燃料电池ppt课件

合集下载

PEMFC——燃料电池课件

PEMFC——燃料电池课件
4)PEMFC效率一般在50%左右,极化主要在氧阴 极,因此扩散层尤其是氧电极的扩散层应是热的良 导体。
5)扩散层材料与结构应能在PEMFC工作条件下保 持
扩散层的上述功能采用石墨化的炭纸或炭布是 可以达到的,但是PEMFC扩散层要同时满足 反应气与产物水的传递,并具有高的极限电流, 则是扩散层制备过程中最难的技术问题。
下图为PEMFC的工作原理示意图。
由图可知,构成PEMFC的关键材料与部件 为电催化剂、电极(阴极与阳极)、质子交换 膜和双极板。
PEMFC中的电极反应类同于其他酸性电解质燃料电 池。阳极催化层中的氢气在催化剂作用下发生电极反 应:
阳极反应: H2 2H 2e
该电极反应产生的电子经外电路到达阴极,氢离子则 经质子交换膜到达阴极。氧气与氢离子及电子在阴极 发生反应生成水。生成的水不稀释电解质,而是通过 电极随反应尾气排出。
交指状流场是一种正在开发的新型流场。它的优 点是强迫反应气流经电极的扩散层强化扩散层的 传质能力,同时将扩散层内水及时排出。
但这种流场在确保反应气在电极各处的均匀分配 与控制反应气流经流场的压力降方面均需深入研 究,并与相应工艺开发相配合。
上述各种流场的脊部分靠电池组装力与电极 扩散层紧密接触,而沟部分为反应气流的通 道,一般沟槽部分面积与脊部分面积之比为 流场的开孔率。
对于PEMFC,由于膜为高分子聚合物,仅靠电池组的组 装力,不但电极与膜之间的接触不好,而且质子导体也无 法进入多孔气体电极的内部。为了实现电极的立体化, 需向多孔气体扩散电极内部加入质子导体(如全氟磺 酸树脂),同时为改善电极与膜的接触,将已加入全 氟磺酸树脂的阳极,隔膜(全氟磺酸膜)和已加入全 氟磺酸树脂的阴极压合在一起,形成了“三合一”组 件(MEA)

PEMFC——燃料电池课件.

PEMFC——燃料电池课件.

由图可知,构成 PEMFC 的关键材料与部件 为电催化剂、电极 ( 阴极与阳极 ) 、质子交换 膜和双极板。
PEMFC 中的电极反应类同于其他酸性电解质燃料电 池。阳极催化层中的氢气在催化剂作用下发生电极反 应: 阳极反应: H 2 2H 2e 该电极反应产生的电子经外电路到达阴极,氢离子则 经质子交换膜到达阴极。氧气与氢离子及电子在阴极 发生反应生成水。生成的水不稀释电解质,而是通过 电极随反应尾气排出。
2.电池组: 电池组的主体为MEA,双极板及相应 可兼作电流导出 板,为电池组的正极;另一端为阳单极板,也可兼作 电流导入板,为电池组的负极,与这两块导流板相邻 的是电池组端板,也称为夹板。在它上面除布有反应 气与冷却液进出通道外,周围还布置有一定数目的圆 孔,在组装电池时,圆孔内穿入螺杆,给电池组施加 一定的组装力。 若两块端板用金属(如不锈钢、铁板、超硬铝等)制作, 还需在导流板与端板之间加入由工程塑料制备的绝缘 板。
质子交换膜燃料电池
1 工作原理
质 子 交 换 膜 型 燃 料 电 池 (Proton exchange membrane fuel cells,PEMFC)以全氟磺酸型固体 聚合物为电解质,铂 / 炭或铂 - 钌 / 炭为电催化剂, 氢或净化重整气为燃料,空气或纯氧为氧化剂, 带有气体流动通道的石墨或表面改性的金属板为 双极板。 下图为PEMFC的工作原理示意图。
流场结够对 PEMFC 电池组至关重要,而且与反应 气纯度、电池系统的流程密切相关。 因此,在设计电池组结构时,需根据具体条件,如 反应气纯度、流程设计(如有无尾气回流,如有, 回流比是多少等)进行化工设计,各项参数均要达 到设计要求,并经单电池实验验证可行后方可确定。
电池组密封: 要求是按照设计的密封结构,在电池组组装力的 作用下,达到反应气、冷却液不外漏,燃料、氧 化剂和冷却液不互窜。

