔。钎焊时空气受热膨胀空气有可能阻 碍钎料的填隙,也可能使已填满间隙的钎料 重新排列,见图10。
图l0 开设工艺孔示意图
• ④接头间隙
• 间隙的大小在很大程度上影响钎焊接头强 度和钎缝的致密性。
• 由于钎焊是靠毛细力作用使钎料填满间隙 的。
• 间隙过小,钎料流入困难,在钎缝内形成 夹渣或未钎透,导致接头强度下降:
• 溶解物质的作用也可以使接头表而达到热塑 性状态,从而使焊接成为可能。
• (2)弹性塑料

复合材料与高温合金反应复合扩散钎焊

复合材料与高温合金反应复合扩散钎焊

复合材料与高温合金反应复合扩散钎焊一、复合材料与高温合金概述复合材料是由两种或多种材料通过特定的工艺组合而成,具有优异的力学性能和化学稳定性。

高温合金是指在高温环境下具有良好抗氧化性、热疲劳性、蠕变性等性能的金属材料。

在航空航天、能源、化工等高技术领域,复合材料与高温合金发挥着举足轻重的作用。

二、反应复合扩散钎焊原理反应复合扩散钎焊是一种将复合材料与高温合金相结合的焊接方法。

通过在高温下进行金属间的反应扩散,使复合材料与高温合金界面实现牢固连接。

该过程主要包括:界面反应、扩散、钎焊三个阶段。

三、反应复合扩散钎焊工艺流程1.准备工作:对复合材料和高温合金表面进行清洗、除锈、粗糙处理,以提高焊接质量。

2.界面反应:将处理好的复合材料和高温合金放入真空炉中,加热至一定温度,使金属间发生反应。

3.扩散阶段:在真空条件下,升高温度,使反应生成物在界面处扩散。

4.钎焊:在适当温度下,加入钎料,使界面处形成焊缝。

5.冷却:焊接完成后,缓慢冷却至室温,得到牢固连接的复合材料与高温合金部件。

四、反应复合扩散钎焊应用领域反应复合扩散钎焊技术在以下领域得到广泛应用:1.航空航天:发动机、涡轮叶片、机翼等部件的制造。

2.能源:核反应堆、燃气轮机等高温环境下的部件焊接。

3.化工:高温、高压设备的制造与维修。

4.交通运输:高速列车、汽车引擎等高温部件的制造。

五、反应复合扩散钎焊的优势与挑战优势:1.优异的力学性能和化学稳定性。

2.高的焊接强度和焊缝质量。

3.适用于复杂形状和结构的部件焊接。

挑战:1.焊接过程对温度和真空度的控制要求高。

2.界面反应和扩散过程复杂,难以掌握。

3.焊接设备投入成本较高。

六、我国在该领域的发展现状与展望我国在反应复合扩散钎焊技术方面已取得了显著成果,逐步形成了产业化。

未来发展趋势如下:1.提高焊接质量与效率。

2.研发新型钎料和焊接工艺。

3.拓展应用领域,满足国家重大工程项目需求。

4.加强与国际先进技术的交流合作。

铁镍基高温合金的焊接性及焊接工艺

铁镍基高温合金的焊接性及焊接工艺

铁镍基高温合金的焊接性及焊接工艺一、焊接性对于固熔强化的高温合金,主要问题是焊缝结晶裂纹和过热区的晶粒长大,焊接接头的“等强度”等。

对于沉淀强化的高温合金,除了焊缝的结晶裂纹外,还有液化裂纹和再热裂纹;焊接接头的“等强度”问题也很突出,焊缝和热影响区的强度、塑性往往达不到母材金属的水平。

1、焊缝的热裂纹铁镍基合金都具有较大的焊接热裂纹倾向,特别是沉淀强化的合金,溶解度有限的元素Ni和Fe,易在晶界处形成低熔点物质,如Ni—Si,Fe—Nb,Ni—B等;同时对某些杂质非常敏感,如:S、P、Pb、Bi、Sn、Ca等;这些高温合金易形成方向性强的单项奥氏体柱状晶,促使杂质偏析;这些高温合金的线膨胀系数很大,易形成较大的焊接应力。