质子交换膜燃料电池PPT课件

质子交换膜燃料电池PPT课件

05
PEMFC性能评价与测试方 法
PEMFC性能评价指标
输出功率密度
单位面积或单位体积电池的输出 功率,反映电池的能量转换效率

开路电压
电池在开路状态下的电压,与电 池内部的电化学反应有关。
电流密度
单位面积电池的输出电流,影响 电池的输出功率和效率。
温度特性
电池在不同温度下的性能表现, 包括启动、运行和关机过程中的 温度变化对电池性能的影响。
笔记本电脑、手机等
PEMFC应用领域及前景
固定式电源
家庭、数据中心等
降低成本
通过研发新材料和工艺,降低 PEMFC成本
PEMFC应用领域及前景
固定式电源
家庭、数据中心等
降低成本
通过研发新材料和工艺,降低 PEMFC成本
PEMFC应用领域及前景
提高耐久性
改进电池结构和材料,提高电池寿命 和稳定性
燃料电池类型及特点
碱性燃料电池(AFC)
采用氢氧化钾溶液作为电解质,具有高效率、低污染等优点,但需要纯净的氢气和 氧气作为燃料和氧化剂,且对二氧化碳敏感。
燃料电池类型及特点
碱性燃料电池(AFC)
采用氢氧化钾溶液作为电解质,具有高效率、低污染等优点,但需要纯净的氢气和 氧气作为燃料和氧化剂,且对二氧化碳敏感。
01
燃料电池概述
01
燃料电池概述
燃料电池定义与原理
燃料电池定义
燃料电池是一种将燃料和氧化剂的化学能直接转换成电能的发电装置。其基本原理是电解水的逆过程,通过向燃 料电池堆输入氢气和氧气(或空气),在催化剂的作用下,经过电化学反应生成水并对外输出电能。
燃料电池工作原理
燃料电池的核心部件是质子交换膜,它只允许质子通过而阻止电子和气体通过。在阳极,氢气在催化剂的作用下 分解成质子和电子,质子通过质子交换膜传递到阴极,而电子则通过外电路传递到阴极,形成电流。在阴极,氧 气与质子和电子结合生成水。

《燃料电池》课件

《燃料电池》课件
《燃料电池》PPT课件
这是《燃料电池》PPT课件,通过本课件,你将了解燃料电池的定义、工作原 理、构成、应用以及未来发展和趋势。让我们一起探索这个令人兴奋的领域 吧!
什么是燃料电池
燃料电池的定义
燃料电池是一种将化学能直接 转化为电能的装置,通过电化 学反应实现电能的产生。
燃料电池的工作原理
燃料电池通过氧化还原反应将 燃料(如氢气)和氧气在电解 质中进行电化学反应,产生电 能。
燃料电池的优缺点
燃料电池具有高效能源转化、环 保、低噪音等优点,但成本和氢 气供应等问题仍需解决。
燃料电池的应用
1
燃料电池在交通运输领域的应用
燃料电池汽车逐渐成为替代传统燃油汽车的绿色交通选择,减少尾气排放。
2
燃料电池在能源领域的应用
燃料电池可以作为一种清洁的能源来源,在无电网的地区提供电力供应。
3
燃料电池在军事领域的应用
燃料电池系统可以为军事设备提供可靠的能源支持,降低依赖传统燃油的风险。
燃料电池的未来发展与趋势
燃料电池技术的发展历程
燃料电池技术经过多年的研发和改 进,取得了巨大继续朝着高效、便携、 可再生能源和可持续发展的方向发 展。
燃料电池未来的应用前景
燃料电池有望在交通运输、能源供 应等领域发挥更大的作用,推动可 持续发展。
感谢阅读
通过本《燃料电池》PPT课件,希望您对燃料电池有了更深入的了解。谢谢!
燃料电池种类介绍
常见的燃料电池类型有聚合物 电解质燃料电池(PEMFC)、 固体氧化物燃料电池(SOFC) 等。
燃料电池的构成
燃料电池的主要组成 部分
燃料电池由氢气供应系统、氧气 供应系统、电解质、电极和电流 收集系统等组成。

燃料电池(课件)

燃料电池(课件)

得失电子数目的求算
燃料分子失电子的数目,可根据整体化合价变化情况 进行求算,也可以直接根据分子所含的原子数目进行 计算。1mol的CxHyOz失去电子的数目为4x+y- 2z(碳四氢一氧减二)。我们可以计算,每个C₃H₈失电 子数为4×3+1×8=20,每个C₂H₅OH分子失电子数 为4×2+1×6-2=12。
电解质为固体电解质 (如固体氧化锆—氧 化钇)O2+4e-=2O2-。
燃料电池负极反应式的书写
产物判断规则
一般来说,负极反应物一般为燃料,常常含有碳元素和 氢元素,有时也含有氧元素。在酸性溶液(如硫酸溶液) 下,负极燃料失电子,C元素变为+4价,转化为CO₂; H元素转化为H⁺,氧元素结合H⁺转化为水。在碱性溶 液(如氢氧化钠溶液)下,负极燃料失电子,C元素转化 为碳酸根离子,+1价的氢元素不能在碱性条件下以离 子形态稳定存在,结合OHˉ生成水,氧元素变成氢氧根 离子或者水。
谢谢
燃料电池
基础知识
燃料电池(Fuel cell),是一种不经过燃烧,将燃料化学能经过电化学反 应直接转变为电能的装置。它和其它电池中的氧化还原反应一样,都是自 发的化学反应,不会发出火焰,其化学能可以直接转化为电能,且废物排 放量很低。其中燃料电池电化学反应的最终产物与燃料燃烧的产物相同
基础知识
燃料电池的两极材料都是用多孔碳、多孔镍、铂、钯等兼有催化剂特性 的惰性金属,两电极的材料相同。 燃料电池的电极是由通入气体的成分来决定。通入可燃物的一极为负极 ,可燃物在该电极上发生氧化反应;通入空气或氧气的一极为正极,氧 气在该电极上发生还原反应。
量为1mol,在标准状况下为22.4L,D错误;【答案】C
真题突破
(2019·全国高考真题)利用生物燃料电池原理研究室温下氨 的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意 图如下所示。下列说法错误的是

燃料电池技术及应用PPT课件

燃料电池技术及应用PPT课件
• 有害气体SOx、NOx及噪音排放都很低 C O2排放因能量转换效率高而大幅度降低,无机 械振动。
• 燃料适用范围广
燃料电池的优点
• 积木化强 规模及安装地点灵活,燃料电池电 站占地面积小,建设周期短,电站功率可根据 需要由电池堆组装,十分方便。燃料电池无论 作为集中电站还是分布式电,或是作为小区、 工厂、大型建筑的独立电站都非常合适
再生氢氧电池(AFC)
再生氢氧燃料电池 将水电解技术(电能 +2H2O→2H2+O2)与氢 氧燃料电池技术 (2H2+O2→H20+电能)相 结合 ,氢氧燃料电池的燃 料 H2、氧化剂O2可通 过水电解过程得以“再 生”, 起到蓄能作用。可 以用作空间站电源。
熔融碳酸燃料电池(MCFC)
熔融碳酸盐燃料电池是由 多孔陶瓷阴极、多孔陶瓷电解 质隔膜、多孔金属阳极、金属 极板构成的燃料电池。其电解 质是熔融态碳酸盐。 反应原理示意图如下:
这种燃料电池以甲醇为能量来源。
这种燃料电池以甲醇为能量来源,手机, 笔记本电脑将不再用充电。
固体氧化物燃料电池
• 固体氧化物燃料电池采用固体氧 化物作为电解质,除了高效,环 境友好的特点外,它无材料腐蚀 和电解液腐蚀等问题;在高的工 作温度下电池排出的高质量余热 可以充分利用,使其综合效率可 由50%提高到70%以上; 它的燃 料适用范围广,不仅能用H2,还 可直接用CO、天然气(甲烷)、 煤汽化气,碳氢化合物、NH3、 H2S等作燃料。这类电池最适合 于分散和集中发电。 其工作原理如图所示:
净输出功率100kw最大稳定输出功率120kw峰值输出功率150kw电压300480v可以根据用户要求调整电流0400a能量转化效率4552燃料存储方式高压铝内胆碳纤维缠绕环氧树脂浸渍的储氢罐燃料类型气态氢操作环境温度050相对湿度095工作温度6080工作压力常压物理特性长宽高1040mm680mm690mm2重量560kg不包括驱动电机噪声76db120kw第三代燃料电池大巴发动机30燃料电池的出现与发展将会给便携式电子设备带来一场深刻的革命并且还会波及到汽车业住宅以及社会各方面的集中供电系统