实践证明,沉淀强化的合金比固熔强化合金具有更大的热裂倾向。

影响焊缝产生热裂纹的因素有:①合金系统特性的影响。

凝固温度区间越大,且固相线低的合金,结晶裂纹倾向越大。

如:N—155(30Cr17Ni15Co12Mo3Nb),而S—590(40Cr20Ni20Co20Mo4W4Nb4)裂纹倾向就较小。

②焊缝中合金元素的影响。

采用不同的焊材,焊缝的热裂倾向有很大的差别。

如铁基合金Cr15Ni40W5Mo2Al2Ti3在TIG焊时,选用与母材合金同质的焊丝,即焊缝含有γ/形成元素,结果焊缝产生结晶裂纹;而选用固熔强化型HGH113,Ni—Cr—Mo系焊丝,含有较多的Mo,Mo在高Ni合金中具有很高的溶解度,不会形成易熔物质,故也不会引起热裂纹。

含Mo量越高,焊缝的热裂倾向越小;同时Mo还能提高固熔体的扩散激活能,而阻止形成正亚晶界裂纹(多元化裂纹)。

B、Si、Mn含量降低,Ni、Ti成分增加,裂纹减少。

③变质剂的影响。

用变质剂细化焊缝一次结晶组织,能明显减少热裂倾向。

④杂质元素的影响。

有害杂质元素,S、P、B等,常常是焊缝产生热裂纹的原因。

⑤焊接工艺的影响。

焊接接头具有较大的拘束应力,促使焊缝热裂倾向大。

高温合金的钎焊

高温合金的钎焊

高温合金的钎焊1 高温合金可分为以下几类1.1铁基高温合金如GH132,它属于时效硬化奥氏体合金,可制造 700℃以下工作的工件。

1.2铁镍基高温合金如 K14,用于 900℃以下燃气涡轮导向叶片或工作叶片。

1.3 镍基高温合金,绝大部分高温合金均属于镍基合金,它们用来制造火焰筒,燃烧室和加力燃烧室,涡轮工作叶片和导向叶片等。

1.4钴基合金在我国应用较少。

1.5用于钎焊结构的一些高温合金的成分、牌号和热处理规范列于表1。

表1 高温合金成分、牌号和热处理规范2 钎焊特点2.1高温合金含有较多的铬,表面的 Cr2O3比较难以去除。

钎焊高温合金时,很少采用钎剂,因为钎剂中的硼酸和硼砂同母材作用后产生硼向母材渗入的现象,造成各种缺陷。

所以高温合金绝大多数都用气体保护钎焊和真空钎焊。

同时对保护气体的纯度要求很高。

2.2对于一些含铝、钛量高的高温合金来说,如GH33、GH37、GH132、K3、K14、K17等,它们的表面除了形成Cr2O3外,还有A123和TiO2等氧化物,这二种氧化物无论是在氢气或氩气保护下钎焊均不能去除,必须采取一些其它措施。

含铝、钛高的合金最适宜于真空钎焊,此时,可得到光洁的表面,确保钎料很好铺展。

2.3 高温合金都在淬火状态下使用,有的还要经过时效处理,以保证获得最佳性能。

因此对这些合金的钎焊温度应选择尽量与它们的淬火温度一致。

钎焊温度过高,会影响其性能,例如,与 GH33成分相接近的Incone1702合金,经1220℃钎焊和正常热处理后的性能示于图1。

由于钎焊温度比正常淬火温度高得多,钎焊后虽经热处理,但在各种温度下合金的强度要比未经钎焊的低得多。

图1 Incone1702合金机械性能与温度的关系1—正常热处理 2—1220℃钎焊+正常热处理2.4 而对于GH37、K3等固溶处理温度较高(1200℃左右)的合金来说,经1200℃钎焊加热后,对合金性能没有影响。