燃料电池课件PPT(47页)

燃料电池课件PPT(47页)
采用非铂系催化剂
化学性质稳定
缺点:
氧化剂中必须不含有CO2。 燃料中必须不含CO2 电池电化学反应生成的水必须及时排出,维持水
平衡。
磷酸盐燃料电池(PAFC)
PAFC 是一种以磷酸为电解质的燃料电池 。 PAFC采用重整天然气作燃料,空气作氧化剂, 浸有浓磷酸的SiC 微孔膜作电解质 , Pt/C 作 催化剂 ,工作温度 200℃ 。
具体做法是将全氟磺酸树脂玻璃化温度下施加一定压力,将以加入全氟磺酸树脂的氢电极( 阳极 )、隔膜( 全氟磺酸型质 子交换膜) 和 已加入全氟磺酸树脂的氧电极(阴极)压和在一起,形成了电极-膜-电极三合一组 件 ,
200℃左右 ,能量 SOFC的电解质是固体氧化物 , 如 ZrO2 、 Bi2O3 等 , 其阳 极是Ni-YSZ陶瓷 , 阴 极目前主要采用 锰酸镧 (LSM,La1-xSrxMnO3 ) 材料。
碱性燃料电池的工作温度大约80℃。
碱性燃料电池工作示意图
AFC电极的制备工艺
AFC的电极设计要求电极具有高度稳定性的气、液、 固三相界面。
双孔结构电极 电极分两层,粗孔层和细孔层,粗孔层与 气室相连,细孔层与电解质接触。电极工作时,粗孔层 内充满反应气体,细孔层内填满电解液。细 孔层的电解 液浸润粗孔层,液气界面形成并发生电化学反应,离子 和水在电解液中传递,而电子则在构成粗孔层和细孔层 的合金骨架内传导 。
黏结型电极 是将亲水的导电体( 如电催化剂材料铂 / 碳 )与具有粘结能力的防水剂 ( 如聚四氟乙烯乳液 ) 按比例混合制成电极。 它在微观尺度上是相互交错的两 相体系,由防水剂构成的疏水网络为反应气体提供内部 的扩散通道;由电催化剂构成 的亲水网络可以被电解液 充满浸润,它为水和OH- 提供通道的同时,也为电子的 传导提供通道。

燃料电池

燃料电池
3. 不使用腐蚀性电解液,安全可靠; 4. 依负载要求,系统规模可大可小,组合方便; 5. 比功率高,特别适用于军用或民用的可移动电
源及电动车辆
23
PEMFC发电系统面临的主要课题
实用的完整的PEMFC发电系统有4个功能单元: 燃料及氧化剂供给单元; 电池湿度、温度调节单元; 功率变换单元; 系统控制单元。
的减少量-Δh中一部分以热量形
式传给了外界。
8
四、燃料电池的有效效率
有效效率
e
We H
电功 ,即实际产生的有用功 定压定温—反应物的焓差;
燃料电池有效效率 定容定温—反应物的热力学能差值
电池理论最大有用功
W u ,max e Jt
t
W u,max H
燃料电池热效率,在燃料电 池进行可逆反应时即是电池
ca c T ln (I/A i0 )
常数
(6)燃料电池的温度系数为负值。即温度升高,电动势减小, 电池工作时,向环境等温放热。实验表明:电池电动势与 工作温度有以下简单线性关系:
T
p
b
(b>0,是与温度T无关常数) 幻灯片 16
(7)燃料电池的输入,输出口的温度和压力均相同。
14
燃料电池装置不可逆熵产率
t
1
Qrev H
燃料电池的热效 率不受卡诺循环 效率的限制
Q 选re与v 择反燃应料物电的池性工质况有,关应,使在给Q r定,e v 的也外即部使条件 的 T时 绝 应p 对选值择最使小热。 效率达到最大值的物质作为反应物。
(2)燃料电池内部的不可逆性,部分能量转换成无效热,使燃
料电池有效效率相应地降低,这时,实际效率
这些费用,包括动力设备的维修费, 使用程度的维修费用。