2.5 对时效硬化合金来说,钎焊后还应按照规定的规范进行时效处理。

第三章(高温合金的焊接)

第三章(高温合金的焊接)
60年代初,先后研制成功GH4037、GH3039、GH3044、GH4049 、GH3128、K417等高温合金,至70年代初,我国高温合金的生产 试制和研究已经初具规模。
70年代以后,我国开始引进欧美发动机WS-8、WS-9、WZ-6、 WZ-8,并研制生产出WP-13 等发动机,相应引进和试制了一批欧美体 系的高温合金,并按欧美标准进行质量管理和生产,使我国高温合金 生产水平接近西方工业国家的水平。与此同时,我国自行研究和开发 了一批新的镍基高温合金,如GH4133、GH4133B、GH3128、GH170、 K405、K423A、K419和537等。
● Al、Ti同时存在,部分Ti代替Al, γ′相变为Ni3(Al, Ti),Ti促进γ′相变析出,并提高γ′相的强度;。
● Al、Ti总量决定γ′相数量。 γ′相越多,合金高温性 能越高;
● W、Mo、Nb、Ta等原子半径大的元素,不同程度地进入 γ′,使合金的热稳定性提高;
● Ni基合金中Fe控制得很低。ቤተ መጻሕፍቲ ባይዱ
具体归纳为: (a) 在镍中能形成无限固溶体或者溶解度很大的元素。 (b) 原子半径比镍大的合金元素,加入到镍的固溶体中时,将会使点
阵常数增大。 (c) 高温蠕变时应考虑扩散型变形机构的影响,利于加强原子间的结
合力。 (d) 固溶体中溶质原子的补给、不均分布有助于合金热强性的提高。 (e) 溶质原子的加入,还可以通过改变位错的某种属性、阻止位错高
航空喷气发动机生产的需要是我国高温合金发展的动力。材料 标准是高温合金设计、生产、验收的技术依据,1956年我国正式 开始研制生产高温合金,第一种高温合金是GH3030,WP-5火焰筒 ,有抚顺钢厂、鞍山钢铁公司、冶金部钢铁研究总院、航空材料 研究所和410厂共同承2担试制任务,1957年顺利通过长期试车后 投入生产。到1957年底,继GH3030合金之后,WP-5 发动机用的 GH4033、GH34和K412合金相继试制成功。

钎焊

钎焊

一、简介钎焊:利用熔点比母材(被钎焊材料)熔点低的填充金属(称为钎料或焊料),在低于母材熔点、高于钎料熔点的温度下,利用液态钎料在母材表面润湿、铺展和在母材间隙中填缝,与母材相互溶解与扩散,而实现零件间的连接的焊接方法。

较之熔焊,钎焊时母材不熔化,仅钎料熔化;较之压焊,钎焊时不对焊件施加压力。

钎焊形成的焊缝称为钎缝。

钎焊所用的填充金属称为钎料。

钎焊过程:表面清洗好的工件以搭接型式装配在一起,把钎料放在接头间隙附近或接头间隙之间。

当工件与钎料被加热到稍高于钎料熔点温度后,钎料熔化(工件未熔化),并借助毛细管作用被吸入和充满固态工件间隙之间,液态钎料与工件金属相互扩散溶解,冷疑后即形成钎焊接头。