燃料电池学习ppt完美版

燃料电池学习ppt完美版

燃料电池发电厂没有火力发电厂那样的噪声源,因而工作环境非常安静;
电导率越大则导电性能越强,反之越小。
电池是能量储存装置。 金属/空气电池的历史几乎就是空气电极的历史。
燃料电池的环境友好性是使其具有极强生命力和长远发展潜力的主要原因。
1970年,科尔迪什开发了第一辆燃料电池小汽车。
1896年,雅克研制成功第一个数百瓦(大约300瓦)的煤燃料电池;
1899年,施密特发明第一个空气扩散电极; 1959年,培根和弗洛斯特研制成功6KW碱性燃料电池系 统,并用来驱动叉车、圆盘锯和电焊机; 1959年,艾丽斯-查尔莫斯公司开发出第一辆碱性燃料电 池拖拉机,可以推动3000lb(1lb=0.4536kg)的重物;
(2) 燃料电池发展过程中的重大事件
1960年,通用电气公司开发成功质子交换膜燃料电池; 1962年,质子交换膜燃料电池应用于双子星座飞船; 1965年,碱性燃料电池用于阿波罗登月飞船; 1967年,通用汽车开发成功第一辆碱性燃料电池电动汽 车Electrovan; 1970年,科尔地什组装了第一辆碱性燃料电池-铅酸电池 混合动力轿车; 1972年,杜邦公司和格罗特发明了全氟磺酸质子交换膜; 1979年,在美国纽约完成了4.5MW磷酸燃料电池电厂的 测试; 1986年,洛斯阿拉莫斯国家实验室(LANL)开发成功第 一辆磷酸燃料电池公共汽车;
(2) 燃料电池发展过程中的重大事件
1986年,洛斯阿拉莫斯国家实验室开发成功第一辆磷酸燃 料电池公共汽车;
1988年,第一艘碱性燃料电池潜艇在德国出现; 1991年,日本千叶县的11MW磷酸燃料电池试验电厂达 到设计功率; 1993年,巴拉德电力系统公司开发成功第一辆质子交换膜 燃料电池公共汽车; 1996年,美国加利福尼亚州的2MW 熔融碳酸盐燃料电池 试验电厂开始供电;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料电池的发展现状
PEM:质子交换膜燃料电池;
DMFC:直接甲醇燃料电池;
SOFC:固体氧化物燃料电池; MCFC:熔融碳酸盐型燃料电池;
AFC:碱性燃料电池;
PAFC:磷酸盐型燃料电池
1
• 燃料电池是一个电化学系统,由三个主要
部分组成
• 燃料电池的工作原理 • 燃料电池能量转化 • 燃料电池的类型
公共汽车燃料电池发动 机要求燃料电池堆具有 20000h以上的运行寿 命
12
电极
载铂量过高(目前 国际研究最新进展,
电极铂载量: 0.02mg/cm2)
13
14
质子交换膜PEM
• (1)较高的质子传导率,可以降低电池内阻,减小欧 姆过电位以提高电流密度,实现较高的电池敬率
• (2)气体(尤其是氢气和氧气)在膜中的渗透性尽可能 小.以免氢气和氧气在对电极表面发生反应.造成 电极局部过热.影响电池的库仑效率
4
• (1)能量转化效率高。
• (2)有害气体SOx、NOx及噪音排放都很低
• (3)燃料适用范围广
• (4)积木化强 规模及安装地点灵活,燃料电 池电站占地面积小,建设周期短,电站功率可 根据需要由电池堆组装,十分方便。燃料电池 无论作为集中电站还是分布式电,或是作为小 区、工厂、大型建筑的独立电站都非常合适
与传统概 念的电池
比较
• 燃料电池具有的特点
刘润茹 , 王德军.燃料电池工作原理及性能研究[J].长春大学学报,2004,14(024).
3
一般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作 为负极, 用空气中的氧作为正极
工作时向负极供给燃料(氢),向正极供给氧化剂(空气)。 氢在负极分解成正离子H+和电子e-。氢离子进入电解液中,而 电子则沿外部电路移向正极。用电的负载就接在外部电路中。 在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的 电子形成水。这正是水的电解反应的逆过程。
热电共生系统、UPS、分布式发电系统、军事国防、 太空与运输工具领域、机器人、笔记型计算机、 PDA、手机等便携电子产品、便携电源、搬运工具、 电动辅助/代步车等
11
制约PEMFC商业化的主要因素
• 成本高 • 寿命短 • 燃料问题
轿车用燃料电池发动机 要求燃料电池堆具有 3000~5000h的运行寿 命。
输出电能都来自电化学反应 供电时都比较安静 绿色环保
7
纪秀磊,话说能源[J].说说燃料电池,2011(11).
8
9
10
PEMFC能用于商业化汽车
• 能源储备、过度开采,环境问题将得到缓解。 • 燃料电池技术因具备低污染、高能源转换效率的
特性,更能满足人类高效、环保的需求。 • 具有更高的能源密度。紧急备用发电机、住宅用
17
质子交换膜燃料电池的使用寿命短 的根本原因是:燃料电池中不合理结构
跟不合理操作条件。
氢燃料的制备、储存及运输等使 FCVห้องสมุดไป่ตู้以实现产业化。
18
结语
• 油价飙升、电价太贵,燃料电池成为未来 家庭能源供应相对便宜的选择,也是目前 最令人满意的解决方案。在固定电站、电 动车、军用特种电源、可移动电源等方面 都有广阔的应用前景。
• (3)膜对氧化、还原和水解具有稳定性,它在活性物 质氧化/还原和酸性作用下不降解
• (4)足够高的机械强度和热稳定性
• (5)膜的表面性质适于与催化剂结合
• (6)适当的性能/价格比
15
质子交换膜PEM
16
双极板
作用: 分隔反应气体、收 集电流、将各个单 体电池串联起来、 为反应气进入电极 和水的排出提供通 道。
• 固体氧化物型燃料电池(SOFC):采用固态电解

• 质子交换膜燃料电池(PEMFC):采用极薄的塑 料薄膜作为其电解质
6
体系 特点
不同点
燃料电池
电池
完全不封闭体 大多数是完全封闭体系

(特例如:锌-空气电池)
只是供能设备
既是供能设备又是储能设 备,方便携带
功能
可持续供电
充电要电网的支持!
相同点
• 高效、洁净的燃料电池必将在未来的高效、 清洁发电技术中占有一席之地。但是,资 金、技术、观念、基础设施上还有许多需 要克服的困难。
19
20
• (5)负荷响应快,运行质量高燃料电池在数秒 钟内就可以从最低功率变换到额定功率,减少 了输变线路投资和线路损失。
返回 5
• 按电解质划分有5个种类:
• 碱性燃料电池(AFC):采用氢氧化钾溶液作为
电解液
• 磷酸盐型燃料电池(PAFC):采用200℃高温下 的磷酸作为其电解质
• 熔融碳酸盐型燃料电池(MCFC):采用熔融态碳 酸盐作为其电解质
相关文档
最新文档