二、应用特点⑴钎焊加热温度较低,接头光滑平整,组织和机械性能变化小,变形小,工件尺寸精确。

⑵可焊异种金属,也可焊异种材料,且对工件厚度差无严格限制。

⑶有些钎焊方法可同时焊多焊件、多接头,生产率很高。

⑷钎焊设备简单,生产投资费用少。

⑸接头强度低,耐热性差,且焊前清整要求严格,钎料价格较贵。

三、应用钎焊不适于一般钢结构和重载、动载机件的焊接。

主要用于制造精密仪表、电气零部件、异种金属构件以及复杂薄板结构,如夹层构件、蜂窝结构等,也常用于钎焊各类异线与硬质合金刀具。

钎焊时,对被钎接工件接触表面经清洗后,以搭接形式进行装配,把钎料放在接合间隙附近或直接放入接合间隙中。

当工件与钎料一起加热到稍高于钎料的熔化温度后,钎料将熔化并浸润焊件表面。

液态钎料借助毛细管作用,将沿接缝流动铺展。

于是被钎接金属和钎料间进行相互溶解,相互渗透,形成合金层,冷凝后即形成钎接接头。

钎焊在机械、电机、仪表、无线电等部门都得到了广泛的应用。

硬质合金刀具、钻探钻头、自行车车架、换热器、导管及各类容器等;在微波波导、电子管和电子真空器件的制造中,钎焊甚至是唯一可能的连接方法。

四、钎焊特点一是接头表面光洁,气密性好,形状和尺寸稳定,焊件的组织和性能变化不大,可连接相同的或不相同的金属及部分非金属。

高温合金的钎焊

高温合金的钎焊

高温合金的钎焊高温合金要求能在600℃以上高温抗氧化和防腐蚀,并能在一定应力下作用下长期工作的金属材料。

高温合金按其成分可分为铁基、镍基和钴基合金;按生产工艺可分为变形、铸造、粉末冶金和机械合金化高温合金。

为适应高温工作要求,合金必须采取强化手段。

对Fe、Ni和Co基高温合金主要采用固溶强化,第二相强化和晶界强化三种手段。

1.固溶强化。

固溶强化是提高原子结合力和晶格畸变,是Fe、Ni或Co基体中固溶体的滑移阻力增加,滑移变形困难而达到强化。

单通过晶格畸变来强化高温合金来说是不够的,还需要降低扩散系数以阻碍扩散型形变进行强化。

在Fe、Ni基高温合金中,通常加入Cr、Mo、W、Co、Al等元素进行固溶强化。

Cr是高温合金中不可缺少的元素,合金的抗氧化性主要依靠Cr。

Cr在Ni和Fe中有较大的溶解度。

Cr主要与Ni形成固溶体,少量Cr与C形成Cr23C6型碳化物(Cr含量低时会生成Cr7C3型碳化物),可提高合金的高温持久性能。

W和Mo是强固溶强化元素,加入W和Mo可以提高原子结合力,产生晶格畸变,提高扩散激活能,使扩散过程缓慢;同时合金的再结晶温度升高,提高了合金的高温性能。

另外,W和Mo是碳化合物形成元素(主要形成M6C)。

当碳化物沿晶界分布时,对合金强化起更大作用。

Co元素也是很有效的固体强化元素,主要作用是降低基体位错能,提高合金的持久强度,减小蠕变速率;它还可以稳定合金的组织,减少有害相的析出。

因此固溶强化型高温合金中均含有Cr、W、Mo、Al、Co等元素。

2.第二相强化。

固溶强化型高温合金的使用温度有限,当工作温度大于950℃或要求高屈服强度的合金,则需依靠第二相强化。

第二相强化是利用细小、均匀分布的稳定质点阻碍位错运动,以达到高温强化的目的。

第二相强化采用时效析出的γ’相γ”。

在Fe和Ni基合金中,γ`相为Ni3Al型,为了面心立方晶体结构,与基体结构相同,与共格析出。

γ’相十分稳定,有高的强度和良好的塑性,容易控制其数量、大小和形貌。

高温合金焊接方法

高温合金焊接方法

高温合金焊接方法
高温合金焊接是一种特殊的焊接方法,主要用于焊接高温合金材料,例如钨合金、钼合金、铬合金等。

这些材料具有高温强度和耐腐蚀性能,因此在航空、航天、能源、化工等领域得到广泛应用。

高温合金焊接方法主要包括氩弧焊、电子束焊、激光焊等。

其中,氩弧焊是最常用的方法之一。

在氩弧焊中,焊接区域被加热到一定温度,然后使用氩气作为保护气体,保护焊接区域不受氧化和污染。

电子束焊和激光焊则利用高能电子束和激光束将焊接区域加热至高温,从而实现焊接。

高温合金焊接方法的选择取决于材料的类型和工件的形状、尺寸等因素。

在焊接过程中,需要注意控制焊接温度、保护气体流量和焊接速度等参数,以保证焊接质量和稳定性。

同时,也需要对焊接后的工件进行热处理等后续处理,以消除应力和提高材料的性能。

总之,高温合金焊接是一项重要的工艺,对于提高材料的耐高温和耐蚀性能具有重要意义。

在实际应用中,需要结合不同的焊接方法和后续处理技术,以满足不同领域的需要。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用金属焊接性之高温合金的钎焊
高温合金是在高温下具有较好的力学性能、抗氧化性和抗腐蚀性的合金。

这类合金可分为镍基、铁基和钴基三类;在钎焊结构中用得最多的是镍基合金。

镍基合金按强化方式分为固溶强化、实效沉淀强化和氧化物弥散强化三类。

固溶强化镍基合金为面心立方点阵的固溶相,通过添加铬、钴、钨、钼、铝、钛、铌等元素提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。

沉淀强化镍基合金钢是在固溶强化的基础上添加较多的铝、钛、铌、钽等元素而形成的。

这些元素除形成强化固溶体外,还与镍形成Ni3(Al、Ti)γ’或Ni3(NbAlTi)γ”金属间化合物相;同时钨、铜、硼等元素与碳形成各种碳化物。

TD-Ni和TD-NiCr合金是在镍或镍铬基体中加入2%左右弥散分布的ThO2颗粒,产生弥散强化效果的新型高温合金。

一:钎焊性
高温合金均含有较多的铬,加热时表面形成稳定的Cr2O3,比较难以去除;此外镍基高温合金均含铝和钛,尤其是沉淀强化高温合金和铸造合金的铝和钛含量更高。

铝和钛对氧的亲和力比铬大得多,加热时极易氧化。

因此,如何防止或减少镍基高温合金加热时的氧化以及去除其氧化膜是镍基高温合金钎焊时的首要任务。

镍基高温合金钎焊时不建议用钎剂来去除氧化物,尤其是在高的钎焊温度下,因为钎剂中的硼砂或硼酸在钎焊温度下与母材起反应,降低母材表面的熔化温度,促使钎剂覆盖处的母材产生溶蚀;并且硼砂或硼酸与母材发生反应后析出的硼可能渗入母材,造成晶间渗入。

对薄的工件来说是很不利的。

所以镍基高温合金一般都在保护气氛,尤其是在真空中钎焊。

母材表面氧化物的形成和去除与保护气氛的纯度以及真空度密切相关。

对于含铝和钛低的合金,热态真空度不应低于10-2Pa;对于含铝钛较高的合金,表面氧化物的去除不仅与真空度有关,而且还与加热温度有关。

无论是固溶强化,还是沉淀强化的镍基高温合金,都必须将其合金元素及其化合物充分固溶于基体内,才能取得良好的高温性能。

沉淀强化合金固溶处理后还必须进行时效处理,已达到弥散强化的目的。

因此钎焊热循环应尽可能与合金的热处理相匹配,即钎焊温度尽量与热处理的加热温度相一致,以保证合金元素的充分溶解。

钎焊温度过低不能使合金元素完全溶解;钎焊温度过高将使母材的晶粒长大,这些均对母材
性能产生不利影响。

由于钎焊温度过高而导致晶粒长大后,即使经过焊后热处理也不能恢复其性能,这一点在选择钎料和制定钎焊规范时是必须考虑的。

铸造镍基合金的固溶处理温度都较高,并且晶粒不易长大,一般不会发生因钎焊温度过高而影响其性能的问题。

二:钎料
高温合金通常在恶劣的条件下工作,选用钎料时首先应满足工作条件的要求,也要考虑钎焊加热对母材本身性能的影响以及钎焊接头是否能经受随后的热处理过程。

(1)银基钎料
当工件的工作温度不高时可采用银基钎料。

用银基钎料钎焊固溶强化镍基合金时,钎焊的温度对母材性能不起任何影响,可以选用的钎料种类比较多,但从避免应力开裂的角度出发,宜采用熔化温度低的钎料,以减小钎焊加热时形成的内应力。

用银基钎料钎焊沉淀强化镍基合金时,所选用的钎料的钎焊温度不应超过母材的时效强化温度,以免母材发生过时效而降低其性能。

另外也可以先将合金固溶处理,再采用熔化温度稍高的钎料,在高于合金的时效温度下钎焊,然后进行时效处理,钎焊件就不会在时效加热过程中因钎料的熔化而发生错位。

(2)纯铜钎料
用纯铜作钎料时均在保护气氛和真空下钎焊,钎焊温度为1100℃~1150℃。

在该温度下零件的内应力已被消除。

又因零件整体加热,热应力小,焊件不会产生应力开裂现象。

铜在高温合金上的流动性差,钎料应放在紧靠接头的地方。

铜的抗氧化性差,工作温度不能超过400℃。

(3)镍基钎料
镍基钎料是高温合金最常用的钎料,因镍基钎料具有最好的高温性能,钎焊时也不会发生应力开裂,用于高温合金钎焊的镍基钎料列于表3.9-22。

其中BNi74CrSiB、BNi75CrSiB、BNi82CrSiB、BNi92SiB、BNi93SiB 和BNi71CrSi在前文不锈钢钎焊中已有介绍。

表3.9-22高温合金钎焊常用的镍基钎料
BNi68CrWB钎料同Ni-Cr-Si-B钎料相比,它的特点是含B量降低到2.5%,含W量高达12%。

钎料含硼量的降低可减少硼对母材的晶间渗入,即减弱钎料同母材的反应;钎料中的钨可强化钎料,提高钎料的高温强度。

由于硼含量的降低和钨的加入,钎料的熔化温度间隔增大,流动性变差,可填满宽达200μm的间隙,是钎焊高温工作的部件和涡轮叶片补钎时常用的钎料。

170钎料的含W量更高达16%,钎料的液相线也提高到1160℃,钎料的流动性进一步将低,能够填充宽达400μm的间隙。

这两种含钨的钎料特别适用于在高温下工作的工件,间隙不易控制或者间隙较大的接头,也适用于钎焊铸造镍基高温合金。

150钎料为镍铬硼共晶合金成分,它的脆性比镍铬硼硅钎料低。

为了使钎焊接头具有良好的加工性能,建议在高于钎焊熔点100℃的温度下钎焊。

160钎料的含硼硅量比较低,因此钎料的硬度较低,钎焊接头的加工性能得到改善。

但钎料的结晶温度区间增大,流动性差,可用此钎料钎焊比较宽的间隙,同时可形成较大的钎缝圆角。

180钎料的含B量很低,只有1%,使钎料同母材的反应减弱,即硼的晶间渗入进一步减少,但钎料的结晶间隙也变得很大,是镍基钎料中熔化温度区间最大的一种。

它的流动性差,可以填充宽达650μm的间隙,特别适用于钎焊间隙大或者不等间隙的工件,同时形成较大的钎缝圆角。

200钎料是在BNi82CrSiB钎料的基体上加入6%的W,钎料的液相线提高不多,但钎焊接头比用BNi82CrSiB 钎料钎焊的具有更好的高温持久强度。

BCo1是钴基钎料,具有特别好的高温性能,可钎焊工作温度高达1040℃,甚至1150℃的部件。

相关文档
最新文档